Abstract

In order to investigate the mechanism of photo-induced processes of azo molecules doped in polymer, temporal evolution of the absorption spectrum and transmittance for two polarization components were measured under and after optical pumping. A simple model was applied to decompose the contributions from angular hole burning (AHB) due to photo-isomerization and following molecular reorientation (MRO). The result for disperse red 1 (DR1) in poly-methyl methacrylate (PMMA) indicated the dominance of AHB in the order of seconds while slow accumulation of the MRO effect became significant during a longer time range. Several extraordinary behaviors observed in preceding studies will be explained in context given in this study. Dependence on dye concentration showed that MRO was more significant in highly loaded samples. Further, quantum yield of photo-isomerization process in this system was estimated to be 8%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optically induced anisotropy of third-order susceptibility in azo-dye polymers

Victor M. Churikov and Chia-Chen Hsu
J. Opt. Soc. Am. B 18(11) 1722-1731 (2001)

Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain

Zouheir Sekkat, Jonathan Wood, Emil F. Aust, Wolfgang Knoll, Willi Volksen, and Robert D. Miller
J. Opt. Soc. Am. B 13(8) 1713-1724 (1996)

Photoinduced orientation of azo dye in various polymer matrices

P.-A. Blanche, Ph. C. Lemaire, M. Dumont, and M. Fischer
Opt. Lett. 24(19) 1349-1351 (1999)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhao and T. Ikeda, eds., Smart Light-responsive Materials (Wiley, 2009).
  2. S. Lee, J. Shin, Y.-H. Lee, S. Fan, and J.-K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
    [Crossref] [PubMed]
  3. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
    [Crossref]
  4. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
    [Crossref]
  5. P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60(1), 4–5 (1992).
    [Crossref]
  6. A. Priimagi, M. Kaivola, F. J. Rodriguez, and M. Kauranen, “Enhanced photoinduced birefringence in polymer-dye complexes: hydrogen bonding makes a difference,” Appl. Phys. Lett. 90(12), 121103 (2007).
    [Crossref]
  7. H. Ono, N. Kowatari, and N. Kawatsuki, “Study on dynamics of laser-induced birefringence in azo dye doped polymer films,” Opt. Mater. 15(1), 33–39 (2000).
    [Crossref]
  8. C. A. Walsh and W. E. Moerner, “Two-beam coupling measurements of grating phase in a photorefractive polymer,” J. Opt. Soc. Am. B 9(9), 1642–1647 (1992).
    [Crossref]
  9. D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127(1–3), 89–93 (2002).
    [Crossref]
  10. A. Sobolewska and S. Barkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett. 92(25), 253305 (2008).
    [Crossref]
  11. Y. Kawabe, K. Fukuzawa, T. Uemura, K. Matsuura, T. Yoshikawa, J. Nishide, and H. Sasabe, “Photoinduced grating formation in a polymer containing azo-carbazole dyes,” Appl. Opt. 51(27), 6653–6660 (2012).
    [Crossref] [PubMed]
  12. Z. Sekkat and M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B 53(2), 121–123 (1991).
    [Crossref]
  13. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: a new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
    [Crossref] [PubMed]
  14. A. Rodriguez, G. Vitrant, P. A. Chollet, and F. Kajzar, “Photochromic properties of azo dye polymer thin films: evidence of an additional reversible mechanism of molecular behavior,” Rev. Mex. Fis. 52(2), 135–138 (2006).
  15. P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24(19), 1349–1351 (1999).
    [Crossref] [PubMed]
  16. Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1–3), 373–381 (1993).
    [Crossref]
  17. M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Proc. SPIE 2042, 2–13 (1994).
    [Crossref]
  18. M. Dumont and A. El Osman, “On spontaneous and photoinduced orientational mobility of dye molecules in polymers,” Chem. Phys. 245(1–3), 437–462 (1999).
    [Crossref]
  19. Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71(3), 1543–1545 (1992).
    [Crossref]
  20. R. Hildebrandt, M. Heigelich, H.-M. Keller, G. Marowsky, S. Hvilsted, N. C. R. Holme, and P. S. Ramanujam, “Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polymer films,” Phys. Rev. Lett. 81(25), 5548–5551 (1998).
    [Crossref]
  21. R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5(2), 229–236 (1993).
    [Crossref]
  22. H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Photochemical quantum yields in the A (+h.nu.). dblarw. B (+h.nu.,DELTA.) system when only the spectrum of A is known,” J. Phys. Chem. 94(17), 6523–6524 (1990).
    [Crossref]

2012 (1)

2010 (1)

S. Lee, J. Shin, Y.-H. Lee, S. Fan, and J.-K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

2008 (1)

A. Sobolewska and S. Barkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett. 92(25), 253305 (2008).
[Crossref]

2007 (1)

A. Priimagi, M. Kaivola, F. J. Rodriguez, and M. Kauranen, “Enhanced photoinduced birefringence in polymer-dye complexes: hydrogen bonding makes a difference,” Appl. Phys. Lett. 90(12), 121103 (2007).
[Crossref]

2006 (1)

A. Rodriguez, G. Vitrant, P. A. Chollet, and F. Kajzar, “Photochromic properties of azo dye polymer thin films: evidence of an additional reversible mechanism of molecular behavior,” Rev. Mex. Fis. 52(2), 135–138 (2006).

2002 (1)

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127(1–3), 89–93 (2002).
[Crossref]

2000 (1)

H. Ono, N. Kowatari, and N. Kawatsuki, “Study on dynamics of laser-induced birefringence in azo dye doped polymer films,” Opt. Mater. 15(1), 33–39 (2000).
[Crossref]

1999 (2)

P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24(19), 1349–1351 (1999).
[Crossref] [PubMed]

M. Dumont and A. El Osman, “On spontaneous and photoinduced orientational mobility of dye molecules in polymers,” Chem. Phys. 245(1–3), 437–462 (1999).
[Crossref]

1998 (1)

R. Hildebrandt, M. Heigelich, H.-M. Keller, G. Marowsky, S. Hvilsted, N. C. R. Holme, and P. S. Ramanujam, “Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polymer films,” Phys. Rev. Lett. 81(25), 5548–5551 (1998).
[Crossref]

1995 (2)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

1994 (1)

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Proc. SPIE 2042, 2–13 (1994).
[Crossref]

1993 (2)

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5(2), 229–236 (1993).
[Crossref]

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1–3), 373–381 (1993).
[Crossref]

1992 (3)

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71(3), 1543–1545 (1992).
[Crossref]

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60(1), 4–5 (1992).
[Crossref]

C. A. Walsh and W. E. Moerner, “Two-beam coupling measurements of grating phase in a photorefractive polymer,” J. Opt. Soc. Am. B 9(9), 1642–1647 (1992).
[Crossref]

1991 (1)

Z. Sekkat and M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B 53(2), 121–123 (1991).
[Crossref]

1990 (1)

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Photochemical quantum yields in the A (+h.nu.). dblarw. B (+h.nu.,DELTA.) system when only the spectrum of A is known,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[Crossref]

1984 (1)

Barkiewicz, S.

A. Sobolewska and S. Barkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett. 92(25), 253305 (2008).
[Crossref]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Blanche, P.-A.

Chollet, P. A.

A. Rodriguez, G. Vitrant, P. A. Chollet, and F. Kajzar, “Photochromic properties of azo dye polymer thin films: evidence of an additional reversible mechanism of molecular behavior,” Rev. Mex. Fis. 52(2), 135–138 (2006).

Delaire, J. A.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5(2), 229–236 (1993).
[Crossref]

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71(3), 1543–1545 (1992).
[Crossref]

Dumont, M.

M. Dumont and A. El Osman, “On spontaneous and photoinduced orientational mobility of dye molecules in polymers,” Chem. Phys. 245(1–3), 437–462 (1999).
[Crossref]

P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24(19), 1349–1351 (1999).
[Crossref] [PubMed]

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Proc. SPIE 2042, 2–13 (1994).
[Crossref]

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1–3), 373–381 (1993).
[Crossref]

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5(2), 229–236 (1993).
[Crossref]

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71(3), 1543–1545 (1992).
[Crossref]

Z. Sekkat and M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B 53(2), 121–123 (1991).
[Crossref]

El Osman, A.

M. Dumont and A. El Osman, “On spontaneous and photoinduced orientational mobility of dye molecules in polymers,” Chem. Phys. 245(1–3), 437–462 (1999).
[Crossref]

Fan, S.

S. Lee, J. Shin, Y.-H. Lee, S. Fan, and J.-K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Fischer, M.

Froc, G.

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Proc. SPIE 2042, 2–13 (1994).
[Crossref]

Fukuzawa, K.

Gauglitz, G.

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Photochemical quantum yields in the A (+h.nu.). dblarw. B (+h.nu.,DELTA.) system when only the spectrum of A is known,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[Crossref]

Gosselin, J.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60(1), 4–5 (1992).
[Crossref]

Greiner, G.

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Photochemical quantum yields in the A (+h.nu.). dblarw. B (+h.nu.,DELTA.) system when only the spectrum of A is known,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[Crossref]

Heigelich, M.

R. Hildebrandt, M. Heigelich, H.-M. Keller, G. Marowsky, S. Hvilsted, N. C. R. Holme, and P. S. Ramanujam, “Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polymer films,” Phys. Rev. Lett. 81(25), 5548–5551 (1998).
[Crossref]

Hildebrandt, R.

R. Hildebrandt, M. Heigelich, H.-M. Keller, G. Marowsky, S. Hvilsted, N. C. R. Holme, and P. S. Ramanujam, “Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polymer films,” Phys. Rev. Lett. 81(25), 5548–5551 (1998).
[Crossref]

Holme, N. C. R.

R. Hildebrandt, M. Heigelich, H.-M. Keller, G. Marowsky, S. Hvilsted, N. C. R. Holme, and P. S. Ramanujam, “Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polymer films,” Phys. Rev. Lett. 81(25), 5548–5551 (1998).
[Crossref]

Hosotte, S.

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Proc. SPIE 2042, 2–13 (1994).
[Crossref]

Hvilsted, S.

R. Hildebrandt, M. Heigelich, H.-M. Keller, G. Marowsky, S. Hvilsted, N. C. R. Holme, and P. S. Ramanujam, “Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polymer films,” Phys. Rev. Lett. 81(25), 5548–5551 (1998).
[Crossref]

Kaivola, M.

A. Priimagi, M. Kaivola, F. J. Rodriguez, and M. Kauranen, “Enhanced photoinduced birefringence in polymer-dye complexes: hydrogen bonding makes a difference,” Appl. Phys. Lett. 90(12), 121103 (2007).
[Crossref]

Kajzar, F.

A. Rodriguez, G. Vitrant, P. A. Chollet, and F. Kajzar, “Photochromic properties of azo dye polymer thin films: evidence of an additional reversible mechanism of molecular behavior,” Rev. Mex. Fis. 52(2), 135–138 (2006).

Kauranen, M.

A. Priimagi, M. Kaivola, F. J. Rodriguez, and M. Kauranen, “Enhanced photoinduced birefringence in polymer-dye complexes: hydrogen bonding makes a difference,” Appl. Phys. Lett. 90(12), 121103 (2007).
[Crossref]

Kawabe, Y.

Kawatsuki, N.

H. Ono, N. Kowatari, and N. Kawatsuki, “Study on dynamics of laser-induced birefringence in azo dye doped polymer films,” Opt. Mater. 15(1), 33–39 (2000).
[Crossref]

Keller, H.-M.

R. Hildebrandt, M. Heigelich, H.-M. Keller, G. Marowsky, S. Hvilsted, N. C. R. Holme, and P. S. Ramanujam, “Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polymer films,” Phys. Rev. Lett. 81(25), 5548–5551 (1998).
[Crossref]

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Kowatari, N.

H. Ono, N. Kowatari, and N. Kawatsuki, “Study on dynamics of laser-induced birefringence in azo dye doped polymer films,” Opt. Mater. 15(1), 33–39 (2000).
[Crossref]

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Lee, S.

S. Lee, J. Shin, Y.-H. Lee, S. Fan, and J.-K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Lee, Y.-H.

S. Lee, J. Shin, Y.-H. Lee, S. Fan, and J.-K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Lemaire, P. C.

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Loucif-Saibi, R.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5(2), 229–236 (1993).
[Crossref]

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71(3), 1543–1545 (1992).
[Crossref]

Marowsky, G.

R. Hildebrandt, M. Heigelich, H.-M. Keller, G. Marowsky, S. Hvilsted, N. C. R. Holme, and P. S. Ramanujam, “Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polymer films,” Phys. Rev. Lett. 81(25), 5548–5551 (1998).
[Crossref]

Matsuura, K.

Meier, H.

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Photochemical quantum yields in the A (+h.nu.). dblarw. B (+h.nu.,DELTA.) system when only the spectrum of A is known,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[Crossref]

Miniewicz, A.

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127(1–3), 89–93 (2002).
[Crossref]

Moerner, W. E.

Morichere, D.

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71(3), 1543–1545 (1992).
[Crossref]

Nakatani, K.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5(2), 229–236 (1993).
[Crossref]

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60(1), 4–5 (1992).
[Crossref]

Nikolova, L.

Nishide, J.

Ono, H.

H. Ono, N. Kowatari, and N. Kawatsuki, “Study on dynamics of laser-induced birefringence in azo dye doped polymer films,” Opt. Mater. 15(1), 33–39 (2000).
[Crossref]

Park, J.-K.

S. Lee, J. Shin, Y.-H. Lee, S. Fan, and J.-K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Priimagi, A.

A. Priimagi, M. Kaivola, F. J. Rodriguez, and M. Kauranen, “Enhanced photoinduced birefringence in polymer-dye complexes: hydrogen bonding makes a difference,” Appl. Phys. Lett. 90(12), 121103 (2007).
[Crossref]

Ramanujam, P. S.

R. Hildebrandt, M. Heigelich, H.-M. Keller, G. Marowsky, S. Hvilsted, N. C. R. Holme, and P. S. Ramanujam, “Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polymer films,” Phys. Rev. Lett. 81(25), 5548–5551 (1998).
[Crossref]

Rau, H.

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Photochemical quantum yields in the A (+h.nu.). dblarw. B (+h.nu.,DELTA.) system when only the spectrum of A is known,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[Crossref]

Rochon, P.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60(1), 4–5 (1992).
[Crossref]

Rodriguez, A.

A. Rodriguez, G. Vitrant, P. A. Chollet, and F. Kajzar, “Photochromic properties of azo dye polymer thin films: evidence of an additional reversible mechanism of molecular behavior,” Rev. Mex. Fis. 52(2), 135–138 (2006).

Rodriguez, F. J.

A. Priimagi, M. Kaivola, F. J. Rodriguez, and M. Kauranen, “Enhanced photoinduced birefringence in polymer-dye complexes: hydrogen bonding makes a difference,” Appl. Phys. Lett. 90(12), 121103 (2007).
[Crossref]

Sasabe, H.

Schab-Balcerzak, E.

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127(1–3), 89–93 (2002).
[Crossref]

Sek, D.

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127(1–3), 89–93 (2002).
[Crossref]

Sekkat, Z.

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Proc. SPIE 2042, 2–13 (1994).
[Crossref]

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5(2), 229–236 (1993).
[Crossref]

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1–3), 373–381 (1993).
[Crossref]

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71(3), 1543–1545 (1992).
[Crossref]

Z. Sekkat and M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B 53(2), 121–123 (1991).
[Crossref]

Shin, J.

S. Lee, J. Shin, Y.-H. Lee, S. Fan, and J.-K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Sobolewska, A.

A. Sobolewska and S. Barkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett. 92(25), 253305 (2008).
[Crossref]

Solyga, M.

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127(1–3), 89–93 (2002).
[Crossref]

Todorov, T.

Tomova, N.

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Uemura, T.

Vitrant, G.

A. Rodriguez, G. Vitrant, P. A. Chollet, and F. Kajzar, “Photochromic properties of azo dye polymer thin films: evidence of an additional reversible mechanism of molecular behavior,” Rev. Mex. Fis. 52(2), 135–138 (2006).

Walsh, C. A.

Xie, S.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60(1), 4–5 (1992).
[Crossref]

Yoshikawa, T.

Appl. Opt. (2)

Appl. Phys. B (1)

Z. Sekkat and M. Dumont, “Polarization effects in photoisomerization of azo dyes in polymeric films,” Appl. Phys. B 53(2), 121–123 (1991).
[Crossref]

Appl. Phys. Lett. (5)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60(1), 4–5 (1992).
[Crossref]

A. Priimagi, M. Kaivola, F. J. Rodriguez, and M. Kauranen, “Enhanced photoinduced birefringence in polymer-dye complexes: hydrogen bonding makes a difference,” Appl. Phys. Lett. 90(12), 121103 (2007).
[Crossref]

A. Sobolewska and S. Barkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett. 92(25), 253305 (2008).
[Crossref]

Chem. Mater. (1)

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, “Photoisomerization and second harmonic generation in disperse red one-doped and -functionalized poly(methyl methacrylate) films,” Chem. Mater. 5(2), 229–236 (1993).
[Crossref]

Chem. Phys. (1)

M. Dumont and A. El Osman, “On spontaneous and photoinduced orientational mobility of dye molecules in polymers,” Chem. Phys. 245(1–3), 437–462 (1999).
[Crossref]

J. Appl. Phys. (1)

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71(3), 1543–1545 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Photochemical quantum yields in the A (+h.nu.). dblarw. B (+h.nu.,DELTA.) system when only the spectrum of A is known,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[Crossref]

Nano Lett. (1)

S. Lee, J. Shin, Y.-H. Lee, S. Fan, and J.-K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

H. Ono, N. Kowatari, and N. Kawatsuki, “Study on dynamics of laser-induced birefringence in azo dye doped polymer films,” Opt. Mater. 15(1), 33–39 (2000).
[Crossref]

Phys. Rev. Lett. (1)

R. Hildebrandt, M. Heigelich, H.-M. Keller, G. Marowsky, S. Hvilsted, N. C. R. Holme, and P. S. Ramanujam, “Time-resolved investigation of photoinduced birefringence in azobenzene side-chain polymer films,” Phys. Rev. Lett. 81(25), 5548–5551 (1998).
[Crossref]

Proc. SPIE (1)

M. Dumont, S. Hosotte, G. Froc, and Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” Proc. SPIE 2042, 2–13 (1994).
[Crossref]

Rev. Mex. Fis. (1)

A. Rodriguez, G. Vitrant, P. A. Chollet, and F. Kajzar, “Photochromic properties of azo dye polymer thin films: evidence of an additional reversible mechanism of molecular behavior,” Rev. Mex. Fis. 52(2), 135–138 (2006).

Synth. Met. (2)

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54(1–3), 373–381 (1993).
[Crossref]

D. Sek, E. Schab-Balcerzak, M. Solyga, and A. Miniewicz, “Polarisation-sensitive holographic recording in polyimide-containing azo-dye,” Synth. Met. 127(1–3), 89–93 (2002).
[Crossref]

Other (1)

Y. Zhao and T. Ikeda, eds., Smart Light-responsive Materials (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Molecular structure of DR1 and absorption spectra for PMMA films containing 2, 5, and 20wt% of the dye.
Fig. 2
Fig. 2 Experimental setups for (a) in situ polarized absorption spectrum measurement under and after external excitation, and for (b) simultaneous measurements of absorbance depletion and induced birefringence under optical excitation. S: mechanical shutter, D: detector. All setups were placed in a dark room.
Fig. 3
Fig. 3 Temporal evolution of absorption spectrum for DR1(2wt%)/PMMA before, during and after excitation with linearly polarized pump beam. Probe light was polarized (a) parallel and (b) perpendicular to pump. Dips observed at around 532nm were due to scattering of excitation light. Time dependences of absorbance at peak wavelength for (c) DR1(2wt%)/PMMA and (d) DR1(20%)/PMMA.
Fig. 4
Fig. 4 Temporal evolution of (a) PIB and (b) extinction coefficients parallel and perpendicular to excitation polarization in DR1(2wt%)/PMMA film.
Fig. 5
Fig. 5 Temporal evolution of extinction coefficient for DR1(2wt%)/PMMA thin film under excitation with 135mW/cm2 pump beam of 532nm, plotted with (a) linear and (b) logarithmic temporal scales.
Fig. 6
Fig. 6 (a) Contribution from AHB and MRO for change of extinction coefficient on DR1(2wt%)/PMMA. The data was retrieved from those in Fig. 4(b). (b) shows decay process after the last excitation period. Lines are drawn to show two components with the shortest time constants.
Fig. 7
Fig. 7 Absorbance changes due to AHB and MRO under optical pumping for DR1(20wt%)/PMMA film.

Tables (1)

Tables Icon

Table 1 DR1/PMMA samples prepared from chloroform solutions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

κ //, ( t )= λ 4πd [ ln10 α 10 ( 0 )ln( V 1,4 ( t ) V 1,4 ( 0 ) ) ]
Δn= λ πd [ V 2 ( t ) V 0 ] 1/2 ,
Δ κ AHB = 3 5 ( Δ κ // +2Δ κ )
Δ κ MRO = 2 5 ( 3Δ κ Δ κ // )
α= 4πκ λ = N 0 σ 3 .
N 0 σ 3 [ 1 3 5 N p σΦ ]

Metrics