Abstract

Ternary I–III–VI quantum dots (QDs) have been regarded as an alternative to Cd- and Pb-based QDs because of their appealing optoelectronic properties and their deficiency in highly toxic components. In this paper, we present the synthesis of highly luminous and emission-tunable CuInS2/ZnS core/shell QDs and their application to the fabrication of highly efficient electroluminescent QD light-emitting diodes (QLEDs). To evaluate the possibility of applying CuInS2/ZnS QDs to photodetectors (PDs), the CuInS2/ZnS-graphene hybrid PDs with a high-responsivity were successfully constructed for the first time. In this study, QLEDs based on the as-prepared CuInS2/ZnS core/shell QDs exhibited a high external quantum efficiency of 3.36% at a forward current of 2.8 V, which is higher than that of CuInS2-based electroluminescent QLEDs reported previously. The resulting PD exhibited a surprisingly high responsivity of 35 A/W. CuInS2/ZnS QDs provide new opportunities for the fabrication of non-toxic QLEDs and PDs exhibiting high performances and are promising for future applications in the field of optoelectronic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient light-emitting diodes based on reverse type-I quantum dots

Xiao Jin, Jinke Bai, Xiaobing Gu, Chun Chang, Huaibin Shen, Qin Zhang, Feng Li, Zhongping Chen, and Qinghua Li
Opt. Mater. Express 7(12) 4395-4407 (2017)

Quantum dot white light emitting diodes with high scotopic/photopic ratios

Feng Li, Lai You, Chao Nie, Qin Zhang, Xiao Jin, Haiyang Li, Xiaobing Gu, Yan Huang, and Qinghua Li
Opt. Express 25(18) 21901-21913 (2017)

High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering

Qianqian Huang, Jiangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei
Opt. Express 24(23) 25955-25963 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
    [Crossref] [PubMed]
  2. Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” 137(32), 10276–10281 (2015).
    [Crossref]
  3. A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
    [Crossref] [PubMed]
  4. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
    [Crossref]
  5. Y. Shang and Z. Ning, “Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes,” Natl. Sci. Rev. 4(2), 170–183 (2017).
  6. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
    [Crossref] [PubMed]
  7. D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulović, “Photodetectors based on treated cdse quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
    [Crossref]
  8. R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
    [Crossref]
  9. X. Lan, S. Masala, and E. H. Sargent, “Charge-extraction strategies for colloidal quantum dot photovoltaics,” Nat. Mater. 13(3), 233–240 (2014).
    [Crossref] [PubMed]
  10. A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
    [Crossref] [PubMed]
  11. R. Wu, Y. Yang, M. Li, D. Qin, Y. Zhang, and L. Hou, “Solvent engineering for high-performance pbs quantum dots solar cells,” Nanomaterials (Basel) 7(8), 201 (2017).
    [Crossref] [PubMed]
  12. W. van der Stam, E. Bladt, F. T. Rabouw, S. Bals, and C. M. Donega, “Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange,” ACS Nano 9(11), 11430–11438 (2015).
    [Crossref] [PubMed]
  13. T. Torimoto, T. Kameyama, and S. Kuwabata, “Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions,” J. Phys. Chem. Lett. 5(2), 336–347 (2014).
    [Crossref] [PubMed]
  14. L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422–2429 (2009).
    [Crossref]
  15. J. Zhang, W. Sun, L. Yin, X. Miao, and D. Zhang, “One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(24), 4812–4817 (2014).
    [Crossref]
  16. B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, “Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes,” Nanoscale 5(8), 3514–3519 (2013).
    [Crossref] [PubMed]
  17. D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
    [Crossref]
  18. Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
    [Crossref]
  19. H. Xing, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “Aqueous colloidal CuInS2 for quantum dot sensitized solar cells,” J. Mater. Chem. 21(40), 15903–15905 (2011).
    [Crossref]
  20. T. Akdas, M. Haderlein, J. Walter, B. A. Zubiri, E. Spiecker, and W. Peukert, “Continuous synthesis of CuInS2 quantum dots,” RSC Adv., 10057–10063 (2017).
    [Crossref]
  21. Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
    [Crossref]
  22. G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
    [Crossref]
  23. P.-H. Chuang, C. C. Lin, and R.-S. Liu, “Emission-tunable CuInS2/ZnS quantum dots: Structure, optical properties, and application in white light-emitting diodes with high color rendering index,” ACS Appl. Mater. Interfaces 6(17), 15379–15387 (2014).
    [Crossref] [PubMed]
  24. J. H. Kim and H. Yang, “All-solution-processed, multilayered CuInS2/ZnS colloidal quantum-dot-based electroluminescent device,” Opt. Lett. 39(17), 5002–5005 (2014).
    [Crossref] [PubMed]
  25. W. S. Song and H. Yang, “Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots,” Chem. Mater. 24(10), 1961–1967 (2012).
    [Crossref]
  26. B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
    [Crossref] [PubMed]
  27. Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
    [Crossref] [PubMed]
  28. K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
    [Crossref] [PubMed]
  29. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref] [PubMed]
  30. Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24(43), 5878–5883 (2012).
    [Crossref] [PubMed]
  31. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
    [Crossref] [PubMed]
  32. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
    [Crossref] [PubMed]
  33. H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−II−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
    [Crossref] [PubMed]
  34. R. Xie, M. Rutherford, and X. Peng, “Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors,” J. Am. Chem. Soc. 131(15), 5691–5697 (2009).
    [Crossref] [PubMed]
  35. T.-T. Xuan, J.-Q. Liu, R.-J. Xie, H.-L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27(4), 1187–1193 (2015).
    [Crossref]
  36. W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
    [Crossref] [PubMed]
  37. L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
    [Crossref] [PubMed]
  38. H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
    [Crossref] [PubMed]

2017 (5)

Y. Shang and Z. Ning, “Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes,” Natl. Sci. Rev. 4(2), 170–183 (2017).

R. Wu, Y. Yang, M. Li, D. Qin, Y. Zhang, and L. Hou, “Solvent engineering for high-performance pbs quantum dots solar cells,” Nanomaterials (Basel) 7(8), 201 (2017).
[Crossref] [PubMed]

Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
[Crossref]

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
[Crossref]

W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
[Crossref] [PubMed]

2016 (3)

Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
[Crossref]

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

2015 (5)

W. van der Stam, E. Bladt, F. T. Rabouw, S. Bals, and C. M. Donega, “Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange,” ACS Nano 9(11), 11430–11438 (2015).
[Crossref] [PubMed]

A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
[Crossref] [PubMed]

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
[Crossref] [PubMed]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

T.-T. Xuan, J.-Q. Liu, R.-J. Xie, H.-L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27(4), 1187–1193 (2015).
[Crossref]

2014 (7)

J. H. Kim and H. Yang, “All-solution-processed, multilayered CuInS2/ZnS colloidal quantum-dot-based electroluminescent device,” Opt. Lett. 39(17), 5002–5005 (2014).
[Crossref] [PubMed]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

T. Torimoto, T. Kameyama, and S. Kuwabata, “Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions,” J. Phys. Chem. Lett. 5(2), 336–347 (2014).
[Crossref] [PubMed]

X. Lan, S. Masala, and E. H. Sargent, “Charge-extraction strategies for colloidal quantum dot photovoltaics,” Nat. Mater. 13(3), 233–240 (2014).
[Crossref] [PubMed]

J. Zhang, W. Sun, L. Yin, X. Miao, and D. Zhang, “One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(24), 4812–4817 (2014).
[Crossref]

P.-H. Chuang, C. C. Lin, and R.-S. Liu, “Emission-tunable CuInS2/ZnS quantum dots: Structure, optical properties, and application in white light-emitting diodes with high color rendering index,” ACS Appl. Mater. Interfaces 6(17), 15379–15387 (2014).
[Crossref] [PubMed]

2013 (1)

B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, “Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes,” Nanoscale 5(8), 3514–3519 (2013).
[Crossref] [PubMed]

2012 (6)

W. S. Song and H. Yang, “Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots,” Chem. Mater. 24(10), 1961–1967 (2012).
[Crossref]

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24(43), 5878–5883 (2012).
[Crossref] [PubMed]

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
[Crossref] [PubMed]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−II−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref] [PubMed]

2011 (2)

H. Xing, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “Aqueous colloidal CuInS2 for quantum dot sensitized solar cells,” J. Mater. Chem. 21(40), 15903–15905 (2011).
[Crossref]

D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
[Crossref]

2010 (1)

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

2009 (2)

L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422–2429 (2009).
[Crossref]

R. Xie, M. Rutherford, and X. Peng, “Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors,” J. Am. Chem. Soc. 131(15), 5691–5697 (2009).
[Crossref] [PubMed]

2007 (1)

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

2006 (1)

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

2005 (2)

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulović, “Photodetectors based on treated cdse quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

Ahn, J. H.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
[Crossref] [PubMed]

Arango, A. C.

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulović, “Photodetectors based on treated cdse quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

Avouris, P.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Badioli, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Bai, Z.

Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
[Crossref]

H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−II−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref] [PubMed]

Bals, S.

W. van der Stam, E. Bladt, F. T. Rabouw, S. Bals, and C. M. Donega, “Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange,” ACS Nano 9(11), 11430–11438 (2015).
[Crossref] [PubMed]

Bando, Y.

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Bartnik, A. C.

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
[Crossref] [PubMed]

Bawendi, M. G.

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulović, “Photodetectors based on treated cdse quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

Bernechea, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Bladt, E.

W. van der Stam, E. Bladt, F. T. Rabouw, S. Bals, and C. M. Donega, “Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange,” ACS Nano 9(11), 11430–11438 (2015).
[Crossref] [PubMed]

Bulovic, V.

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulović, “Photodetectors based on treated cdse quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

Cao, H.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Cao, W.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Chen, B.

Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
[Crossref]

B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, “Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes,” Nanoscale 5(8), 3514–3519 (2013).
[Crossref] [PubMed]

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Chen, L.

Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Chen, W.

W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
[Crossref] [PubMed]

Chi, T. T. K.

L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422–2429 (2009).
[Crossref]

Cho, J. H.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
[Crossref] [PubMed]

Choi, H. S.

Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
[Crossref]

Choi, J. J.

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
[Crossref] [PubMed]

Chuang, P.-H.

P.-H. Chuang, C. C. Lin, and R.-S. Liu, “Emission-tunable CuInS2/ZnS quantum dots: Structure, optical properties, and application in white light-emitting diodes with high color rendering index,” ACS Appl. Mater. Interfaces 6(17), 15379–15387 (2014).
[Crossref] [PubMed]

Clifford, J.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Dai, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Daou, T. J.

L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422–2429 (2009).
[Crossref]

Deng, H.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Donega, C. M.

W. van der Stam, E. Bladt, F. T. Rabouw, S. Bals, and C. M. Donega, “Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange,” ACS Nano 9(11), 11430–11438 (2015).
[Crossref] [PubMed]

Dong, D.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Eperon, G. E.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Fang, L.

W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
[Crossref] [PubMed]

Ferrari, A. C.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Fischer, A.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Garcia de Arquer, F. P.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Gatti, F.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Gaudreau, L.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Haghighirad, A. A.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Han, D.

Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
[Crossref]

Hanrath, T.

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
[Crossref] [PubMed]

Hao, J.

W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
[Crossref] [PubMed]

Hoogland, S.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Hörantner, M. T.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Hou, L.

R. Wu, Y. Yang, M. Li, D. Qin, Y. Zhang, and L. Hou, “Solvent engineering for high-performance pbs quantum dots solar cells,” Nanomaterials (Basel) 7(8), 201 (2017).
[Crossref] [PubMed]

Howard, I.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Hu, L.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Hu, W.

W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
[Crossref] [PubMed]

Huang, X.

H. Xing, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “Aqueous colloidal CuInS2 for quantum dot sensitized solar cells,” J. Mater. Chem. 21(40), 15903–15905 (2011).
[Crossref]

Hwang, E.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
[Crossref] [PubMed]

Hyun, B. R.

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
[Crossref] [PubMed]

Jeon, D. Y.

Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
[Crossref]

Ji, W.

Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
[Crossref]

Jin, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Johnston, M. B.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Kameyama, T.

T. Torimoto, T. Kameyama, and S. Kuwabata, “Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions,” J. Phys. Chem. Lett. 5(2), 336–347 (2014).
[Crossref] [PubMed]

Kamino, B. A.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Kim, D.

Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
[Crossref]

Kim, J. H.

Kim, Y.

Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
[Crossref]

Kim, Y. S.

Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
[Crossref]

Klem, E.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Klem, E. J. D.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Konstantatos, G.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Koppens, F. H.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Koppens, F. H. L.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Kuwabata, S.

T. Torimoto, T. Kameyama, and S. Kuwabata, “Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions,” J. Phys. Chem. Lett. 5(2), 336–347 (2014).
[Crossref] [PubMed]

Kwon, J.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
[Crossref] [PubMed]

Lan, X.

X. Lan, S. Masala, and E. H. Sargent, “Charge-extraction strategies for colloidal quantum dot photovoltaics,” Nat. Mater. 13(3), 233–240 (2014).
[Crossref] [PubMed]

Lau, S. P.

Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24(43), 5878–5883 (2012).
[Crossref] [PubMed]

Lee, Y.

Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
[Crossref]

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
[Crossref] [PubMed]

Levina, L.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Li, D.

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
[Crossref]

H. Xing, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “Aqueous colloidal CuInS2 for quantum dot sensitized solar cells,” J. Mater. Chem. 21(40), 15903–15905 (2011).
[Crossref]

Li, H.-L.

T.-T. Xuan, J.-Q. Liu, R.-J. Xie, H.-L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27(4), 1187–1193 (2015).
[Crossref]

Li, J.

Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24(43), 5878–5883 (2012).
[Crossref] [PubMed]

Li, L.

L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422–2429 (2009).
[Crossref]

Li, L. S.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Li, M.

R. Wu, Y. Yang, M. Li, D. Qin, Y. Zhang, and L. Hou, “Solvent engineering for high-performance pbs quantum dots solar cells,” Nanomaterials (Basel) 7(8), 201 (2017).
[Crossref] [PubMed]

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Li, Y.

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Liang, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Liem, N. Q.

L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422–2429 (2009).
[Crossref]

Lin, C. C.

P.-H. Chuang, C. C. Lin, and R.-S. Liu, “Emission-tunable CuInS2/ZnS quantum dots: Structure, optical properties, and application in white light-emitting diodes with high color rendering index,” ACS Appl. Mater. Interfaces 6(17), 15379–15387 (2014).
[Crossref] [PubMed]

Lin, Q.

A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
[Crossref] [PubMed]

Lita, A.

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

Liu, H.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Liu, J.-Q.

T.-T. Xuan, J.-Q. Liu, R.-J. Xie, H.-L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27(4), 1187–1193 (2015).
[Crossref]

Liu, R.

B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, “Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes,” Nanoscale 5(8), 3514–3519 (2013).
[Crossref] [PubMed]

Liu, R.-S.

P.-H. Chuang, C. C. Lin, and R.-S. Liu, “Emission-tunable CuInS2/ZnS quantum dots: Structure, optical properties, and application in white light-emitting diodes with high color rendering index,” ACS Appl. Mater. Interfaces 6(17), 15379–15387 (2014).
[Crossref] [PubMed]

Liu, Z.

Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24(43), 5878–5883 (2012).
[Crossref] [PubMed]

Luo, Y.

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
[Crossref]

H. Xing, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “Aqueous colloidal CuInS2 for quantum dot sensitized solar cells,” J. Mater. Chem. 21(40), 15903–15905 (2011).
[Crossref]

Malliaras, G. G.

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
[Crossref] [PubMed]

Masala, S.

X. Lan, S. Masala, and E. H. Sargent, “Charge-extraction strategies for colloidal quantum dot photovoltaics,” Nat. Mater. 13(3), 233–240 (2014).
[Crossref] [PubMed]

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Meng, Q.

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
[Crossref]

H. Xing, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “Aqueous colloidal CuInS2 for quantum dot sensitized solar cells,” J. Mater. Chem. 21(40), 15903–15905 (2011).
[Crossref]

Miao, X.

J. Zhang, W. Sun, L. Yin, X. Miao, and D. Zhang, “One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(24), 4812–4817 (2014).
[Crossref]

Miranda, L.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Moore, D. T.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Mueller, T.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Nam, D. E.

D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
[Crossref]

Nam, Y. S.

Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
[Crossref]

Ning, Z.

Y. Shang and Z. Ning, “Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes,” Natl. Sci. Rev. 4(2), 170–183 (2017).

Niu, J.

A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
[Crossref] [PubMed]

Niu, T.

W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
[Crossref] [PubMed]

Niu, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Oertel, D. C.

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulović, “Photodetectors based on treated cdse quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

Osmond, J.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Park, J. C.

Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
[Crossref]

Park, J. H.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
[Crossref] [PubMed]

Parrott, E. S.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Patel, J. B.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Peng, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

R. Xie, M. Rutherford, and X. Peng, “Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors,” J. Am. Chem. Soc. 131(15), 5691–5697 (2009).
[Crossref] [PubMed]

Polini, M.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Qian, L.

A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
[Crossref] [PubMed]

Qiao, K.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Qin, D.

R. Wu, Y. Yang, M. Li, D. Qin, Y. Zhang, and L. Hou, “Solvent engineering for high-performance pbs quantum dots solar cells,” Nanomaterials (Basel) 7(8), 201 (2017).
[Crossref] [PubMed]

Ra, C. H.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
[Crossref] [PubMed]

Rabouw, F. T.

W. van der Stam, E. Bladt, F. T. Rabouw, S. Bals, and C. M. Donega, “Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange,” ACS Nano 9(11), 11430–11438 (2015).
[Crossref] [PubMed]

Reiss, P.

L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422–2429 (2009).
[Crossref]

Rutherford, M.

R. Xie, M. Rutherford, and X. Peng, “Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors,” J. Am. Chem. Soc. 131(15), 5691–5697 (2009).
[Crossref] [PubMed]

Sargent, E. H.

X. Lan, S. Masala, and E. H. Sargent, “Charge-extraction strategies for colloidal quantum dot photovoltaics,” Nat. Mater. 13(3), 233–240 (2014).
[Crossref] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Shang, Y.

Y. Shang and Z. Ning, “Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes,” Natl. Sci. Rev. 4(2), 170–183 (2017).

Shen, H.

Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
[Crossref]

A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
[Crossref] [PubMed]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Shewmon, N. T.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Shi, J.

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
[Crossref]

Snaith, H. J.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Song, H.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Song, W. S.

W. S. Song and H. Yang, “Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots,” Chem. Mater. 24(10), 1961–1967 (2012).
[Crossref]

D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
[Crossref]

Song Li, L.

A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
[Crossref] [PubMed]

Stachnik, D.

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
[Crossref] [PubMed]

Stiegman, A. E.

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

Strouse, G. F.

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

Sun, L.

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
[Crossref] [PubMed]

Sun, Q.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Sun, W.

J. Zhang, W. Sun, L. Yin, X. Miao, and D. Zhang, “One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(24), 4812–4817 (2014).
[Crossref]

Sun, Z.

T.-T. Xuan, J.-Q. Liu, R.-J. Xie, H.-L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27(4), 1187–1193 (2015).
[Crossref]

Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24(43), 5878–5883 (2012).
[Crossref] [PubMed]

Sutton, R. J.

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Tai, G. A.

Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24(43), 5878–5883 (2012).
[Crossref] [PubMed]

Tan, Z. A.

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Tang, J.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Tang, X.

W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
[Crossref] [PubMed]

Texier, I.

L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422–2429 (2009).
[Crossref]

Torimoto, T.

T. Torimoto, T. Kameyama, and S. Kuwabata, “Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions,” J. Phys. Chem. Lett. 5(2), 336–347 (2014).
[Crossref] [PubMed]

van de Burgt, L.

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

van der Stam, W.

W. van der Stam, E. Bladt, F. T. Rabouw, S. Bals, and C. M. Donega, “Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange,” ACS Nano 9(11), 11430–11438 (2015).
[Crossref] [PubMed]

Vitiello, M. S.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

Wang, A.

A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
[Crossref] [PubMed]

Wang, D.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Wang, G.

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
[Crossref]

Wang, H.

A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
[Crossref] [PubMed]

Wang, J.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Wang, M.

B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, “Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes,” Nanoscale 5(8), 3514–3519 (2013).
[Crossref] [PubMed]

Wang, Y. A.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Washington, A. L.

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

Wei, H.

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
[Crossref]

Wise, F. W.

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
[Crossref] [PubMed]

Wu, H.

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
[Crossref]

Wu, R.

R. Wu, Y. Yang, M. Li, D. Qin, Y. Zhang, and L. Hou, “Solvent engineering for high-performance pbs quantum dots solar cells,” Nanomaterials (Basel) 7(8), 201 (2017).
[Crossref] [PubMed]

Xie, R.

R. Xie, M. Rutherford, and X. Peng, “Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors,” J. Am. Chem. Soc. 131(15), 5691–5697 (2009).
[Crossref] [PubMed]

Xie, R.-J.

T.-T. Xuan, J.-Q. Liu, R.-J. Xie, H.-L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27(4), 1187–1193 (2015).
[Crossref]

Xing, H.

H. Xing, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “Aqueous colloidal CuInS2 for quantum dot sensitized solar cells,” J. Mater. Chem. 21(40), 15903–15905 (2011).
[Crossref]

Xu, J.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Xu, Y.

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
[Crossref]

Xuan, T.-T.

T.-T. Xuan, J.-Q. Liu, R.-J. Xie, H.-L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27(4), 1187–1193 (2015).
[Crossref]

Xue, J.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Yan, F.

Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24(43), 5878–5883 (2012).
[Crossref] [PubMed]

Yang, C.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Yang, H.

J. H. Kim and H. Yang, “All-solution-processed, multilayered CuInS2/ZnS colloidal quantum-dot-based electroluminescent device,” Opt. Lett. 39(17), 5002–5005 (2014).
[Crossref] [PubMed]

W. S. Song and H. Yang, “Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots,” Chem. Mater. 24(10), 1961–1967 (2012).
[Crossref]

D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
[Crossref]

Yang, S.

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Yang, X.

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Yang, Y.

R. Wu, Y. Yang, M. Li, D. Qin, Y. Zhang, and L. Hou, “Solvent engineering for high-performance pbs quantum dots solar cells,” Nanomaterials (Basel) 7(8), 201 (2017).
[Crossref] [PubMed]

Yin, L.

J. Zhang, W. Sun, L. Yin, X. Miao, and D. Zhang, “One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(24), 4812–4817 (2014).
[Crossref]

Yoo, W. J.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
[Crossref] [PubMed]

Yu, C.

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Zang, S.

A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
[Crossref] [PubMed]

Zang, Z.

W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
[Crossref] [PubMed]

Zhai, T.

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Zhang, D.

J. Zhang, W. Sun, L. Yin, X. Miao, and D. Zhang, “One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(24), 4812–4817 (2014).
[Crossref]

Zhang, J.

J. Zhang, W. Sun, L. Yin, X. Miao, and D. Zhang, “One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(24), 4812–4817 (2014).
[Crossref]

Zhang, Q.

H. Xing, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “Aqueous colloidal CuInS2 for quantum dot sensitized solar cells,” J. Mater. Chem. 21(40), 15903–15905 (2011).
[Crossref]

Zhang, S.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

Zhang, W.

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Zhang, Y.

R. Wu, Y. Yang, M. Li, D. Qin, Y. Zhang, and L. Hou, “Solvent engineering for high-performance pbs quantum dots solar cells,” Nanomaterials (Basel) 7(8), 201 (2017).
[Crossref] [PubMed]

Zhang, Z.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

Zhong, H.

Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
[Crossref]

B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, “Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes,” Nanoscale 5(8), 3514–3519 (2013).
[Crossref] [PubMed]

H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−II−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref] [PubMed]

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Zhou, M.

W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
[Crossref] [PubMed]

Zhu, T.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Zou, B.

Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
[Crossref]

B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, “Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes,” Nanoscale 5(8), 3514–3519 (2013).
[Crossref] [PubMed]

H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−II−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref] [PubMed]

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

P.-H. Chuang, C. C. Lin, and R.-S. Liu, “Emission-tunable CuInS2/ZnS quantum dots: Structure, optical properties, and application in white light-emitting diodes with high color rendering index,” ACS Appl. Mater. Interfaces 6(17), 15379–15387 (2014).
[Crossref] [PubMed]

ACS Nano (1)

W. van der Stam, E. Bladt, F. T. Rabouw, S. Bals, and C. M. Donega, “Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange,” ACS Nano 9(11), 11430–11438 (2015).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, “Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Adv. Energy Mater. 6(8), 1502458 (2016).
[Crossref]

Adv. Funct. Mater. (1)

B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance,” Adv. Funct. Mater. 22(10), 2081–2088 (2012).
[Crossref] [PubMed]

Adv. Mater. (3)

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance perovskite-graphene hybrid photodetector,” Adv. Mater. 27(1), 41–46 (2015).
[Crossref] [PubMed]

Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24(43), 5878–5883 (2012).
[Crossref] [PubMed]

A. Lita, A. L. Washington, L. van de Burgt, G. F. Strouse, and A. E. Stiegman, “Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites,” Adv. Mater. 22(36), 3987–3991 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulović, “Photodetectors based on treated cdse quantum-dot films,” Appl. Phys. Lett. 87(21), 213505 (2005).
[Crossref]

Chem. Mater. (4)

L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chem. Mater. 21(12), 2422–2429 (2009).
[Crossref]

Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, and H. Zhong, “Hydroxyl-terminated cuins2 based quantum dots: Toward efficient and bright light emitting diodes,” Chem. Mater. 28(4), 1085–1091 (2016).
[Crossref]

T.-T. Xuan, J.-Q. Liu, R.-J. Xie, H.-L. Li, and Z. Sun, “Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition,” Chem. Mater. 27(4), 1187–1193 (2015).
[Crossref]

W. S. Song and H. Yang, “Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots,” Chem. Mater. 24(10), 1961–1967 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

R. Xie, M. Rutherford, and X. Peng, “Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors,” J. Am. Chem. Soc. 131(15), 5691–5697 (2009).
[Crossref] [PubMed]

J. Mater. Chem. (2)

D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
[Crossref]

H. Xing, Q. Zhang, X. Huang, D. Li, Y. Luo, and Q. Meng, “Aqueous colloidal CuInS2 for quantum dot sensitized solar cells,” J. Mater. Chem. 21(40), 15903–15905 (2011).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

J. Zhang, W. Sun, L. Yin, X. Miao, and D. Zhang, “One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(24), 4812–4817 (2014).
[Crossref]

J. Phys. Chem. Lett. (2)

T. Torimoto, T. Kameyama, and S. Kuwabata, “Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions,” J. Phys. Chem. Lett. 5(2), 336–347 (2014).
[Crossref] [PubMed]

H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−II−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref] [PubMed]

Nano Energy (1)

G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, and Q. Meng, “Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects,” Nano Energy 35, 17–25 (2017).
[Crossref]

Nano Lett. (1)

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref] [PubMed]

Nanomaterials (Basel) (1)

R. Wu, Y. Yang, M. Li, D. Qin, Y. Zhang, and L. Hou, “Solvent engineering for high-performance pbs quantum dots solar cells,” Nanomaterials (Basel) 7(8), 201 (2017).
[Crossref] [PubMed]

Nanoscale (3)

B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, “Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes,” Nanoscale 5(8), 3514–3519 (2013).
[Crossref] [PubMed]

A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, and L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes,” Nanoscale 7(7), 2951–2959 (2015).
[Crossref] [PubMed]

K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, H. Liu, H. Song, and J. Tang, “Spectra-selective PbS quantum dot infrared photodetectors,” Nanoscale 8(13), 7137–7143 (2016).
[Crossref] [PubMed]

Nat. Mater. (2)

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[Crossref] [PubMed]

X. Lan, S. Masala, and E. H. Sargent, “Charge-extraction strategies for colloidal quantum dot photovoltaics,” Nat. Mater. 13(3), 233–240 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref] [PubMed]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7(6), 369–373 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007).
[Crossref]

Natl. Sci. Rev. (1)

Y. Shang and Z. Ning, “Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes,” Natl. Sci. Rev. 4(2), 170–183 (2017).

Nature (2)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref] [PubMed]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature 442(7099), 180–183 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

RSC Advances (1)

Y. S. Kim, Y. Lee, Y. Kim, D. Kim, H. S. Choi, J. C. Park, Y. S. Nam, and D. Y. Jeon, “Synthesis of efficient near-infrared-emitting CuInS2/ZnS quantum dots by inhibiting cation-exchange for bio application,” RSC Advances 7(18), 10675–10682 (2017).
[Crossref]

Small (1)

W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu, and M. Zhou, “Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnSquantum dot heterostructure,” Small 13(21), 1604085 (2017).
[Crossref] [PubMed]

Other (2)

Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” 137(32), 10276–10281 (2015).
[Crossref]

T. Akdas, M. Haderlein, J. Walter, B. A. Zubiri, E. Spiecker, and W. Peukert, “Continuous synthesis of CuInS2 quantum dots,” RSC Adv., 10057–10063 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Absorption and PL spectra of CuInS2 and CuInS2/ZnS QDs. (b) Time-resolved PL spectra of CuInS2 and CuInS2/ZnS QDs. (c) TEM images of CuInS2/ZnS QDs. (d) XRD patterns of CuInS2 and CuInS2/ZnS QDs. The inset in (b) shows the lifetimes of the CuInS2 and CuInS2/ZnS QDs, and that in (c) shows the high-resolution TEM image of the CuInS2/ZnS QDs.
Fig. 2
Fig. 2 (a) Schematic and (b) cross-sectional TEM image of the QLED structure. (c) Voltage evolution of electroluminescence spectra of the device. (d) Current density (J) and luminance (L) as a function of driving voltage (V), and (e) ηEXE and current efficiency (ηA) as a function of L of the devices with OTT and DDT ligands. The inset of (c) shows a luminescent image under an applied voltage of 9 V.
Fig. 3
Fig. 3 (a) Schematic of the PD structure. (b) Drain current versus drain voltage. (c) Photo-switching characteristics and (d) photo-responsivity of the QD-graphene hybrid PD with a channel length of 40 μm under the illumination of different wavelengths with an incident light power of 5 mW.

Metrics