Abstract

Fe-doped ZnS films of high optical quality were fabricated using vacuum vapor deposition. Preferential crystalline orientation and phase purity of the host ZnS films were increased by the addition of small amounts of Fe, and the spectral shape of the 2–4 μm absorption peak is maintained up to the highest concentration tested (9 at.%). However, Raman shifts of the Fe:ZnS films indicate the inclusion of disordered material at high Fe concentrations, and below-gap optical Kerr effect measurements show an increase in χ(3) correlated with this data. Nonlinear optical properties of the films were also measured using the Z-scan method at 532 nm, and saturable absorption of the Fe-based intraband levels at 2.94 μm was confirmed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectral-luminescent properties of vapor deposited Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers

Nikolai Tolstik, Evgeni Sorokin, Eric A. Karhu, Konstantin Gorbachenya, Stanislav M. Polyakov, Viktor E. Kisel, Nikolai Kuleshov, Vedran Furtula, Ursula J. Gibson, and Irina T. Sorokina
Opt. Mater. Express 8(3) 522-531 (2018)

Nonlinear optical response of a Co:ZnO epitaxial thin film for large spectral range pulse modulation

Jinheng Du, Maoxiang Fu, Haohai Yu, Guolei Liu, Shishen Yan, and Huaijin Zhang
Opt. Mater. Express 8(8) 2173-2181 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Halsted and L. R. Koller, “Electroluminescence in Thin Films of ZnS:Mn,” Phys. Rev. 93, 349–350 (1954).
    [Crossref]
  2. E. Malguth, A. Hoffmann, and M. R. Phillips, “Fe in III–V and II–VI semiconductors,” Phys. Status Solidi (B) Basic Res. 245, 455–480 (2008).
    [Crossref]
  3. Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).
  4. I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ - Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 2–4 (2015).
    [Crossref]
  5. S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
    [Crossref]
  6. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “10-watt, pure continuous-wave, polycrystalline Cr2+:ZnS laser,” Opt. express 17, 2048–2056 (2009).
    [Crossref] [PubMed]
  7. E. A. Karhu, C. R. Ildstad, S. Poggio, V. Furtula, N. Tolstik, I. T. Sorokina, J. J. Belbruno, and U. J. Gibson, “Vapor deposited cr-doped zns thin films: towards optically pumped mid-infrared waveguide lasers,” Opt. Mater. Express 6, 2947–2955 (2016).
    [Crossref]
  8. N. Tolstik, E. Sorokin, and I. T. Sorokina, “Ceramic Cr:ZnS Laser Mode-Locked by Graphene,” Cleo: 2014 p. STu2E.7 (2014).
  9. J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2333 nm,” Opt. express 22, 7052–7057 (2014).
    [Crossref] [PubMed]
  10. Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. reports 5, 18365 (2015).
    [Crossref]
  11. E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.
  12. N. Tolstik, E. Sorokin, E. Karhu, S. Polyakov, U. Gibson, and I. T. Sorokina, “MBE-grown Cr:ZnS Thin Film Laser Media,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), p. JF1K.5.
  13. N. Tolstik, E. Sorokin, E. A. Karhu, K. Gorbachenya, S. M. Polyakov, V. Kisel, N. Kuleshov, I. T. Sorokina, and U. J. Gibson, “Spectral-luminescent properties of MBE-grown Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers,” (2016). In review.
  14. N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132, 600–606 (2012).
    [Crossref]
  15. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
    [Crossref]
  16. V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41, 1–3 (2011).
    [Crossref]
  17. M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, S. a. Savinova, and Y. K. Skasyrsky, “3J pulsed Fe:ZnS laser tunable from 3.44 to 4.19μm,” Laser Phys. Lett. 12, 055001 (2015).
    [Crossref]
  18. V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II–VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. JM4K.2.
  19. K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
    [Crossref]
  20. A. Martines, A. A. Gallian, P. Marine, V. Fedorov, S. Mirev, V. Badikov, and A. Martinez, “Fe:ZnSe and ZnS Polycrystalline Passive Q-Switching of 2.8 μm Er:Cr:YSGG Laser,” Adv. Solid-State Photonics (ASSP) pp. 40–42 (ASSP,2007).
  21. S. B. Mirov, “Saturable absorbers for Q-switching of middle infrared laser cavaties,” (2008).
  22. N.-A. Molland, Z. Ghadyani, E. a. Karhu, S. Poggio, M. Nematollahi, M. Kildemo, T. W. Reenaas, J. J. BelBruno, and U. J. Gibson, “Band-edge modification and mid-infrared absorption of co-deposited Fex Zn1−xS thin films,” Opt. Mater. Express 5, 1613 (2015).
    [Crossref]
  23. Q. J. Feng, D. Z. Shen, J. Y. Zhang, Y. M. Lu, Y. C. Liu, and X. W. Fan, “Influence of Fe content on the structural and optical properties of ZnFeS thin films,” Mater. Chem. Phys. 96, 158–162 (2006).
    [Crossref]
  24. F. Zhu, S. Dong, and G. Yang, “Ferromagnetic properties in Fe-doped ZnS thin films,” Optoelectronics Adv. Materials, Rapid Commun. 4, 2072–2075 (2010).
  25. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instruments 16, 1214–1222 (1983).
    [Crossref]
  26. S. J. Byrnes, “Multilayer optical calculations,” ArXiv e-prints (2016).
  27. P. P. Ho and R. R. Alfano, “Optical kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
    [Crossref]
  28. J. E. Aber, M. C. Newstein, and B. A. Garetz, “Femtosecond optical kerr effect measurements in silicate glasses,” J. Opt. Soc. Am. B 17, 120–127 (2000).
    [Crossref]
  29. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  30. K. Iliopoulos, A. El-Ghayoury, H. E. Ouazzani, M. Pranaitis, E. Belhadj, E. Ripaud, M. Mazari, M. Sallé, D. Gindre, and B. Sahraoui, “Nonlinear absorption reversing between an electroactive ligand and its metal complexes,” Opt. Express 20, 25311–25316 (2012).
    [Crossref] [PubMed]
  31. T. Olivier, F. Billard, and H. Akhouayri, “Nanosecond z-scan measurements of the nonlinear refractive index of fused silica,” Opt. Express 12, 1377–1382 (2004).
    [Crossref] [PubMed]
  32. W. G. Nilsen, “Raman spectrum of cubic ZnS,” Phys. Rev. 182, 838–850 (1969).
    [Crossref]
  33. Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106, 123505 (2009).
    [Crossref]
  34. O. Brafman and S. S. Mitra, “Raman effect in wurtzite- and zinc-blende-type ZnS single crystals,” Phys. Rev. 171, 931–934 (1968).
    [Crossref]
  35. S. Jiménez-Sandoval, A. López-Rivera, and J. C. Irwin, “Influence of reduced mass differences on the Raman spectra of ternary mixed compounds: Zn1−xFexS and Zn1−xMnxS,” Phys. Rev. B 68, 054303 (2003).
    [Crossref]
  36. W. Giriat and J. K. Furdyna, Semiconductors and semimetals (Academic Press Inc., 1988), vol. 25, chap. 1.
  37. M. Zigone, M. Vandevyver, and D. N. Talwar, “Raman scattering and local force variations due to transition-element impurities in zinc-sulfide crystals: Effect of pressure application,” Phys. Rev. B 24, 5763–5778 (1981).
    [Crossref]
  38. D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1−xMnxTe,” Phys. Rev. B 33, 1160–1165 (1986).
    [Crossref]
  39. S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).
  40. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
    [Crossref]
  41. Y. Wang, P. Thomas, and P. O’Brien, “Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions,” J. Phys. Chem. B Lett. 110, 21412–21415 (2006).
    [Crossref]
  42. J. Peppers and D. V. Martyshkin, “Spectroscopic characterization and energy transfer process in cobalt and cobalt-iron co-doped ZnSe/ZnS crystals,” ProcSPIE 8959, 8959 (2014).
  43. A. L. Patterson, “The scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978–982 (1939).
    [Crossref]

2016 (2)

E. A. Karhu, C. R. Ildstad, S. Poggio, V. Furtula, N. Tolstik, I. T. Sorokina, J. J. Belbruno, and U. J. Gibson, “Vapor deposited cr-doped zns thin films: towards optically pumped mid-infrared waveguide lasers,” Opt. Mater. Express 6, 2947–2955 (2016).
[Crossref]

K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
[Crossref]

2015 (6)

N.-A. Molland, Z. Ghadyani, E. a. Karhu, S. Poggio, M. Nematollahi, M. Kildemo, T. W. Reenaas, J. J. BelBruno, and U. J. Gibson, “Band-edge modification and mid-infrared absorption of co-deposited Fex Zn1−xS thin films,” Opt. Mater. Express 5, 1613 (2015).
[Crossref]

Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. reports 5, 18365 (2015).
[Crossref]

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, S. a. Savinova, and Y. K. Skasyrsky, “3J pulsed Fe:ZnS laser tunable from 3.44 to 4.19μm,” Laser Phys. Lett. 12, 055001 (2015).
[Crossref]

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ - Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 2–4 (2015).
[Crossref]

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

2014 (2)

J. Peppers and D. V. Martyshkin, “Spectroscopic characterization and energy transfer process in cobalt and cobalt-iron co-doped ZnSe/ZnS crystals,” ProcSPIE 8959, 8959 (2014).

J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2333 nm,” Opt. express 22, 7052–7057 (2014).
[Crossref] [PubMed]

2013 (1)

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

2012 (2)

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132, 600–606 (2012).
[Crossref]

K. Iliopoulos, A. El-Ghayoury, H. E. Ouazzani, M. Pranaitis, E. Belhadj, E. Ripaud, M. Mazari, M. Sallé, D. Gindre, and B. Sahraoui, “Nonlinear absorption reversing between an electroactive ligand and its metal complexes,” Opt. Express 20, 25311–25316 (2012).
[Crossref] [PubMed]

2011 (1)

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41, 1–3 (2011).
[Crossref]

2010 (1)

F. Zhu, S. Dong, and G. Yang, “Ferromagnetic properties in Fe-doped ZnS thin films,” Optoelectronics Adv. Materials, Rapid Commun. 4, 2072–2075 (2010).

2009 (2)

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “10-watt, pure continuous-wave, polycrystalline Cr2+:ZnS laser,” Opt. express 17, 2048–2056 (2009).
[Crossref] [PubMed]

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106, 123505 (2009).
[Crossref]

2008 (1)

E. Malguth, A. Hoffmann, and M. R. Phillips, “Fe in III–V and II–VI semiconductors,” Phys. Status Solidi (B) Basic Res. 245, 455–480 (2008).
[Crossref]

2006 (2)

Q. J. Feng, D. Z. Shen, J. Y. Zhang, Y. M. Lu, Y. C. Liu, and X. W. Fan, “Influence of Fe content on the structural and optical properties of ZnFeS thin films,” Mater. Chem. Phys. 96, 158–162 (2006).
[Crossref]

Y. Wang, P. Thomas, and P. O’Brien, “Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions,” J. Phys. Chem. B Lett. 110, 21412–21415 (2006).
[Crossref]

2004 (2)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[Crossref]

T. Olivier, F. Billard, and H. Akhouayri, “Nanosecond z-scan measurements of the nonlinear refractive index of fused silica,” Opt. Express 12, 1377–1382 (2004).
[Crossref] [PubMed]

2003 (1)

S. Jiménez-Sandoval, A. López-Rivera, and J. C. Irwin, “Influence of reduced mass differences on the Raman spectra of ternary mixed compounds: Zn1−xFexS and Zn1−xMnxS,” Phys. Rev. B 68, 054303 (2003).
[Crossref]

2000 (1)

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

1986 (1)

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1−xMnxTe,” Phys. Rev. B 33, 1160–1165 (1986).
[Crossref]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instruments 16, 1214–1222 (1983).
[Crossref]

1981 (1)

M. Zigone, M. Vandevyver, and D. N. Talwar, “Raman scattering and local force variations due to transition-element impurities in zinc-sulfide crystals: Effect of pressure application,” Phys. Rev. B 24, 5763–5778 (1981).
[Crossref]

1979 (1)

P. P. Ho and R. R. Alfano, “Optical kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

1969 (1)

W. G. Nilsen, “Raman spectrum of cubic ZnS,” Phys. Rev. 182, 838–850 (1969).
[Crossref]

1968 (1)

O. Brafman and S. S. Mitra, “Raman effect in wurtzite- and zinc-blende-type ZnS single crystals,” Phys. Rev. 171, 931–934 (1968).
[Crossref]

1954 (1)

R. E. Halsted and L. R. Koller, “Electroluminescence in Thin Films of ZnS:Mn,” Phys. Rev. 93, 349–350 (1954).
[Crossref]

1939 (1)

A. L. Patterson, “The scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978–982 (1939).
[Crossref]

Aber, J. E.

Ahsan, N.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Akhouayri, H.

Alfano, R. R.

P. P. Ho and R. R. Alfano, “Optical kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

Badikov, V.

A. Martines, A. A. Gallian, P. Marine, V. Fedorov, S. Mirev, V. Badikov, and A. Martinez, “Fe:ZnSe and ZnS Polycrystalline Passive Q-Switching of 2.8 μm Er:Cr:YSGG Laser,” Adv. Solid-State Photonics (ASSP) pp. 40–42 (ASSP,2007).

Bai, Z. Y.

Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. reports 5, 18365 (2015).
[Crossref]

Beecher, S. J.

Belbruno, J. J.

Belhadj, E.

Berry, P. A.

Billard, F.

Brafman, O.

O. Brafman and S. S. Mitra, “Raman effect in wurtzite- and zinc-blende-type ZnS single crystals,” Phys. Rev. 171, 931–934 (1968).
[Crossref]

Byrnes, S. J.

S. J. Byrnes, “Multilayer optical calculations,” ArXiv e-prints (2016).

Cheng, Y. C.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106, 123505 (2009).
[Crossref]

Chu, P. K.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106, 123505 (2009).
[Crossref]

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

DiLieto, A.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Dong, S.

F. Zhu, S. Dong, and G. Yang, “Ferromagnetic properties in Fe-doped ZnS thin films,” Optoelectronics Adv. Materials, Rapid Commun. 4, 2072–2075 (2010).

Ekins-Daukes, N. J.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

El-Ghayoury, A.

Fan, X. W.

Q. J. Feng, D. Z. Shen, J. Y. Zhang, Y. M. Lu, Y. C. Liu, and X. W. Fan, “Influence of Fe content on the structural and optical properties of ZnFeS thin films,” Mater. Chem. Phys. 96, 158–162 (2006).
[Crossref]

Farrell, D. J.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II–VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. JM4K.2.

A. Martines, A. A. Gallian, P. Marine, V. Fedorov, S. Mirev, V. Badikov, and A. Martinez, “Fe:ZnSe and ZnS Polycrystalline Passive Q-Switching of 2.8 μm Er:Cr:YSGG Laser,” Adv. Solid-State Photonics (ASSP) pp. 40–42 (ASSP,2007).

Fedorov, V. V.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132, 600–606 (2012).
[Crossref]

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “10-watt, pure continuous-wave, polycrystalline Cr2+:ZnS laser,” Opt. express 17, 2048–2056 (2009).
[Crossref] [PubMed]

Feng, Q. J.

Q. J. Feng, D. Z. Shen, J. Y. Zhang, Y. M. Lu, Y. C. Liu, and X. W. Fan, “Influence of Fe content on the structural and optical properties of ZnFeS thin films,” Mater. Chem. Phys. 96, 158–162 (2006).
[Crossref]

Firsov, K. N.

K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
[Crossref]

Frolov, M. P.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, S. a. Savinova, and Y. K. Skasyrsky, “3J pulsed Fe:ZnS laser tunable from 3.44 to 4.19μm,” Laser Phys. Lett. 12, 055001 (2015).
[Crossref]

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41, 1–3 (2011).
[Crossref]

Furdyna, J. K.

W. Giriat and J. K. Furdyna, Semiconductors and semimetals (Academic Press Inc., 1988), vol. 25, chap. 1.

Furtula, V.

E. A. Karhu, C. R. Ildstad, S. Poggio, V. Furtula, N. Tolstik, I. T. Sorokina, J. J. Belbruno, and U. J. Gibson, “Vapor deposited cr-doped zns thin films: towards optically pumped mid-infrared waveguide lasers,” Opt. Mater. Express 6, 2947–2955 (2016).
[Crossref]

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.

Gallian, A. A.

A. Martines, A. A. Gallian, P. Marine, V. Fedorov, S. Mirev, V. Badikov, and A. Martinez, “Fe:ZnSe and ZnS Polycrystalline Passive Q-Switching of 2.8 μm Er:Cr:YSGG Laser,” Adv. Solid-State Photonics (ASSP) pp. 40–42 (ASSP,2007).

Gao, F.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106, 123505 (2009).
[Crossref]

Gapontsev, V. P.

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II–VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. JM4K.2.

Garetz, B. A.

Gavrishchuk, E. M.

K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
[Crossref]

Ghadyani, Z.

Gibson, U.

N. Tolstik, E. Sorokin, E. Karhu, S. Polyakov, U. Gibson, and I. T. Sorokina, “MBE-grown Cr:ZnS Thin Film Laser Media,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), p. JF1K.5.

Gibson, U. J.

E. A. Karhu, C. R. Ildstad, S. Poggio, V. Furtula, N. Tolstik, I. T. Sorokina, J. J. Belbruno, and U. J. Gibson, “Vapor deposited cr-doped zns thin films: towards optically pumped mid-infrared waveguide lasers,” Opt. Mater. Express 6, 2947–2955 (2016).
[Crossref]

N.-A. Molland, Z. Ghadyani, E. a. Karhu, S. Poggio, M. Nematollahi, M. Kildemo, T. W. Reenaas, J. J. BelBruno, and U. J. Gibson, “Band-edge modification and mid-infrared absorption of co-deposited Fex Zn1−xS thin films,” Opt. Mater. Express 5, 1613 (2015).
[Crossref]

N. Tolstik, E. Sorokin, E. A. Karhu, K. Gorbachenya, S. M. Polyakov, V. Kisel, N. Kuleshov, I. T. Sorokina, and U. J. Gibson, “Spectral-luminescent properties of MBE-grown Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers,” (2016). In review.

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.

Gindre, D.

Giriat, W.

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1−xMnxTe,” Phys. Rev. B 33, 1160–1165 (1986).
[Crossref]

W. Giriat and J. K. Furdyna, Semiconductors and semimetals (Academic Press Inc., 1988), vol. 25, chap. 1.

Gorbachenya, K.

N. Tolstik, E. Sorokin, E. A. Karhu, K. Gorbachenya, S. M. Polyakov, V. Kisel, N. Kuleshov, I. T. Sorokina, and U. J. Gibson, “Spectral-luminescent properties of MBE-grown Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers,” (2016). In review.

Grange, R.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[Crossref]

Guillemoles, J.-F.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Haiml, M.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[Crossref]

Halsted, R. E.

R. E. Halsted and L. R. Koller, “Electroluminescence in Thin Films of ZnS:Mn,” Phys. Rev. 93, 349–350 (1954).
[Crossref]

Hess, O.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Ho, P. P.

P. P. Ho and R. R. Alfano, “Optical kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

Hoffmann, A.

E. Malguth, A. Hoffmann, and M. R. Phillips, “Fe in III–V and II–VI semiconductors,” Phys. Status Solidi (B) Basic Res. 245, 455–480 (2008).
[Crossref]

Ikonnikov, V. B.

K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
[Crossref]

Ildstad, C. R.

Iliopoulos, K.

Irwin, J. C.

S. Jiménez-Sandoval, A. López-Rivera, and J. C. Irwin, “Influence of reduced mass differences on the Raman spectra of ternary mixed compounds: Zn1−xFexS and Zn1−xMnxS,” Phys. Rev. B 68, 054303 (2003).
[Crossref]

Jiang, B. X.

Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. reports 5, 18365 (2015).
[Crossref]

Jiang, X. W.

Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. reports 5, 18365 (2015).
[Crossref]

Jiménez-Sandoval, S.

S. Jiménez-Sandoval, A. López-Rivera, and J. C. Irwin, “Influence of reduced mass differences on the Raman spectra of ternary mixed compounds: Zn1−xFexS and Zn1−xMnxS,” Phys. Rev. B 68, 054303 (2003).
[Crossref]

Jin, C. Q.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106, 123505 (2009).
[Crossref]

Kar, A. K.

Karhu, E.

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.

N. Tolstik, E. Sorokin, E. Karhu, S. Polyakov, U. Gibson, and I. T. Sorokina, “MBE-grown Cr:ZnS Thin Film Laser Media,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), p. JF1K.5.

Karhu, E. A.

Kazantsev, S. Y.

K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
[Crossref]

Keller, U.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[Crossref]

Kildemo, M.

Kisel, V.

N. Tolstik, E. Sorokin, E. A. Karhu, K. Gorbachenya, S. M. Polyakov, V. Kisel, N. Kuleshov, I. T. Sorokina, and U. J. Gibson, “Spectral-luminescent properties of MBE-grown Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers,” (2016). In review.

Kita, T.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Koller, L. R.

R. E. Halsted and L. R. Koller, “Electroluminescence in Thin Films of ZnS:Mn,” Phys. Rev. 93, 349–350 (1954).
[Crossref]

Kononov, I. G.

K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
[Crossref]

Korostelin, Y. V.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, S. a. Savinova, and Y. K. Skasyrsky, “3J pulsed Fe:ZnS laser tunable from 3.44 to 4.19μm,” Laser Phys. Lett. 12, 055001 (2015).
[Crossref]

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41, 1–3 (2011).
[Crossref]

Kozlovskii, V. I.

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41, 1–3 (2011).
[Crossref]

Kozlovsky, V. I.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, S. a. Savinova, and Y. K. Skasyrsky, “3J pulsed Fe:ZnS laser tunable from 3.44 to 4.19μm,” Laser Phys. Lett. 12, 055001 (2015).
[Crossref]

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Kuleshov, N.

N. Tolstik, E. Sorokin, E. A. Karhu, K. Gorbachenya, S. M. Polyakov, V. Kisel, N. Kuleshov, I. T. Sorokina, and U. J. Gibson, “Spectral-luminescent properties of MBE-grown Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers,” (2016). In review.

Lancaster, A.

Landman, A. I.

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41, 1–3 (2011).
[Crossref]

Leng, Y. X.

Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. reports 5, 18365 (2015).
[Crossref]

Li, S. H.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106, 123505 (2009).
[Crossref]

Liu, X.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Liu, Y. C.

Q. J. Feng, D. Z. Shen, J. Y. Zhang, Y. M. Lu, Y. C. Liu, and X. W. Fan, “Influence of Fe content on the structural and optical properties of ZnFeS thin films,” Mater. Chem. Phys. 96, 158–162 (2006).
[Crossref]

López-Rivera, A.

S. Jiménez-Sandoval, A. López-Rivera, and J. C. Irwin, “Influence of reduced mass differences on the Raman spectra of ternary mixed compounds: Zn1−xFexS and Zn1−xMnxS,” Phys. Rev. B 68, 054303 (2003).
[Crossref]

Lu, Y. M.

Q. J. Feng, D. Z. Shen, J. Y. Zhang, Y. M. Lu, Y. C. Liu, and X. W. Fan, “Influence of Fe content on the structural and optical properties of ZnFeS thin films,” Mater. Chem. Phys. 96, 158–162 (2006).
[Crossref]

Macdonald, J. R.

Malguth, E.

E. Malguth, A. Hoffmann, and M. R. Phillips, “Fe in III–V and II–VI semiconductors,” Phys. Status Solidi (B) Basic Res. 245, 455–480 (2008).
[Crossref]

Marine, P.

A. Martines, A. A. Gallian, P. Marine, V. Fedorov, S. Mirev, V. Badikov, and A. Martinez, “Fe:ZnSe and ZnS Polycrystalline Passive Q-Switching of 2.8 μm Er:Cr:YSGG Laser,” Adv. Solid-State Photonics (ASSP) pp. 40–42 (ASSP,2007).

Martines, A.

A. Martines, A. A. Gallian, P. Marine, V. Fedorov, S. Mirev, V. Badikov, and A. Martinez, “Fe:ZnSe and ZnS Polycrystalline Passive Q-Switching of 2.8 μm Er:Cr:YSGG Laser,” Adv. Solid-State Photonics (ASSP) pp. 40–42 (ASSP,2007).

Martinez, A.

A. Martines, A. A. Gallian, P. Marine, V. Fedorov, S. Mirev, V. Badikov, and A. Martinez, “Fe:ZnSe and ZnS Polycrystalline Passive Q-Switching of 2.8 μm Er:Cr:YSGG Laser,” Adv. Solid-State Photonics (ASSP) pp. 40–42 (ASSP,2007).

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II–VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. JM4K.2.

Martyshkin, D. V.

J. Peppers and D. V. Martyshkin, “Spectroscopic characterization and energy transfer process in cobalt and cobalt-iron co-doped ZnSe/ZnS crystals,” ProcSPIE 8959, 8959 (2014).

Mazari, M.

Mirev, S.

A. Martines, A. A. Gallian, P. Marine, V. Fedorov, S. Mirev, V. Badikov, and A. Martinez, “Fe:ZnSe and ZnS Polycrystalline Passive Q-Switching of 2.8 μm Er:Cr:YSGG Laser,” Adv. Solid-State Photonics (ASSP) pp. 40–42 (ASSP,2007).

Mirov, M.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II–VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. JM4K.2.

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

Mirov, S. B.

J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2333 nm,” Opt. express 22, 7052–7057 (2014).
[Crossref] [PubMed]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132, 600–606 (2012).
[Crossref]

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “10-watt, pure continuous-wave, polycrystalline Cr2+:ZnS laser,” Opt. express 17, 2048–2056 (2009).
[Crossref] [PubMed]

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II–VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. JM4K.2.

S. B. Mirov, “Saturable absorbers for Q-switching of middle infrared laser cavaties,” (2008).

Mislavskii, V. V.

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41, 1–3 (2011).
[Crossref]

Mitra, S. S.

O. Brafman and S. S. Mitra, “Raman effect in wurtzite- and zinc-blende-type ZnS single crystals,” Phys. Rev. 171, 931–934 (1968).
[Crossref]

Molland, N.-A.

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

Moskalev, I. S.

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “10-watt, pure continuous-wave, polycrystalline Cr2+:ZnS laser,” Opt. express 17, 2048–2056 (2009).
[Crossref] [PubMed]

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II–VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. JM4K.2.

Myoung, N.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132, 600–606 (2012).
[Crossref]

Nematollahi, M.

Newstein, M. C.

Nilsen, W. G.

W. G. Nilsen, “Raman spectrum of cubic ZnS,” Phys. Rev. 182, 838–850 (1969).
[Crossref]

O’Brien, P.

Y. Wang, P. Thomas, and P. O’Brien, “Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions,” J. Phys. Chem. B Lett. 110, 21412–21415 (2006).
[Crossref]

Okada, Y.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Olivier, T.

Osterberg, U.

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.

Ouazzani, H. E.

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Patterson, A. L.

A. L. Patterson, “The scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978–982 (1939).
[Crossref]

Payne, S. A.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Peng, Y. P.

Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. reports 5, 18365 (2015).
[Crossref]

Peppers, J.

J. Peppers and D. V. Martyshkin, “Spectroscopic characterization and energy transfer process in cobalt and cobalt-iron co-doped ZnSe/ZnS crystals,” ProcSPIE 8959, 8959 (2014).

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II–VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. JM4K.2.

Peterson, D. L.

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1−xMnxTe,” Phys. Rev. B 33, 1160–1165 (1986).
[Crossref]

Petrou, A.

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1−xMnxTe,” Phys. Rev. B 33, 1160–1165 (1986).
[Crossref]

Phillips, C. C.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Phillips, M. R.

E. Malguth, A. Hoffmann, and M. R. Phillips, “Fe in III–V and II–VI semiconductors,” Phys. Status Solidi (B) Basic Res. 245, 455–480 (2008).
[Crossref]

Podmar’kov, Y. P.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, S. a. Savinova, and Y. K. Skasyrsky, “3J pulsed Fe:ZnS laser tunable from 3.44 to 4.19μm,” Laser Phys. Lett. 12, 055001 (2015).
[Crossref]

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41, 1–3 (2011).
[Crossref]

Poggio, S.

Polyakov, S.

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.

N. Tolstik, E. Sorokin, E. Karhu, S. Polyakov, U. Gibson, and I. T. Sorokina, “MBE-grown Cr:ZnS Thin Film Laser Media,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), p. JF1K.5.

Polyakov, S. M.

N. Tolstik, E. Sorokin, E. A. Karhu, K. Gorbachenya, S. M. Polyakov, V. Kisel, N. Kuleshov, I. T. Sorokina, and U. J. Gibson, “Spectral-luminescent properties of MBE-grown Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers,” (2016). In review.

Pranaitis, M.

Pusch, A.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Ramdas, A. K.

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1−xMnxTe,” Phys. Rev. B 33, 1160–1165 (1986).
[Crossref]

Reenaas, T. W.

Ripaud, E.

Rodin, S. A.

K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
[Crossref]

Rodriguez, S.

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1−xMnxTe,” Phys. Rev. B 33, 1160–1165 (1986).
[Crossref]

Sahraoui, B.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Sallé, M.

Savin, D. V.

K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
[Crossref]

Savinova, S. a.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, S. a. Savinova, and Y. K. Skasyrsky, “3J pulsed Fe:ZnS laser tunable from 3.44 to 4.19μm,” Laser Phys. Lett. 12, 055001 (2015).
[Crossref]

Schepler, K. L.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Shen, D. Z.

Q. J. Feng, D. Z. Shen, J. Y. Zhang, Y. M. Lu, Y. C. Liu, and X. W. Fan, “Influence of Fe content on the structural and optical properties of ZnFeS thin films,” Mater. Chem. Phys. 96, 158–162 (2006).
[Crossref]

Shoji, Y.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Skasyrsky, Y. K.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, S. a. Savinova, and Y. K. Skasyrsky, “3J pulsed Fe:ZnS laser tunable from 3.44 to 4.19μm,” Laser Phys. Lett. 12, 055001 (2015).
[Crossref]

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41, 1–3 (2011).
[Crossref]

Sogabe, T.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Sorokin, E.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ - Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 2–4 (2015).
[Crossref]

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Ceramic Cr:ZnS Laser Mode-Locked by Graphene,” Cleo: 2014 p. STu2E.7 (2014).

N. Tolstik, E. Sorokin, E. A. Karhu, K. Gorbachenya, S. M. Polyakov, V. Kisel, N. Kuleshov, I. T. Sorokina, and U. J. Gibson, “Spectral-luminescent properties of MBE-grown Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers,” (2016). In review.

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.

N. Tolstik, E. Sorokin, E. Karhu, S. Polyakov, U. Gibson, and I. T. Sorokina, “MBE-grown Cr:ZnS Thin Film Laser Media,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), p. JF1K.5.

Sorokina, I. T.

E. A. Karhu, C. R. Ildstad, S. Poggio, V. Furtula, N. Tolstik, I. T. Sorokina, J. J. Belbruno, and U. J. Gibson, “Vapor deposited cr-doped zns thin films: towards optically pumped mid-infrared waveguide lasers,” Opt. Mater. Express 6, 2947–2955 (2016).
[Crossref]

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ - Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 2–4 (2015).
[Crossref]

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Ceramic Cr:ZnS Laser Mode-Locked by Graphene,” Cleo: 2014 p. STu2E.7 (2014).

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.

N. Tolstik, E. Sorokin, E. Karhu, S. Polyakov, U. Gibson, and I. T. Sorokina, “MBE-grown Cr:ZnS Thin Film Laser Media,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), p. JF1K.5.

N. Tolstik, E. Sorokin, E. A. Karhu, K. Gorbachenya, S. M. Polyakov, V. Kisel, N. Kuleshov, I. T. Sorokina, and U. J. Gibson, “Spectral-luminescent properties of MBE-grown Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers,” (2016). In review.

Stryland, E. W. V.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Sum, T.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instruments 16, 1214–1222 (1983).
[Crossref]

Talwar, D. N.

M. Zigone, M. Vandevyver, and D. N. Talwar, “Raman scattering and local force variations due to transition-element impurities in zinc-sulfide crystals: Effect of pressure application,” Phys. Rev. B 24, 5763–5778 (1981).
[Crossref]

Tamaki, R.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Thomas, P.

Y. Wang, P. Thomas, and P. O’Brien, “Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions,” J. Phys. Chem. B Lett. 110, 21412–21415 (2006).
[Crossref]

Timofeeva, N. A.

K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
[Crossref]

Tolstik, N.

E. A. Karhu, C. R. Ildstad, S. Poggio, V. Furtula, N. Tolstik, I. T. Sorokina, J. J. Belbruno, and U. J. Gibson, “Vapor deposited cr-doped zns thin films: towards optically pumped mid-infrared waveguide lasers,” Opt. Mater. Express 6, 2947–2955 (2016).
[Crossref]

N. Tolstik, E. Sorokin, E. A. Karhu, K. Gorbachenya, S. M. Polyakov, V. Kisel, N. Kuleshov, I. T. Sorokina, and U. J. Gibson, “Spectral-luminescent properties of MBE-grown Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers,” (2016). In review.

N. Tolstik, E. Sorokin, E. Karhu, S. Polyakov, U. Gibson, and I. T. Sorokina, “MBE-grown Cr:ZnS Thin Film Laser Media,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), p. JF1K.5.

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Ceramic Cr:ZnS Laser Mode-Locked by Graphene,” Cleo: 2014 p. STu2E.7 (2014).

Tonelli, M.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Vandevyver, M.

M. Zigone, M. Vandevyver, and D. N. Talwar, “Raman scattering and local force variations due to transition-element impurities in zinc-sulfide crystals: Effect of pressure application,” Phys. Rev. B 24, 5763–5778 (1981).
[Crossref]

Vasilyev, S.

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II–VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. JM4K.2.

Wang, S.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Wang, Y.

Y. Wang, P. Thomas, and P. O’Brien, “Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions,” J. Phys. Chem. B Lett. 110, 21412–21415 (2006).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Wenger, L. E.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132, 600–606 (2012).
[Crossref]

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Wu, X. L.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106, 123505 (2009).
[Crossref]

Xing, J.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Xiong, Q.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Yang, G.

F. Zhu, S. Dong, and G. Yang, “Ferromagnetic properties in Fe-doped ZnS thin films,” Optoelectronics Adv. Materials, Rapid Commun. 4, 2072–2075 (2010).

Yoshida, K.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Yoshida, M.

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

Yu, H.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Zamiri, R.

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.

Zhang, H.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Zhang, J. Y.

Q. J. Feng, D. Z. Shen, J. Y. Zhang, Y. M. Lu, Y. C. Liu, and X. W. Fan, “Influence of Fe content on the structural and optical properties of ZnFeS thin films,” Mater. Chem. Phys. 96, 158–162 (2006).
[Crossref]

Zhang, L.

Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. reports 5, 18365 (2015).
[Crossref]

Zhang, Y.

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Zhong, W.

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106, 123505 (2009).
[Crossref]

Zhu, F.

F. Zhu, S. Dong, and G. Yang, “Ferromagnetic properties in Fe-doped ZnS thin films,” Optoelectronics Adv. Materials, Rapid Commun. 4, 2072–2075 (2010).

Zigone, M.

M. Zigone, M. Vandevyver, and D. N. Talwar, “Raman scattering and local force variations due to transition-element impurities in zinc-sulfide crystals: Effect of pressure application,” Phys. Rev. B 24, 5763–5778 (1981).
[Crossref]

Zou, X.

Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. reports 5, 18365 (2015).
[Crossref]

Appl. Phys. B (1)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[Crossref]

Appl. Phys. Lett. (1)

S. Wang, Y. Zhang, J. Xing, X. Liu, H. Yu, A. DiLieto, M. Tonelli, T. Sum, H. Zhang, and Q. Xiong, “Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers,” Appl. Phys. Lett. 107, 161103 (2015).

Appl. Phys. Rev. Appl. Phys. Lett (1)

Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions,” Citation: Appl. Phys. Rev. Appl. Phys. Lett 2, 021302 (2015).

IEEE J. Quantum Electron. (2)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ - Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 2–4 (2015).
[Crossref]

J. Appl. Phys. (1)

Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li, and P. K. Chu, “Raman scattering study of zinc blende and wurtzite ZnS,” J. Appl. Phys. 106, 123505 (2009).
[Crossref]

J. Lumin. (2)

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132, 600–606 (2012).
[Crossref]

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B Lett. (1)

Y. Wang, P. Thomas, and P. O’Brien, “Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions,” J. Phys. Chem. B Lett. 110, 21412–21415 (2006).
[Crossref]

J. Phys. E: Sci. Instruments (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instruments 16, 1214–1222 (1983).
[Crossref]

Laser Phys. Lett. (2)

K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Y. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13, 015001 (2016).
[Crossref]

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, S. a. Savinova, and Y. K. Skasyrsky, “3J pulsed Fe:ZnS laser tunable from 3.44 to 4.19μm,” Laser Phys. Lett. 12, 055001 (2015).
[Crossref]

Mater. Chem. Phys. (1)

Q. J. Feng, D. Z. Shen, J. Y. Zhang, Y. M. Lu, Y. C. Liu, and X. W. Fan, “Influence of Fe content on the structural and optical properties of ZnFeS thin films,” Mater. Chem. Phys. 96, 158–162 (2006).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (2)

Optoelectronics Adv. Materials, Rapid Commun. (1)

F. Zhu, S. Dong, and G. Yang, “Ferromagnetic properties in Fe-doped ZnS thin films,” Optoelectronics Adv. Materials, Rapid Commun. 4, 2072–2075 (2010).

Phys. Rev. (4)

R. E. Halsted and L. R. Koller, “Electroluminescence in Thin Films of ZnS:Mn,” Phys. Rev. 93, 349–350 (1954).
[Crossref]

O. Brafman and S. S. Mitra, “Raman effect in wurtzite- and zinc-blende-type ZnS single crystals,” Phys. Rev. 171, 931–934 (1968).
[Crossref]

A. L. Patterson, “The scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978–982 (1939).
[Crossref]

W. G. Nilsen, “Raman spectrum of cubic ZnS,” Phys. Rev. 182, 838–850 (1969).
[Crossref]

Phys. Rev. A (1)

P. P. Ho and R. R. Alfano, “Optical kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979).
[Crossref]

Phys. Rev. B (3)

S. Jiménez-Sandoval, A. López-Rivera, and J. C. Irwin, “Influence of reduced mass differences on the Raman spectra of ternary mixed compounds: Zn1−xFexS and Zn1−xMnxS,” Phys. Rev. B 68, 054303 (2003).
[Crossref]

M. Zigone, M. Vandevyver, and D. N. Talwar, “Raman scattering and local force variations due to transition-element impurities in zinc-sulfide crystals: Effect of pressure application,” Phys. Rev. B 24, 5763–5778 (1981).
[Crossref]

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1−xMnxTe,” Phys. Rev. B 33, 1160–1165 (1986).
[Crossref]

Phys. Status Solidi (B) Basic Res. (1)

E. Malguth, A. Hoffmann, and M. R. Phillips, “Fe in III–V and II–VI semiconductors,” Phys. Status Solidi (B) Basic Res. 245, 455–480 (2008).
[Crossref]

ProcSPIE (1)

J. Peppers and D. V. Martyshkin, “Spectroscopic characterization and energy transfer process in cobalt and cobalt-iron co-doped ZnSe/ZnS crystals,” ProcSPIE 8959, 8959 (2014).

Quantum Electron. (1)

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, V. V. Mislavskii, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41, 1–3 (2011).
[Crossref]

Sci. reports (1)

Y. P. Peng, X. Zou, Z. Y. Bai, Y. X. Leng, B. X. Jiang, X. W. Jiang, and L. Zhang, “Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing,” Sci. reports 5, 18365 (2015).
[Crossref]

Other (9)

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), c, p. STu4R.2.

N. Tolstik, E. Sorokin, E. Karhu, S. Polyakov, U. Gibson, and I. T. Sorokina, “MBE-grown Cr:ZnS Thin Film Laser Media,” in “Conference on Lasers and Electro-Optics,” (OSA, Washington, D.C., 2016), p. JF1K.5.

N. Tolstik, E. Sorokin, E. A. Karhu, K. Gorbachenya, S. M. Polyakov, V. Kisel, N. Kuleshov, I. T. Sorokina, and U. J. Gibson, “Spectral-luminescent properties of MBE-grown Cr:ZnS thin films and their application as saturable absorbers for 1.5-μm erbium lasers,” (2016). In review.

V. Fedorov, D. Martyshkin, M. Mirov, I. S. Moskalev, S. Vasilyev, J. Peppers, S. B. Mirov, and V. P. Gapontsev, “Fe-doped II–VI Mid-Infrared Laser Materials for the 3 to 8 μm Region,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. JM4K.2.

A. Martines, A. A. Gallian, P. Marine, V. Fedorov, S. Mirev, V. Badikov, and A. Martinez, “Fe:ZnSe and ZnS Polycrystalline Passive Q-Switching of 2.8 μm Er:Cr:YSGG Laser,” Adv. Solid-State Photonics (ASSP) pp. 40–42 (ASSP,2007).

S. B. Mirov, “Saturable absorbers for Q-switching of middle infrared laser cavaties,” (2008).

N. Tolstik, E. Sorokin, and I. T. Sorokina, “Ceramic Cr:ZnS Laser Mode-Locked by Graphene,” Cleo: 2014 p. STu2E.7 (2014).

W. Giriat and J. K. Furdyna, Semiconductors and semimetals (Academic Press Inc., 1988), vol. 25, chap. 1.

S. J. Byrnes, “Multilayer optical calculations,” ArXiv e-prints (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Room temperature measurements, Absorption coefficient (α) of Fe:ZnS films with different Fe concentrations extracted from transmission data using Swanepoel (dashed line) and TMM (solid line) modeling methods. (b) Absorption coefficient (TMM) at 35K, and a reference single crystal (concentration 0.01%) spectrum (dotted lines) [17] taken at 77 K. (c) Temperature dependence of the absorption coefficient (TMM) for a 1.2 at.% Fe:ZnS sample. The small peak at 3100 nm is due to a thin ice film deposited on the surface in the cryostat. (d) χ(3) as a function of Fe content from OKE measurements at 795 nm.
Fig. 2
Fig. 2 Room-temperature Raman spectra of Fe:ZnS for different Fe concentrations. The sapphire substrate vibrational peaks are indicated as Y and the ZnS modes are described in the text, including vibrational modes of A1, and F2 type symmetries, denoted here as A1 and F2. (a) First-order peaks; (b) Second-order peaks.
Fig. 3
Fig. 3 a) Nonlinear transmission of Fe-doped ZnS film with 2% Fe at 2.94μm. Inset is for film with 5.8% Fe. Vertical dotted lines indicate the saturable intensity Isat.
Fig. 4
Fig. 4 Nonlinear transmission of the 5.8% Fe doped film measured at 532 nm. (a) Divided scan, and (b) an open-aperture scan.
Fig. 5
Fig. 5 Electron microscopy images. Top row, STEM of the surfaces of films with a) 0 b)1.2 and c)7.5% Fe, and bottom row, cross-sectional bright field TEM images for d) 0 e)1.2 and f)7.5% Fe
Fig. 6
Fig. 6 (a) Electron diffraction pattern of the undoped ZnS. Red circles indicate positions of Bragg reflections that can be either ZB or W, the green circle indicates the unique (002) ZB reflections, and the blue circles indicate possible positions of the unique W reflections. (b) 7.5 at.% Fe:ZnS electron diffraction pattern. (c) High-angle annular dark-field imaging STEM showing extreme twinning along a nanocolumn in the sample.
Fig. 7
Fig. 7 XRD spectra of samples with different amount of Fe grown on Si (100) substrate. (a) Increased intensity of the (111) reflection after doping with Fe compared with undoped ZnS. (b) Positions of the (111) reflection in Fe:ZnS samples.

Tables (1)

Tables Icon

Table 1 Nonlinear parameters for Fe:ZnS films at 532 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ s ( 3 ) = χ r ( 3 ) × ( I s I r ) 1 2 × ( n s n r ) 2 × ( L r L s ) × α L s exp ( α L s 2 ) × [ 1 exp ( α L s ) ] ,
T = A exp [ Δ T / ( 1 + I / I sat ) ]

Metrics