Abstract

Red phosphors LiGd3(MoO4)5 doped with various Eu3+ concentrations were synthesized by the solid state reaction method. Diffuse reflection spectra, photoluminescence spectra, and temperature-dependent luminescence spectra of the phosphors were measured. Due to the weak concentration quenching effect, the optimal Eu3+ concentration is up to 90 at.% in the LiGd3(MoO4)5:Eu3+, which shows higher color purity and brightness than the commercial Y2O2S:6.3at.%Eu3+ red phosphor excited at 395 nm. When the temperature was increased to 450 K, the red emission intensity of the phosphor decreased to 58% of that at 300 K. The results show that the LiGd3(MoO4)5:90at.%Eu3+ may be a promising red phosphor for white light-emitting diodes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications

Yanlin Huang, Yosuke Nakai, Taiju Tsuboi, and Hyo Jin Seo
Opt. Express 19(7) 6303-6311 (2011)

A narrow red-emitting phosphor of NaLa4[Mo3O15]F:Eu3+ with broad excitation band extending in blue wavelength region

Shuyun Qi, Hongde Xie, Yanlin Huang, Sun Il Kim, and Hyo Jin Seo
Opt. Mater. Express 4(2) 190-197 (2014)

Simultaneous realization of two approaches to white light in single-component phosphors

Lili Wang, Hyeon Mi Noh, Byung Kee Moon, Sung Heum Park, Jung Hyun Jeong, and Jinsheng Shi
Opt. Express 22(21) 25500-25505 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 179–180 (2009).
    [Crossref]
  2. P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
    [Crossref] [PubMed]
  3. F. Baur, F. Glocker, and T. Juestel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
    [Crossref]
  4. J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
    [Crossref]
  5. S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1-3), 2–6 (2004).
    [Crossref]
  6. C. Qin, Y. Huang, G. Chen, L. Shi, X. Qiao, J. Gan, and H. J. Seo, “Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6,” Mater. Lett. 63(13-14), 1162–1164 (2009).
    [Crossref]
  7. C. Litterscheid, S. Krueger, M. Euler, A. Dreizler, C. Wickleder, and B. Albert, “Solid solution between lithium-rich yttrium and europium molybdate as new efficient red-emitting phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 596–602 (2016).
    [Crossref]
  8. J. Hu, X. Gong, J. Huang, Y. Chen, Y. Lin, Z. Luo, and Y. Huang, “Near ultraviolet excited Eu3+ doped Li3Ba2La3(WO4)8 red phosphors for white light emitting diodes,” Opt. Mater. Express 6(1), 181–190 (2016).
    [Crossref]
  9. C. Guo, F. Gao, Y. Xu, L. Liang, F. G. Shi, and B. Yan, “Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln = La, Gd and Y) for white LEDs,” J. Phys. D Appl. Phys. 42(9), 095407 (2009).
    [Crossref]
  10. C. Zhao, X. Yin, F. Huang, and Y. Hang, “Synthesis and photoluminescence properties of the high-brightness Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) red phosphors,” J. Solid State Chem. 184(12), 3190–3194 (2011).
    [Crossref]
  11. R. K. Pandey, “Growth of LiGd3(MoO4)5 single-crystals,” J. Cryst. Growth 48(3), 355–358 (1980).
    [Crossref]
  12. A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Bünzli, and P. Pattison, “The luminescence of NaxEu3+(2−x)/3MoO4 scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure,” Chem. Sci. (Camb.) 3(2), 384–390 (2012).
    [Crossref]
  13. A. Arakcheeva and G. Chapuis, “Capabilities and limitations of a (3 + d)-dimensional incommensurately modulated structure as a model for the derivation of an extended family of compounds: example of the scheelite-like structures,” Acta Crystallogr. B 64(Pt 1), 12–25 (2008).
    [Crossref] [PubMed]
  14. R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  15. P. S. Dutta and A. Khanna, “Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region,” ECS J. Solid State Sci. Technol. 2(2), R3153–R3167 (2012).
    [Crossref]
  16. S. Qi, H. Xie, Y. Huang, S. I. Kim, and H. J. Seo, “A narrow red-emitting phosphor of NaLa4 Mo3O15 F: Eu3+ with broad excitation band extending in blue wavelength region,” Opt. Mater. Express 4(2), 190–197 (2014).
    [Crossref]
  17. R. L. Frost, K. L. Erickson, M. L. Weier, A. R. McKinnon, P. A. Williams, and P. Leverett, “Use of infrared spectroscopy for the determination of electronegativity of rare earth elements,” Appl. Spectrosc. 58(7), 811–815 (2004).
    [Crossref] [PubMed]
  18. X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
    [Crossref]
  19. F. Baur and T. Juestel, “New red-emitting phosphor La2Zr3(MoO4)9:Eu3+ and the influence of host absorption on its luminescence efficiency,” Aust. J. Chem. 68, 1727–1734 (2015).
    [Crossref]
  20. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, Boca Raton, 2007).
  21. B. S. Tsai, Y. H. Chang, and Y. C. Chen, “Synthesis and luminescent properties of MgIn2-xGaxO4: Eu3+ phosphors,” Electrochem. Solid St. 8(7), H55–H57 (2005).
    [Crossref]
  22. G. Q. Wang, X. H. Gong, Y. J. Chen, J. H. Huang, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure,” Dalton Trans. 46(20), 6776–6784 (2017).
    [Crossref] [PubMed]
  23. L. Yi, X. He, L. Zhou, F. Gong, R. Wang, and J. Sun, “A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application,” J. Lumin. 130(6), 1113–1117 (2010).
    [Crossref]
  24. V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
    [Crossref] [PubMed]
  25. V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
    [Crossref]
  26. K. Binnemans, “Interpretation of europium (III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
    [Crossref]
  27. D. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
    [Crossref]
  28. K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln=Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
    [Crossref]
  29. M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Advances in InAlGaN laser diode technology towards the development of UV optical sources,” Proc. SPIE 4995, 103–107 (2003).
    [Crossref]
  30. T. Taguchi, “Present status and future prospect of system and design in white LED lighting technologies,” Proc. SPIE 5530, 7–16 (2004).
    [Crossref]
  31. K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
    [Crossref]
  32. Y. C. Chang, C. H. Liang, S. A. Yan, and Y. S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
    [Crossref]
  33. W. H. Fonger and C. W. Struck, “Eu+3 5D resonance quenching to charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52(12), 6364–6372 (1970).
    [Crossref]
  34. D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
    [Crossref]
  35. F. Meng, X. Zhang, S. I. Kim, Y. M. Yu, and H. J. Seo, “Luminescence properties of Eu3+ in gadolinium molybdate β′-Gd2Mo3O12 phosphors,” Optik (Stuttg.) 125(14), 3578–3582 (2014).
    [Crossref]
  36. L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
    [Crossref]
  37. C. Qin, Y. Huang, and H. J. Seo, “The thermal stability and structural site-distribution of Eu3+ ions in the red-emitting phosphors Ca9Eu2W4O24 and Sr9Eu2W4O24,” J. Alloys Compd. 534, 86–92 (2012).
    [Crossref]
  38. P. Du, Y. Guo, S. H. Lee, and J. S. Yu, “Broad near-ultraviolet and blue excitation band induced dazzling red emissions in Eu3+-activated Gd2MoO6 phosphors for white light-emitting diodes,” Rsc Adv. 7(6), 3170–3178 (2017).
    [Crossref]
  39. J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La3BW1-xMoxO9:Eu3+ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
    [Crossref] [PubMed]

2017 (3)

G. Q. Wang, X. H. Gong, Y. J. Chen, J. H. Huang, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure,” Dalton Trans. 46(20), 6776–6784 (2017).
[Crossref] [PubMed]

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

P. Du, Y. Guo, S. H. Lee, and J. S. Yu, “Broad near-ultraviolet and blue excitation band induced dazzling red emissions in Eu3+-activated Gd2MoO6 phosphors for white light-emitting diodes,” Rsc Adv. 7(6), 3170–3178 (2017).
[Crossref]

2016 (2)

C. Litterscheid, S. Krueger, M. Euler, A. Dreizler, C. Wickleder, and B. Albert, “Solid solution between lithium-rich yttrium and europium molybdate as new efficient red-emitting phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 596–602 (2016).
[Crossref]

J. Hu, X. Gong, J. Huang, Y. Chen, Y. Lin, Z. Luo, and Y. Huang, “Near ultraviolet excited Eu3+ doped Li3Ba2La3(WO4)8 red phosphors for white light emitting diodes,” Opt. Mater. Express 6(1), 181–190 (2016).
[Crossref]

2015 (5)

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref] [PubMed]

F. Baur, F. Glocker, and T. Juestel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
[Crossref]

F. Baur and T. Juestel, “New red-emitting phosphor La2Zr3(MoO4)9:Eu3+ and the influence of host absorption on its luminescence efficiency,” Aust. J. Chem. 68, 1727–1734 (2015).
[Crossref]

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

K. Binnemans, “Interpretation of europium (III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

2014 (4)

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

F. Meng, X. Zhang, S. I. Kim, Y. M. Yu, and H. J. Seo, “Luminescence properties of Eu3+ in gadolinium molybdate β′-Gd2Mo3O12 phosphors,” Optik (Stuttg.) 125(14), 3578–3582 (2014).
[Crossref]

S. Qi, H. Xie, Y. Huang, S. I. Kim, and H. J. Seo, “A narrow red-emitting phosphor of NaLa4 Mo3O15 F: Eu3+ with broad excitation band extending in blue wavelength region,” Opt. Mater. Express 4(2), 190–197 (2014).
[Crossref]

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La3BW1-xMoxO9:Eu3+ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

2013 (1)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

2012 (5)

C. Qin, Y. Huang, and H. J. Seo, “The thermal stability and structural site-distribution of Eu3+ ions in the red-emitting phosphors Ca9Eu2W4O24 and Sr9Eu2W4O24,” J. Alloys Compd. 534, 86–92 (2012).
[Crossref]

P. S. Dutta and A. Khanna, “Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region,” ECS J. Solid State Sci. Technol. 2(2), R3153–R3167 (2012).
[Crossref]

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Bünzli, and P. Pattison, “The luminescence of NaxEu3+(2−x)/3MoO4 scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure,” Chem. Sci. (Camb.) 3(2), 384–390 (2012).
[Crossref]

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

2011 (1)

C. Zhao, X. Yin, F. Huang, and Y. Hang, “Synthesis and photoluminescence properties of the high-brightness Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) red phosphors,” J. Solid State Chem. 184(12), 3190–3194 (2011).
[Crossref]

2010 (2)

L. Yi, X. He, L. Zhou, F. Gong, R. Wang, and J. Sun, “A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application,” J. Lumin. 130(6), 1113–1117 (2010).
[Crossref]

Y. C. Chang, C. H. Liang, S. A. Yan, and Y. S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

2009 (3)

C. Guo, F. Gao, Y. Xu, L. Liang, F. G. Shi, and B. Yan, “Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln = La, Gd and Y) for white LEDs,” J. Phys. D Appl. Phys. 42(9), 095407 (2009).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 179–180 (2009).
[Crossref]

C. Qin, Y. Huang, G. Chen, L. Shi, X. Qiao, J. Gan, and H. J. Seo, “Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6,” Mater. Lett. 63(13-14), 1162–1164 (2009).
[Crossref]

2008 (1)

A. Arakcheeva and G. Chapuis, “Capabilities and limitations of a (3 + d)-dimensional incommensurately modulated structure as a model for the derivation of an extended family of compounds: example of the scheelite-like structures,” Acta Crystallogr. B 64(Pt 1), 12–25 (2008).
[Crossref] [PubMed]

2005 (1)

B. S. Tsai, Y. H. Chang, and Y. C. Chen, “Synthesis and luminescent properties of MgIn2-xGaxO4: Eu3+ phosphors,” Electrochem. Solid St. 8(7), H55–H57 (2005).
[Crossref]

2004 (3)

R. L. Frost, K. L. Erickson, M. L. Weier, A. R. McKinnon, P. A. Williams, and P. Leverett, “Use of infrared spectroscopy for the determination of electronegativity of rare earth elements,” Appl. Spectrosc. 58(7), 811–815 (2004).
[Crossref] [PubMed]

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1-3), 2–6 (2004).
[Crossref]

T. Taguchi, “Present status and future prospect of system and design in white LED lighting technologies,” Proc. SPIE 5530, 7–16 (2004).
[Crossref]

2003 (1)

M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Advances in InAlGaN laser diode technology towards the development of UV optical sources,” Proc. SPIE 4995, 103–107 (2003).
[Crossref]

2002 (1)

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

1996 (1)

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln=Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[Crossref]

1980 (1)

R. K. Pandey, “Growth of LiGd3(MoO4)5 single-crystals,” J. Cryst. Growth 48(3), 355–358 (1980).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

1970 (1)

W. H. Fonger and C. W. Struck, “Eu+3 5D resonance quenching to charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52(12), 6364–6372 (1970).
[Crossref]

1954 (1)

D. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

Albert, B.

C. Litterscheid, S. Krueger, M. Euler, A. Dreizler, C. Wickleder, and B. Albert, “Solid solution between lithium-rich yttrium and europium molybdate as new efficient red-emitting phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 596–602 (2016).
[Crossref]

Anc, M.

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

Annapurna, K.

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln=Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[Crossref]

Arakcheeva, A.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Bünzli, and P. Pattison, “The luminescence of NaxEu3+(2−x)/3MoO4 scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure,” Chem. Sci. (Camb.) 3(2), 384–390 (2012).
[Crossref]

A. Arakcheeva and G. Chapuis, “Capabilities and limitations of a (3 + d)-dimensional incommensurately modulated structure as a model for the derivation of an extended family of compounds: example of the scheelite-like structures,” Acta Crystallogr. B 64(Pt 1), 12–25 (2008).
[Crossref] [PubMed]

Baur, F.

F. Baur and T. Juestel, “New red-emitting phosphor La2Zr3(MoO4)9:Eu3+ and the influence of host absorption on its luminescence efficiency,” Aust. J. Chem. 68, 1727–1734 (2015).
[Crossref]

F. Baur, F. Glocker, and T. Juestel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
[Crossref]

Binnemans, K.

K. Binnemans, “Interpretation of europium (III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

Buddhudu, S.

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln=Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[Crossref]

Bünzli, J.-C. G.

A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Bünzli, and P. Pattison, “The luminescence of NaxEu3+(2−x)/3MoO4 scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure,” Chem. Sci. (Camb.) 3(2), 384–390 (2012).
[Crossref]

Cantore, M.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Chang, W.

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

Chang, Y. C.

Y. C. Chang, C. H. Liang, S. A. Yan, and Y. S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

Chang, Y. H.

B. S. Tsai, Y. H. Chang, and Y. C. Chen, “Synthesis and luminescent properties of MgIn2-xGaxO4: Eu3+ phosphors,” Electrochem. Solid St. 8(7), H55–H57 (2005).
[Crossref]

Chang, Y. S.

Y. C. Chang, C. H. Liang, S. A. Yan, and Y. S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

Chapuis, G.

A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Bünzli, and P. Pattison, “The luminescence of NaxEu3+(2−x)/3MoO4 scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure,” Chem. Sci. (Camb.) 3(2), 384–390 (2012).
[Crossref]

A. Arakcheeva and G. Chapuis, “Capabilities and limitations of a (3 + d)-dimensional incommensurately modulated structure as a model for the derivation of an extended family of compounds: example of the scheelite-like structures,” Acta Crystallogr. B 64(Pt 1), 12–25 (2008).
[Crossref] [PubMed]

Cheetham, A. K.

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1-3), 2–6 (2004).
[Crossref]

Chen, G.

C. Qin, Y. Huang, G. Chen, L. Shi, X. Qiao, J. Gan, and H. J. Seo, “Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6,” Mater. Lett. 63(13-14), 1162–1164 (2009).
[Crossref]

Chen, W.

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

Chen, Y.

Chen, Y. C.

B. S. Tsai, Y. H. Chang, and Y. C. Chen, “Synthesis and luminescent properties of MgIn2-xGaxO4: Eu3+ phosphors,” Electrochem. Solid St. 8(7), H55–H57 (2005).
[Crossref]

Chen, Y. J.

G. Q. Wang, X. H. Gong, Y. J. Chen, J. H. Huang, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure,” Dalton Trans. 46(20), 6776–6784 (2017).
[Crossref] [PubMed]

Choi, J. I.

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

Cui, H. T.

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

Denault, K. A.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

DenBaars, S. P.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 179–180 (2009).
[Crossref]

Dexter, D.

D. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

Dreizler, A.

C. Litterscheid, S. Krueger, M. Euler, A. Dreizler, C. Wickleder, and B. Albert, “Solid solution between lithium-rich yttrium and europium molybdate as new efficient red-emitting phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 596–602 (2016).
[Crossref]

Du, P.

P. Du, Y. Guo, S. H. Lee, and J. S. Yu, “Broad near-ultraviolet and blue excitation band induced dazzling red emissions in Eu3+-activated Gd2MoO6 phosphors for white light-emitting diodes,” Rsc Adv. 7(6), 3170–3178 (2017).
[Crossref]

Dutta, P. S.

P. S. Dutta and A. Khanna, “Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region,” ECS J. Solid State Sci. Technol. 2(2), R3153–R3167 (2012).
[Crossref]

Eliseeva, S. V.

A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Bünzli, and P. Pattison, “The luminescence of NaxEu3+(2−x)/3MoO4 scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure,” Chem. Sci. (Camb.) 3(2), 384–390 (2012).
[Crossref]

Erickson, K. L.

Euler, M.

C. Litterscheid, S. Krueger, M. Euler, A. Dreizler, C. Wickleder, and B. Albert, “Solid solution between lithium-rich yttrium and europium molybdate as new efficient red-emitting phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 596–602 (2016).
[Crossref]

Feng, J.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

Feng, Z.

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

Fonger, W. H.

W. H. Fonger and C. W. Struck, “Eu+3 5D resonance quenching to charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52(12), 6364–6372 (1970).
[Crossref]

Frost, R. L.

Galvez, M.

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

Gan, J.

C. Qin, Y. Huang, G. Chen, L. Shi, X. Qiao, J. Gan, and H. J. Seo, “Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6,” Mater. Lett. 63(13-14), 1162–1164 (2009).
[Crossref]

Gao, F.

C. Guo, F. Gao, Y. Xu, L. Liang, F. G. Shi, and B. Yan, “Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln = La, Gd and Y) for white LEDs,” J. Phys. D Appl. Phys. 42(9), 095407 (2009).
[Crossref]

Gauquelin, N.

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

Glocker, F.

F. Baur, F. Glocker, and T. Juestel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
[Crossref]

Gong, F.

L. Yi, X. He, L. Zhou, F. Gong, R. Wang, and J. Sun, “A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application,” J. Lumin. 130(6), 1113–1117 (2010).
[Crossref]

Gong, X.

Gong, X. H.

G. Q. Wang, X. H. Gong, Y. J. Chen, J. H. Huang, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure,” Dalton Trans. 46(20), 6776–6784 (2017).
[Crossref] [PubMed]

Guo, C.

C. Guo, F. Gao, Y. Xu, L. Liang, F. G. Shi, and B. Yan, “Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln = La, Gd and Y) for white LEDs,” J. Phys. D Appl. Phys. 42(9), 095407 (2009).
[Crossref]

Guo, Y.

P. Du, Y. Guo, S. H. Lee, and J. S. Yu, “Broad near-ultraviolet and blue excitation band induced dazzling red emissions in Eu3+-activated Gd2MoO6 phosphors for white light-emitting diodes,” Rsc Adv. 7(6), 3170–3178 (2017).
[Crossref]

Hadermann, J.

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

Han, J. K.

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

Hang, Y.

C. Zhao, X. Yin, F. Huang, and Y. Hang, “Synthesis and photoluminescence properties of the high-brightness Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) red phosphors,” J. Solid State Chem. 184(12), 3190–3194 (2011).
[Crossref]

Hannah, M. E.

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

He, X.

L. Yi, X. He, L. Zhou, F. Gong, R. Wang, and J. Sun, “A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application,” J. Lumin. 130(6), 1113–1117 (2010).
[Crossref]

Hong, G. Y.

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

Hou, B.

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La3BW1-xMoxO9:Eu3+ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

Hu, J.

Huang, F.

C. Zhao, X. Yin, F. Huang, and Y. Hang, “Synthesis and photoluminescence properties of the high-brightness Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) red phosphors,” J. Solid State Chem. 184(12), 3190–3194 (2011).
[Crossref]

Huang, J.

J. Hu, X. Gong, J. Huang, Y. Chen, Y. Lin, Z. Luo, and Y. Huang, “Near ultraviolet excited Eu3+ doped Li3Ba2La3(WO4)8 red phosphors for white light emitting diodes,” Opt. Mater. Express 6(1), 181–190 (2016).
[Crossref]

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La3BW1-xMoxO9:Eu3+ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

Huang, J. H.

G. Q. Wang, X. H. Gong, Y. J. Chen, J. H. Huang, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure,” Dalton Trans. 46(20), 6776–6784 (2017).
[Crossref] [PubMed]

Huang, Y.

J. Hu, X. Gong, J. Huang, Y. Chen, Y. Lin, Z. Luo, and Y. Huang, “Near ultraviolet excited Eu3+ doped Li3Ba2La3(WO4)8 red phosphors for white light emitting diodes,” Opt. Mater. Express 6(1), 181–190 (2016).
[Crossref]

S. Qi, H. Xie, Y. Huang, S. I. Kim, and H. J. Seo, “A narrow red-emitting phosphor of NaLa4 Mo3O15 F: Eu3+ with broad excitation band extending in blue wavelength region,” Opt. Mater. Express 4(2), 190–197 (2014).
[Crossref]

C. Qin, Y. Huang, and H. J. Seo, “The thermal stability and structural site-distribution of Eu3+ ions in the red-emitting phosphors Ca9Eu2W4O24 and Sr9Eu2W4O24,” J. Alloys Compd. 534, 86–92 (2012).
[Crossref]

C. Qin, Y. Huang, G. Chen, L. Shi, X. Qiao, J. Gan, and H. J. Seo, “Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6,” Mater. Lett. 63(13-14), 1162–1164 (2009).
[Crossref]

Huang, Y. D.

G. Q. Wang, X. H. Gong, Y. J. Chen, J. H. Huang, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure,” Dalton Trans. 46(20), 6776–6784 (2017).
[Crossref] [PubMed]

Jiang, P.

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

Johnson, N. M.

M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Advances in InAlGaN laser diode technology towards the development of UV optical sources,” Proc. SPIE 4995, 103–107 (2003).
[Crossref]

Juestel, T.

F. Baur and T. Juestel, “New red-emitting phosphor La2Zr3(MoO4)9:Eu3+ and the influence of host absorption on its luminescence efficiency,” Aust. J. Chem. 68, 1727–1734 (2015).
[Crossref]

F. Baur, F. Glocker, and T. Juestel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
[Crossref]

Khanna, A.

P. S. Dutta and A. Khanna, “Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region,” ECS J. Solid State Sci. Technol. 2(2), R3153–R3167 (2012).
[Crossref]

Khasanov, S.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

Kijima, N.

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1-3), 2–6 (2004).
[Crossref]

Kim, C. H.

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

Kim, S. I.

F. Meng, X. Zhang, S. I. Kim, Y. M. Yu, and H. J. Seo, “Luminescence properties of Eu3+ in gadolinium molybdate β′-Gd2Mo3O12 phosphors,” Optik (Stuttg.) 125(14), 3578–3582 (2014).
[Crossref]

S. Qi, H. Xie, Y. Huang, S. I. Kim, and H. J. Seo, “A narrow red-emitting phosphor of NaLa4 Mo3O15 F: Eu3+ with broad excitation band extending in blue wavelength region,” Opt. Mater. Express 4(2), 190–197 (2014).
[Crossref]

Kiselev, A. P.

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

Kneissl, M.

M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Advances in InAlGaN laser diode technology towards the development of UV optical sources,” Proc. SPIE 4995, 103–107 (2003).
[Crossref]

Krueger, S.

C. Litterscheid, S. Krueger, M. Euler, A. Dreizler, C. Wickleder, and B. Albert, “Solid solution between lithium-rich yttrium and europium molybdate as new efficient red-emitting phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 596–602 (2016).
[Crossref]

Kudrenko, E.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

Lazoryak, B. I.

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

Lebedev, O.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

Lebedev, O. I.

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

Lee, S. H.

P. Du, Y. Guo, S. H. Lee, and J. S. Yu, “Broad near-ultraviolet and blue excitation band induced dazzling red emissions in Eu3+-activated Gd2MoO6 phosphors for white light-emitting diodes,” Rsc Adv. 7(6), 3170–3178 (2017).
[Crossref]

Leverett, P.

Li, J.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

Li, L.

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

Liang, C. H.

Y. C. Chang, C. H. Liang, S. A. Yan, and Y. S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

Liang, L.

C. Guo, F. Gao, Y. Xu, L. Liang, F. G. Shi, and B. Yan, “Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln = La, Gd and Y) for white LEDs,” J. Phys. D Appl. Phys. 42(9), 095407 (2009).
[Crossref]

Lin, Y.

Lin, Y. F.

G. Q. Wang, X. H. Gong, Y. J. Chen, J. H. Huang, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure,” Dalton Trans. 46(20), 6776–6784 (2017).
[Crossref] [PubMed]

Ling, H.

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La3BW1-xMoxO9:Eu3+ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

Litterscheid, C.

C. Litterscheid, S. Krueger, M. Euler, A. Dreizler, C. Wickleder, and B. Albert, “Solid solution between lithium-rich yttrium and europium molybdate as new efficient red-emitting phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 596–602 (2016).
[Crossref]

Liu, J.

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La3BW1-xMoxO9:Eu3+ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

Logvinovich, D.

A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Bünzli, and P. Pattison, “The luminescence of NaxEu3+(2−x)/3MoO4 scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure,” Chem. Sci. (Camb.) 3(2), 384–390 (2012).
[Crossref]

Lugauer, H.

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

Luo, Z.

Luo, Z. D.

G. Q. Wang, X. H. Gong, Y. J. Chen, J. H. Huang, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure,” Dalton Trans. 46(20), 6776–6784 (2017).
[Crossref] [PubMed]

McKinnon, A. R.

McKittrick, J.

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

Meng, F.

F. Meng, X. Zhang, S. I. Kim, Y. M. Yu, and H. J. Seo, “Luminescence properties of Eu3+ in gadolinium molybdate β′-Gd2Mo3O12 phosphors,” Optik (Stuttg.) 125(14), 3578–3582 (2014).
[Crossref]

Mishra, K. C.

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

Miyashita, N.

M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Advances in InAlGaN laser diode technology towards the development of UV optical sources,” Proc. SPIE 4995, 103–107 (2003).
[Crossref]

Morozov, V.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Bünzli, and P. Pattison, “The luminescence of NaxEu3+(2−x)/3MoO4 scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure,” Chem. Sci. (Camb.) 3(2), 384–390 (2012).
[Crossref]

Morozov, V. A.

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

Nakamura, S.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 179–180 (2009).
[Crossref]

Neeraj, S.

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1-3), 2–6 (2004).
[Crossref]

Pandey, R. K.

R. K. Pandey, “Growth of LiGd3(MoO4)5 single-crystals,” J. Cryst. Growth 48(3), 355–358 (1980).
[Crossref]

Park, C. H.

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

Pattison, P.

A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Bünzli, and P. Pattison, “The luminescence of NaxEu3+(2−x)/3MoO4 scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure,” Chem. Sci. (Camb.) 3(2), 384–390 (2012).
[Crossref]

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 179–180 (2009).
[Crossref]

Piquette, A.

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

Pust, P.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref] [PubMed]

Pyun, C. H.

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

Qi, S.

Qiao, X.

C. Qin, Y. Huang, G. Chen, L. Shi, X. Qiao, J. Gan, and H. J. Seo, “Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6,” Mater. Lett. 63(13-14), 1162–1164 (2009).
[Crossref]

Qin, C.

C. Qin, Y. Huang, and H. J. Seo, “The thermal stability and structural site-distribution of Eu3+ ions in the red-emitting phosphors Ca9Eu2W4O24 and Sr9Eu2W4O24,” J. Alloys Compd. 534, 86–92 (2012).
[Crossref]

C. Qin, Y. Huang, G. Chen, L. Shi, X. Qiao, J. Gan, and H. J. Seo, “Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6,” Mater. Lett. 63(13-14), 1162–1164 (2009).
[Crossref]

Raskina, M.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

Reddy, K. R.

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln=Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[Crossref]

Redkin, B.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

Schmidt, P. J.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref] [PubMed]

Schnick, W.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref] [PubMed]

Schulman, J. H.

D. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

Seo, H. J.

F. Meng, X. Zhang, S. I. Kim, Y. M. Yu, and H. J. Seo, “Luminescence properties of Eu3+ in gadolinium molybdate β′-Gd2Mo3O12 phosphors,” Optik (Stuttg.) 125(14), 3578–3582 (2014).
[Crossref]

S. Qi, H. Xie, Y. Huang, S. I. Kim, and H. J. Seo, “A narrow red-emitting phosphor of NaLa4 Mo3O15 F: Eu3+ with broad excitation band extending in blue wavelength region,” Opt. Mater. Express 4(2), 190–197 (2014).
[Crossref]

C. Qin, Y. Huang, and H. J. Seo, “The thermal stability and structural site-distribution of Eu3+ ions in the red-emitting phosphors Ca9Eu2W4O24 and Sr9Eu2W4O24,” J. Alloys Compd. 534, 86–92 (2012).
[Crossref]

C. Qin, Y. Huang, G. Chen, L. Shi, X. Qiao, J. Gan, and H. J. Seo, “Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6,” Mater. Lett. 63(13-14), 1162–1164 (2009).
[Crossref]

Seshadri, R.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Shi, F. G.

C. Guo, F. Gao, Y. Xu, L. Liang, F. G. Shi, and B. Yan, “Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln = La, Gd and Y) for white LEDs,” J. Phys. D Appl. Phys. 42(9), 095407 (2009).
[Crossref]

Shi, J.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

Shi, L.

C. Qin, Y. Huang, G. Chen, L. Shi, X. Qiao, J. Gan, and H. J. Seo, “Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6,” Mater. Lett. 63(13-14), 1162–1164 (2009).
[Crossref]

Shmurak, S. Z.

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

Sinitsyn, V.

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

Speck, J. S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 179–180 (2009).
[Crossref]

Struck, C. W.

W. H. Fonger and C. W. Struck, “Eu+3 5D resonance quenching to charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52(12), 6364–6372 (1970).
[Crossref]

Su, Q.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

Suchocki, A.

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

Sun, J.

L. Yi, X. He, L. Zhou, F. Gong, R. Wang, and J. Sun, “A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application,” J. Lumin. 130(6), 1113–1117 (2010).
[Crossref]

Taguchi, T.

T. Taguchi, “Present status and future prospect of system and design in white LED lighting technologies,” Proc. SPIE 5530, 7–16 (2004).
[Crossref]

Talbot, J. B.

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

Teepe, M.

M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Advances in InAlGaN laser diode technology towards the development of UV optical sources,” Proc. SPIE 4995, 103–107 (2003).
[Crossref]

Treat, D. W.

M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Advances in InAlGaN laser diode technology towards the development of UV optical sources,” Proc. SPIE 4995, 103–107 (2003).
[Crossref]

Tsai, B. S.

B. S. Tsai, Y. H. Chang, and Y. C. Chen, “Synthesis and luminescent properties of MgIn2-xGaxO4: Eu3+ phosphors,” Electrochem. Solid St. 8(7), H55–H57 (2005).
[Crossref]

Van Tendeloo, G.

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

Verbeeck, J.

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

Wang, G. Q.

G. Q. Wang, X. H. Gong, Y. J. Chen, J. H. Huang, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure,” Dalton Trans. 46(20), 6776–6784 (2017).
[Crossref] [PubMed]

Wang, R.

L. Yi, X. He, L. Zhou, F. Gong, R. Wang, and J. Sun, “A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application,” J. Lumin. 130(6), 1113–1117 (2010).
[Crossref]

Wang, Y.

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

Weier, M. L.

Wen, D.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

Wickleder, C.

C. Litterscheid, S. Krueger, M. Euler, A. Dreizler, C. Wickleder, and B. Albert, “Solid solution between lithium-rich yttrium and europium molybdate as new efficient red-emitting phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 596–602 (2016).
[Crossref]

Williams, P. A.

Wu, M.

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

Wu, X. Y.

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

Xie, H.

Xu, Y.

C. Guo, F. Gao, Y. Xu, L. Liang, F. G. Shi, and B. Yan, “Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln = La, Gd and Y) for white LEDs,” J. Phys. D Appl. Phys. 42(9), 095407 (2009).
[Crossref]

Yan, B.

C. Guo, F. Gao, Y. Xu, L. Liang, F. G. Shi, and B. Yan, “Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln = La, Gd and Y) for white LEDs,” J. Phys. D Appl. Phys. 42(9), 095407 (2009).
[Crossref]

Yan, S. A.

Y. C. Chang, C. H. Liang, S. A. Yan, and Y. S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

Yi, L.

L. Yi, X. He, L. Zhou, F. Gong, R. Wang, and J. Sun, “A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application,” J. Lumin. 130(6), 1113–1117 (2010).
[Crossref]

Yin, X.

C. Zhao, X. Yin, F. Huang, and Y. Hang, “Synthesis and photoluminescence properties of the high-brightness Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) red phosphors,” J. Solid State Chem. 184(12), 3190–3194 (2011).
[Crossref]

You, H. P.

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

Yu, B. Y.

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

Yu, J. S.

P. Du, Y. Guo, S. H. Lee, and J. S. Yu, “Broad near-ultraviolet and blue excitation band induced dazzling red emissions in Eu3+-activated Gd2MoO6 phosphors for white light-emitting diodes,” Rsc Adv. 7(6), 3170–3178 (2017).
[Crossref]

Yu, X.

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La3BW1-xMoxO9:Eu3+ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

Yu, Y. M.

F. Meng, X. Zhang, S. I. Kim, Y. M. Yu, and H. J. Seo, “Luminescence properties of Eu3+ in gadolinium molybdate β′-Gd2Mo3O12 phosphors,” Optik (Stuttg.) 125(14), 3578–3582 (2014).
[Crossref]

Zeng, X. Q.

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

Zhang, X.

F. Meng, X. Zhang, S. I. Kim, Y. M. Yu, and H. J. Seo, “Luminescence properties of Eu3+ in gadolinium molybdate β′-Gd2Mo3O12 phosphors,” Optik (Stuttg.) 125(14), 3578–3582 (2014).
[Crossref]

Zhao, C.

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

C. Zhao, X. Yin, F. Huang, and Y. Hang, “Synthesis and photoluminescence properties of the high-brightness Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) red phosphors,” J. Solid State Chem. 184(12), 3190–3194 (2011).
[Crossref]

Zhou, L.

L. Yi, X. He, L. Zhou, F. Gong, R. Wang, and J. Sun, “A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application,” J. Lumin. 130(6), 1113–1117 (2010).
[Crossref]

Zhou, X.

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Acta Crystallogr. B (1)

A. Arakcheeva and G. Chapuis, “Capabilities and limitations of a (3 + d)-dimensional incommensurately modulated structure as a model for the derivation of an extended family of compounds: example of the scheelite-like structures,” Acta Crystallogr. B 64(Pt 1), 12–25 (2008).
[Crossref] [PubMed]

AIP Adv. (1)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Appl. Spectrosc. (1)

Aust. J. Chem. (1)

F. Baur and T. Juestel, “New red-emitting phosphor La2Zr3(MoO4)9:Eu3+ and the influence of host absorption on its luminescence efficiency,” Aust. J. Chem. 68, 1727–1734 (2015).
[Crossref]

Ceram. Int. (1)

L. Li, W. Chang, W. Chen, Z. Feng, C. Zhao, P. Jiang, Y. Wang, X. Zhou, and A. Suchocki, “Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid state lighting: synthesis, structure and photoluminescent properties,” Ceram. Int. 43(2), 2720–2729 (2017).
[Crossref]

Chem. Mater. (1)

V. A. Morozov, B. I. Lazoryak, S. Z. Shmurak, A. P. Kiselev, O. I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, and G. Van Tendeloo, “Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors,” Chem. Mater. 26(10), 3238–3248 (2014).
[Crossref]

Chem. Phys. Lett. (1)

S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x:Eu3+ (M=Gd, Y, Bi),” Chem. Phys. Lett. 387(1-3), 2–6 (2004).
[Crossref]

Chem. Sci. (Camb.) (1)

A. Arakcheeva, D. Logvinovich, G. Chapuis, V. Morozov, S. V. Eliseeva, J.-C. G. Bünzli, and P. Pattison, “The luminescence of NaxEu3+(2−x)/3MoO4 scheelites depends on the number of Eu-clusters occurring in their incommensurately modulated structure,” Chem. Sci. (Camb.) 3(2), 384–390 (2012).
[Crossref]

Coord. Chem. Rev. (1)

K. Binnemans, “Interpretation of europium (III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

Dalton Trans. (1)

G. Q. Wang, X. H. Gong, Y. J. Chen, J. H. Huang, Y. F. Lin, Z. D. Luo, and Y. D. Huang, “Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure,” Dalton Trans. 46(20), 6776–6784 (2017).
[Crossref] [PubMed]

ECS J. Solid State Sci. Technol. (1)

P. S. Dutta and A. Khanna, “Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region,” ECS J. Solid State Sci. Technol. 2(2), R3153–R3167 (2012).
[Crossref]

J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot, and K. C. Mishra, “Phosphor selection considerations for near-UV LED solid state lighting,” Ecs J. Solid State Sci. Technol. 2(2), R3119–R3131 (2012).
[Crossref]

Electrochem. Solid St. (1)

B. S. Tsai, Y. H. Chang, and Y. C. Chen, “Synthesis and luminescent properties of MgIn2-xGaxO4: Eu3+ phosphors,” Electrochem. Solid St. 8(7), H55–H57 (2005).
[Crossref]

Inorg. Chem. (2)

V. Morozov, A. Arakcheeva, B. Redkin, V. Sinitsyn, S. Khasanov, E. Kudrenko, M. Raskina, O. Lebedev, and G. Van Tendeloo, “Na(2/7)Gd(4/7)MoO4: a modulated scheelite-type structure and conductivity properties,” Inorg. Chem. 51(9), 5313–5324 (2012).
[Crossref] [PubMed]

J. Huang, B. Hou, H. Ling, J. Liu, and X. Yu, “Crystal structure, electronic structure, and photoluminescence properties of La3BW1-xMoxO9:Eu3+ red phosphor,” Inorg. Chem. 53(18), 9541–9547 (2014).
[Crossref] [PubMed]

J. Alloys Compd. (1)

C. Qin, Y. Huang, and H. J. Seo, “The thermal stability and structural site-distribution of Eu3+ ions in the red-emitting phosphors Ca9Eu2W4O24 and Sr9Eu2W4O24,” J. Alloys Compd. 534, 86–92 (2012).
[Crossref]

J. Chem. Phys. (2)

W. H. Fonger and C. W. Struck, “Eu+3 5D resonance quenching to charge-transfer states in Y2O2S, La2O2S, and LaOCl,” J. Chem. Phys. 52(12), 6364–6372 (1970).
[Crossref]

D. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys. 22(6), 1063–1070 (1954).
[Crossref]

J. Cryst. Growth (1)

R. K. Pandey, “Growth of LiGd3(MoO4)5 single-crystals,” J. Cryst. Growth 48(3), 355–358 (1980).
[Crossref]

J. Lumin. (1)

L. Yi, X. He, L. Zhou, F. Gong, R. Wang, and J. Sun, “A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application,” J. Lumin. 130(6), 1113–1117 (2010).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

D. Wen, J. Feng, J. Li, J. Shi, M. Wu, and Q. Su, “K2Ln(PO4)(WO4):Tb3+, Eu3+ (Ln = Y, Gd and Lu) phosphors: highly efficient pure red and tuneable emission for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2107–2114 (2015).
[Crossref]

F. Baur, F. Glocker, and T. Juestel, “Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(9), 2054–2064 (2015).
[Crossref]

C. Litterscheid, S. Krueger, M. Euler, A. Dreizler, C. Wickleder, and B. Albert, “Solid solution between lithium-rich yttrium and europium molybdate as new efficient red-emitting phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(3), 596–602 (2016).
[Crossref]

J. Phys. Chem. C (1)

Y. C. Chang, C. H. Liang, S. A. Yan, and Y. S. Chang, “Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8:Eu3+ red phosphors,” J. Phys. Chem. C 114(8), 3645–3652 (2010).
[Crossref]

J. Phys. D Appl. Phys. (1)

C. Guo, F. Gao, Y. Xu, L. Liang, F. G. Shi, and B. Yan, “Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln = La, Gd and Y) for white LEDs,” J. Phys. D Appl. Phys. 42(9), 095407 (2009).
[Crossref]

J. Solid State Chem. (1)

C. Zhao, X. Yin, F. Huang, and Y. Hang, “Synthesis and photoluminescence properties of the high-brightness Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) red phosphors,” J. Solid State Chem. 184(12), 3190–3194 (2011).
[Crossref]

Mater. Lett. (1)

C. Qin, Y. Huang, G. Chen, L. Shi, X. Qiao, J. Gan, and H. J. Seo, “Luminescence properties of a red phosphor europium tungsten oxide Eu2WO6,” Mater. Lett. 63(13-14), 1162–1164 (2009).
[Crossref]

Mater. Res. Bull. (2)

X. Y. Wu, H. P. You, H. T. Cui, X. Q. Zeng, G. Y. Hong, C. H. Kim, C. H. Pyun, B. Y. Yu, and C. H. Park, “Vacuum ultraviolet optical properties of (La,Gd)PO4: RE3+ (RE = Eu, Tb),” Mater. Res. Bull. 37(9), 1531–1538 (2002).
[Crossref]

K. R. Reddy, K. Annapurna, and S. Buddhudu, “Fluorescence spectra of Eu3+:Ln2O2S (Ln=Y, La, Gd) powder phosphors,” Mater. Res. Bull. 31(11), 1355–1359 (1996).
[Crossref]

Nat. Mater. (1)

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 179–180 (2009).
[Crossref]

Opt. Mater. Express (2)

Optik (Stuttg.) (1)

F. Meng, X. Zhang, S. I. Kim, Y. M. Yu, and H. J. Seo, “Luminescence properties of Eu3+ in gadolinium molybdate β′-Gd2Mo3O12 phosphors,” Optik (Stuttg.) 125(14), 3578–3582 (2014).
[Crossref]

Proc. SPIE (2)

M. Kneissl, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, “Advances in InAlGaN laser diode technology towards the development of UV optical sources,” Proc. SPIE 4995, 103–107 (2003).
[Crossref]

T. Taguchi, “Present status and future prospect of system and design in white LED lighting technologies,” Proc. SPIE 5530, 7–16 (2004).
[Crossref]

Rsc Adv. (1)

P. Du, Y. Guo, S. H. Lee, and J. S. Yu, “Broad near-ultraviolet and blue excitation band induced dazzling red emissions in Eu3+-activated Gd2MoO6 phosphors for white light-emitting diodes,” Rsc Adv. 7(6), 3170–3178 (2017).
[Crossref]

Other (1)

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, Boca Raton, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) XRD patterns of the LGM:xEu3+ (x = 0, 50, and 90 at.%) phosphors, and the corresponding magnified XRD curves in the ranges of 10-28° (b) and 28-29.5° (c).
Fig. 2
Fig. 2 (a) SEM micrograph and (b) EDS data of the LGM:90at.%Eu3+ phosphor.
Fig. 3
Fig. 3 The mapping EDS images of Mo (b), Eu (c) and Gd (d) corresponding to the particle shown in (a).
Fig. 4
Fig. 4 (a) Room-temperature diffuse reflection spectra of the LGM, LGM:50at.%Eu3+ and LGM:90at.%Eu3+ phosphors in 200-800 nm, (b) Room-temperature excitation spectra of the LGM:10at.%Eu3+ and LGM:90at.%Eu3+phosphors.
Fig. 5
Fig. 5 (a) Room-temperature emission spectra of the LGM:xEu3+ (x = 10, 50, 90 at.%) phosphors excited at 395 nm. and the enlarged region in the inset. (b) the dependence of integrated emission intensity of the 5D07F2 transition and the (5D07F2)/(5D07F1) emission ratio R on the Eu3+ concentration.
Fig. 6
Fig. 6 (a) Excitation and (b) emission spectra of the LGM:90at.%Eu3+ and commercial Y2O2S:6.3at.%Eu3+ red phosphors.
Fig. 7
Fig. 7 Fluorescence decay curves of the LGM:xEu3+ (x = 10, 30, 50, 70, 80, 90, and 100 at.%) phosphors.
Fig. 8
Fig. 8 Temperature dependence of fluorescence for the LGM:90at.%Eu3+ phosphor under excitation at 395 nm. The inset shows the temperature dependence of emission intensity of the 5D07F2 transition under excitation at 395 nm and 465 nm, respectively.
Fig. 9
Fig. 9 (a) Pathway for the thermal quenching of the 5D0 state through a CTS band, (b) The dependence of ln(I0/I-1) on 1/kT for the LGM:90at.%Eu3+ phosphor.
Fig. 10
Fig. 10 CIE chromaticity coordinate of the LGM:90at.%Eu3+ phosphor at 395 nm excitation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 exp(t/τ)
ln( I 0 /I 1)=lnA ΔE/ kT

Metrics