Abstract

Ytterbium-doped strontium fluorosilicate optical fibers exhibiting intrinsically low optical nonlinearities were fabricated and characterized. Specifically, reductions up to ~1.5 dB, ~9 dB, and ~3 dB in Raman gain, Brillouin gain, and thermo-optic coefficients, respectively, were measured relative to conventional silica optical fibers. Additionally, fluorescence lifetime, and emission and absorption spectra for these fibers are presented and suggest enhanced performance relative to their more commonly employed aluminosilicate and phosphosilicate counterparts. Low quantum defect (<1.5%) operation in these fibers, coupled with their low thermo-optic coefficients, may ultimately yield high power fiber lasers with greater immunity to thermal-based parasitic processes. The results indicate the potential of these fibers and glass materials for high energy fiber-based applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Calcium silicate and fluorosilicate optical fibers for high energy laser applications

M. Cavillon, P. Dragic, C. Kucera, T. W. Hawkins, and J. Ballato
Opt. Mater. Express 9(5) 2147-2158 (2019)

Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic
Opt. Lett. 43(13) 3096-3099 (2018)

Brillouin scattering properties of lanthano–aluminosilicate optical fiber

P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster
Appl. Opt. 53(25) 5660-5671 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–23 (2014).
    [Crossref]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  3. R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [Crossref] [PubMed]
  4. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]
  5. A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 153–158 (2009).
    [Crossref]
  6. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  7. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref] [PubMed]
  8. J. Ballato, M. Cavillon, and P. Dragic, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. I. Thermodynamics of Optical Scattering,” Int. J. Appl. Glas. Sci. DOI 10.1111/ijag.12327 (2018).
  9. J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
    [Crossref] [PubMed]
  10. M. Cavillon, C. J. Kucera, T. W. Hawkins, A. F. J. J. Runge, A. C. Peacock, P. D. Dragic, and J. Ballato, “Oxyfluoride core silica-based optical fiber with intrinsically low nonlinearities for high energy laser applications,” J. Lightwave Technol. 36(2), 284–291 (2018).
    [Crossref]
  11. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photon. 6(9), 627–635 (2012).
    [Crossref]
  12. P. Dragic and J. Ballato, “Characterization of the Raman gain spectra in Yb:YAG-derived optical fibers,” Electron. Lett. 49(14), 895–897 (2013).
    [Crossref]
  13. S. L. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).
  14. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
    [Crossref]
  15. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
    [Crossref]
  16. P. Dragic, M. Cavillon, and J. Ballato, “The linear and nonlinear refractive index of amorphous Al2O3 deduced from aluminosilicate optical fibers,” Int. J. Appl. Glas. Sci. DOI 10.1111/ijag.12337 (2017).
  17. P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
    [Crossref] [PubMed]
  18. M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
    [Crossref]
  19. P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
    [Crossref] [PubMed]
  20. M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Tech. 34, 1435–1441 (2016).
  21. P. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber : the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 1, 686–699 (2011).
    [Crossref]
  22. P. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
    [Crossref]
  23. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975 (2003).
    [Crossref]
  24. M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
    [Crossref]
  25. M. Cavillon, “Molten core fabrication of intrinsically low nonlinearity glass optical fibers,” PhD Dissertation, Clemson University (2018).
  26. J. E. Shelby, “Effect of morphology on the properties of alkaline earth silicate glasses,” J. Appl. Phys. 50(12), 8010–8015 (1979).
    [Crossref]
  27. P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35(9), 1627–1632 (2013).
    [Crossref]
  28. A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y (2006).
  29. J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Appl. Opt. 22(19), 3102 (1983).
    [Crossref] [PubMed]
  30. P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-Doped LMA Triple-Clad Fiber for Power Amplifiers,” Proc. SPIE 6453, 645308 (2007).
    [Crossref]
  31. D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
    [Crossref]
  32. P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties,” Int. J. Appl. Glas. Sci. DOI 10.1111/ijag.12328 (2018).
  33. B. A. Shakhmatkin, N. M. Vedishcheva, and A. C. Wright, “Thermodynamic modelling of the structure of oxyhalide glasses,” J. Non-Cryst. Solids 345–346, 461–468 (2004).
    [Crossref]
  34. A. K. Swarnakar, A. Stamboulis, D. Holland, and O. Van Der Biest, “Improved Prediction of Young’s Modulus of Fluorine-Containing Glasses Using MAS-NMR Structural Data,” J. Am. Ceram. Soc. 96(4), 1271–1277 (2013).
    [Crossref]
  35. R. G. Hill, A. Stamboulis, and R. V. Law, “Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy,” J. Dent. 34(8), 525–532 (2006).
    [Crossref] [PubMed]
  36. T. J. Kiczenski and J. F. Stebbins, “Fluorine sites in calcium and barium oxyfluorides: F-19 NMR on crystalline model compounds and glasses,” J. Non-Cryst. Solids 306(2), 160–168 (2002).
    [Crossref]
  37. C. Dalou, C. Le Losq, B. O. Mysen, and G. D. Cody, “Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature,” Am. Mineral. 100(10), 2272–2283 (2015).
    [Crossref]
  38. B. O. Mysen and D. Virgo, “Interaction Between Fluorine and Silica in Quenched Melts on the Joins SiO2 - AlF3 and SiO2 - NaF Determined by Raman Spectroscopy,” Phys. Chem. Miner. 12(2), 77–85 (1985).
    [Crossref]
  39. K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).
  40. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
    [Crossref]
  41. S. Shibata, S. Mitachi, and S. Takahashi, “High numerical aperture multicomponent glass fiber,” Appl. Opt. 19(9), 1484–1488 (1980).
    [Crossref] [PubMed]
  42. P. F. McMillan, “Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy,” Am. Mineral. 69, 622–644 (1984).
  43. F. L. Galeener, “Raman and ESR studies of the thermal history of amorphous SiO2,” J. Non-Cryst. Solids 71(1-3), 373–386 (1985).
    [Crossref]
  44. A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
    [Crossref]
  45. P. D. Dragic and J. Ballato, “Characterisation of Raman gain spectra in Yb:YAG-derived optical fibres,” Electron. Lett. 49(14), 895–897 (2013).
    [Crossref]
  46. M. Środa and C. Paluszkiewicz, “The structural role of alkaline earth ions in oxyfluoride aluminosilicate glasses-Infrared spectroscopy study,” Vib. Spectrosc. 48(2), 246–250 (2008).
    [Crossref]
  47. M. Środa and Z. Olejniczak, “19F MAS-NMR studies of strontium oxyfluoride aluminosilicate glass,” J. Mol. Struct. 1001(1-3), 78–82 (2011).
    [Crossref]
  48. D. G. Mead and G. R. Wilkinson, “The temperature dependence of the Raman spectra of some alkaline earth crystals with the fluorite structure,” J. Phys. C Solid State Phys. 10(7), 1063–1072 (1977).
    [Crossref]
  49. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995).
  50. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  51. K. C. Crouch, R. B. Rayment, and G. W. Marks, “Elastic Properties of Fluorides of Groups IA and IIA,” Final Rep. ZR 011 01 01 (NELC Z1), Nav. Undersea Warf. Center, DTIC Doc. # 848978 (1968).
  52. A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, Optical Materials Characterization Final Technical Report February 1, 1978 - September 30, 1978 (1978).
  53. L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).
  54. M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” Quantum Electron. IEEE J. 19(10), 1600–1608 (1983).
    [Crossref]
  55. Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The effect of fluorine anions on the luminescent properties of Eu-Doped oxyfluoride aluminosilicate,” J. Am. Ceram. Soc. 93(10), 3095–3098 (2010).
    [Crossref]
  56. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
    [Crossref] [PubMed]
  57. P. D. Dragic, M. Cavillon, A. Mironov, C. Kucera, T. Hawkins, J. G. Eden, and J. Ballato, “Yb-Doped Fluorosilicate Optical Fiber Development For Laser Cooling and Radiation Balancing Applications,” in Frontiers in Optics(p. JW4A.81), Optical Society of America (2017).
  58. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “lifetime quentching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
    [Crossref]
  59. A. S. Pinheiro, A. M. Freitas, G. H. Silva, M. J. V. Bell, V. Anjos, A. P. Carmo, and N. O. Dantas, “Laser performace parameters of Yb3+ doped UV-transparent phosphate glasses,” Chem. Phys. Lett. 592, 164–169 (2014).
    [Crossref]
  60. G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
    [Crossref]
  61. N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, “Low Quantum Defect Lasers via Yb-Doped Multicomponent Fluorosilicate Optical Fiber,” in Submitted to CLEO2018.
  62. G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express 23(14), 17693–17700 (2015).
    [Crossref] [PubMed]
  63. S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, “Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature,” in In Advanced Solid-State Photonics (P. TuB4). Optical Society of America (2007).
  64. T. Yao, J. Ji, and J. Nilsson, “Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers,” J. Lightwave Technol. 32(3), 429–434 (2014).
    [Crossref]

2018 (1)

2017 (1)

2016 (1)

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Tech. 34, 1435–1441 (2016).

2015 (4)

C. Dalou, C. Le Losq, B. O. Mysen, and G. D. Cody, “Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature,” Am. Mineral. 100(10), 2272–2283 (2015).
[Crossref]

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref] [PubMed]

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express 23(14), 17693–17700 (2015).
[Crossref] [PubMed]

2014 (5)

T. Yao, J. Ji, and J. Nilsson, “Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers,” J. Lightwave Technol. 32(3), 429–434 (2014).
[Crossref]

A. S. Pinheiro, A. M. Freitas, G. H. Silva, M. J. V. Bell, V. Anjos, A. P. Carmo, and N. O. Dantas, “Laser performace parameters of Yb3+ doped UV-transparent phosphate glasses,” Chem. Phys. Lett. 592, 164–169 (2014).
[Crossref]

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–23 (2014).
[Crossref]

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

2013 (7)

A. K. Swarnakar, A. Stamboulis, D. Holland, and O. Van Der Biest, “Improved Prediction of Young’s Modulus of Fluorine-Containing Glasses Using MAS-NMR Structural Data,” J. Am. Ceram. Soc. 96(4), 1271–1277 (2013).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35(9), 1627–1632 (2013).
[Crossref]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[Crossref] [PubMed]

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
[Crossref] [PubMed]

P. Dragic and J. Ballato, “Characterization of the Raman gain spectra in Yb:YAG-derived optical fibers,” Electron. Lett. 49(14), 895–897 (2013).
[Crossref]

S. L. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).

P. D. Dragic and J. Ballato, “Characterisation of Raman gain spectra in Yb:YAG-derived optical fibres,” Electron. Lett. 49(14), 895–897 (2013).
[Crossref]

2012 (2)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photon. 6(9), 627–635 (2012).
[Crossref]

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

2011 (3)

2010 (2)

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The effect of fluorine anions on the luminescent properties of Eu-Doped oxyfluoride aluminosilicate,” J. Am. Ceram. Soc. 93(10), 3095–3098 (2010).
[Crossref]

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
[Crossref]

2009 (3)

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 153–158 (2009).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
[Crossref] [PubMed]

2008 (3)

M. Środa and C. Paluszkiewicz, “The structural role of alkaline earth ions in oxyfluoride aluminosilicate glasses-Infrared spectroscopy study,” Vib. Spectrosc. 48(2), 246–250 (2008).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

2007 (1)

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-Doped LMA Triple-Clad Fiber for Power Amplifiers,” Proc. SPIE 6453, 645308 (2007).
[Crossref]

2006 (2)

R. G. Hill, A. Stamboulis, and R. V. Law, “Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy,” J. Dent. 34(8), 525–532 (2006).
[Crossref] [PubMed]

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y (2006).

2004 (1)

B. A. Shakhmatkin, N. M. Vedishcheva, and A. C. Wright, “Thermodynamic modelling of the structure of oxyhalide glasses,” J. Non-Cryst. Solids 345–346, 461–468 (2004).
[Crossref]

2003 (1)

2002 (1)

T. J. Kiczenski and J. F. Stebbins, “Fluorine sites in calcium and barium oxyfluorides: F-19 NMR on crystalline model compounds and glasses,” J. Non-Cryst. Solids 306(2), 160–168 (2002).
[Crossref]

1997 (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “lifetime quentching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

1994 (2)

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

1985 (2)

B. O. Mysen and D. Virgo, “Interaction Between Fluorine and Silica in Quenched Melts on the Joins SiO2 - AlF3 and SiO2 - NaF Determined by Raman Spectroscopy,” Phys. Chem. Miner. 12(2), 77–85 (1985).
[Crossref]

F. L. Galeener, “Raman and ESR studies of the thermal history of amorphous SiO2,” J. Non-Cryst. Solids 71(1-3), 373–386 (1985).
[Crossref]

1984 (1)

P. F. McMillan, “Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy,” Am. Mineral. 69, 622–644 (1984).

1983 (2)

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” Quantum Electron. IEEE J. 19(10), 1600–1608 (1983).
[Crossref]

J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Appl. Opt. 22(19), 3102 (1983).
[Crossref] [PubMed]

1982 (1)

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[Crossref]

1980 (1)

1979 (1)

J. E. Shelby, “Effect of morphology on the properties of alkaline earth silicate glasses,” J. Appl. Phys. 50(12), 8010–8015 (1979).
[Crossref]

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

1977 (1)

D. G. Mead and G. R. Wilkinson, “The temperature dependence of the Raman spectra of some alkaline earth crystals with the fluorite structure,” J. Phys. C Solid State Phys. 10(7), 1063–1072 (1977).
[Crossref]

1972 (1)

1960 (1)

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Aichele, C.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Angell, C. A.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[Crossref]

Anjos, V.

A. S. Pinheiro, A. M. Freitas, G. H. Silva, M. J. V. Bell, V. Anjos, A. P. Carmo, and N. O. Dantas, “Laser performace parameters of Yb3+ doped UV-transparent phosphate glasses,” Chem. Phys. Lett. 592, 164–169 (2014).
[Crossref]

Auguste, J. L.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Ballato, J.

M. Cavillon, C. J. Kucera, T. W. Hawkins, A. F. J. J. Runge, A. C. Peacock, P. D. Dragic, and J. Ballato, “Oxyfluoride core silica-based optical fiber with intrinsically low nonlinearities for high energy laser applications,” J. Lightwave Technol. 36(2), 284–291 (2018).
[Crossref]

P. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Tech. 34, 1435–1441 (2016).

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref] [PubMed]

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

P. Dragic and J. Ballato, “Characterization of the Raman gain spectra in Yb:YAG-derived optical fibers,” Electron. Lett. 49(14), 895–897 (2013).
[Crossref]

S. L. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).

P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35(9), 1627–1632 (2013).
[Crossref]

P. D. Dragic and J. Ballato, “Characterisation of Raman gain spectra in Yb:YAG-derived optical fibres,” Electron. Lett. 49(14), 895–897 (2013).
[Crossref]

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
[Crossref] [PubMed]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photon. 6(9), 627–635 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Barber, P. R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “lifetime quentching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Barnard, G.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

Bartelt, H.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Barty, C. P. J.

Bass, M.

Beach, R. J.

Bell, M. J. V.

A. S. Pinheiro, A. M. Freitas, G. H. Silva, M. J. V. Bell, V. Anjos, A. P. Carmo, and N. O. Dantas, “Laser performace parameters of Yb3+ doped UV-transparent phosphate glasses,” Chem. Phys. Lett. 592, 164–169 (2014).
[Crossref]

Bierlich, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Blackburn, D.

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” Quantum Electron. IEEE J. 19(10), 1600–1608 (1983).
[Crossref]

Caplen, J. E.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “lifetime quentching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Cardinal, T.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Carmo, A. P.

A. S. Pinheiro, A. M. Freitas, G. H. Silva, M. J. V. Bell, V. Anjos, A. P. Carmo, and N. O. Dantas, “Laser performace parameters of Yb3+ doped UV-transparent phosphate glasses,” Chem. Phys. Lett. 592, 164–169 (2014).
[Crossref]

Cavillon, M.

Chen, G.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The effect of fluorine anions on the luminescent properties of Eu-Doped oxyfluoride aluminosilicate,” J. Am. Ceram. Soc. 93(10), 3095–3098 (2010).
[Crossref]

Chrostowski, J.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–23 (2014).
[Crossref]

Cody, G. D.

C. Dalou, C. Le Losq, B. O. Mysen, and G. D. Cody, “Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature,” Am. Mineral. 100(10), 2272–2283 (2015).
[Crossref]

Couzi, M.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Cronin, D.

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” Quantum Electron. IEEE J. 19(10), 1600–1608 (1983).
[Crossref]

Croteau, A.

P. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber : the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 1, 686–699 (2011).
[Crossref]

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-Doped LMA Triple-Clad Fiber for Power Amplifiers,” Proc. SPIE 6453, 645308 (2007).
[Crossref]

Dalou, C.

C. Dalou, C. Le Losq, B. O. Mysen, and G. D. Cody, “Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature,” Am. Mineral. 100(10), 2272–2283 (2015).
[Crossref]

Dantas, N. O.

A. S. Pinheiro, A. M. Freitas, G. H. Silva, M. J. V. Bell, V. Anjos, A. P. Carmo, and N. O. Dantas, “Laser performace parameters of Yb3+ doped UV-transparent phosphate glasses,” Chem. Phys. Lett. 592, 164–169 (2014).
[Crossref]

Daw, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Dawson, J. W.

Dellith, J.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Deng, P.

Do, B. T.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 153–158 (2009).
[Crossref]

Dong, J.

Dong, L.

Dragic, P.

P. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Tech. 34, 1435–1441 (2016).

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

P. Dragic and J. Ballato, “Characterization of the Raman gain spectra in Yb:YAG-derived optical fibers,” Electron. Lett. 49(14), 895–897 (2013).
[Crossref]

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
[Crossref] [PubMed]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photon. 6(9), 627–635 (2012).
[Crossref]

Dragic, P. D.

Dubinskii, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Farrow, R. L.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 153–158 (2009).
[Crossref]

Fleming, J. W.

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photon. 6(9), 627–635 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Freitas, A. M.

A. S. Pinheiro, A. M. Freitas, G. H. Silva, M. J. V. Bell, V. Anjos, A. P. Carmo, and N. O. Dantas, “Laser performace parameters of Yb3+ doped UV-transparent phosphate glasses,” Chem. Phys. Lett. 592, 164–169 (2014).
[Crossref]

Fu, L.

Furniss, D.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Furtick, J.

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Tech. 34, 1435–1441 (2016).

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
[Crossref] [PubMed]

Galeener, F. L.

F. L. Galeener, “Raman and ESR studies of the thermal history of amorphous SiO2,” J. Non-Cryst. Solids 71(1-3), 373–386 (1985).
[Crossref]

Gan, F.

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Grimm, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Gu, G.

Guerrier, J.

Hadley, G. R.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 153–158 (2009).
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “lifetime quentching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Hawkins, T.

P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35(9), 1627–1632 (2013).
[Crossref]

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
[Crossref] [PubMed]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photon. 6(9), 627–635 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Hawkins, T. W.

Heebner, J. E.

Hill, R. G.

R. G. Hill, A. Stamboulis, and R. V. Law, “Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy,” J. Dent. 34(8), 525–532 (2006).
[Crossref] [PubMed]

Holland, D.

A. K. Swarnakar, A. Stamboulis, D. Holland, and O. Van Der Biest, “Improved Prediction of Young’s Modulus of Fluorine-Containing Glasses Using MAS-NMR Structural Data,” J. Am. Ceram. Soc. 96(4), 1271–1277 (2013).
[Crossref]

Humbert, G.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Jetschke, S.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Ji, J.

Jones, M.

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Tech. 34, 1435–1441 (2016).

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref] [PubMed]

Kavehrad, M.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

Kiczenski, T. J.

T. J. Kiczenski and J. F. Stebbins, “Fluorine sites in calcium and barium oxyfluorides: F-19 NMR on crystalline model compounds and glasses,” J. Non-Cryst. Solids 306(2), 160–168 (2002).
[Crossref]

Kirchhof, J.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Kobelke, J.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Koike, A.

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y (2006).

Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Kong, F.

Kucera, C.

Kucera, C. J.

Laperle, P.

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-Doped LMA Triple-Clad Fiber for Power Amplifiers,” Proc. SPIE 6453, 645308 (2007).
[Crossref]

Law, P.

Law, R. V.

R. G. Hill, A. Stamboulis, and R. V. Law, “Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy,” J. Dent. 34(8), 525–532 (2006).
[Crossref] [PubMed]

Le Losq, C.

C. Dalou, C. Le Losq, B. O. Mysen, and G. D. Cody, “Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature,” Am. Mineral. 100(10), 2272–2283 (2015).
[Crossref]

Leich, M.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Liang, X.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The effect of fluorine anions on the luminescent properties of Eu-Doped oxyfluoride aluminosilicate,” J. Am. Ceram. Soc. 93(10), 3095–3098 (2010).
[Crossref]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Lin, Z.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The effect of fluorine anions on the luminescent properties of Eu-Doped oxyfluoride aluminosilicate,” J. Am. Ceram. Soc. 93(10), 3095–3098 (2010).
[Crossref]

Lindner, F.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Litzkendorf, D.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Liu, Z.

Ludwig, A.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Lynch, J.

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” Quantum Electron. IEEE J. 19(10), 1600–1608 (1983).
[Crossref]

Mao, Y.

Matthewson, M. J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

McKay, H. A.

McMillan, P. F.

P. F. McMillan, “Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy,” Am. Mineral. 69, 622–644 (1984).

McMillen, C.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Mead, D. G.

D. G. Mead and G. R. Wilkinson, “The temperature dependence of the Raman spectra of some alkaline earth crystals with the fluorite structure,” J. Phys. C Solid State Phys. 10(7), 1063–1072 (1977).
[Crossref]

Messerly, M. J.

Mitachi, S.

Morris, S.

P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35(9), 1627–1632 (2013).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photon. 6(9), 627–635 (2012).
[Crossref]

Morris, S. L.

S. L. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).

Mysen, B. O.

C. Dalou, C. Le Losq, B. O. Mysen, and G. D. Cody, “Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature,” Am. Mineral. 100(10), 2272–2283 (2015).
[Crossref]

B. O. Mysen and D. Virgo, “Interaction Between Fluorine and Silica in Quenched Melts on the Joins SiO2 - AlF3 and SiO2 - NaF Determined by Raman Spectroscopy,” Phys. Chem. Miner. 12(2), 77–85 (1985).
[Crossref]

Myslinski, P.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

Nilsson, J.

T. Yao, J. Ji, and J. Nilsson, “Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers,” J. Lightwave Technol. 32(3), 429–434 (2014).
[Crossref]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “lifetime quentching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

O’Donnell, M. D.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Olejniczak, Z.

M. Środa and Z. Olejniczak, “19F MAS-NMR studies of strontium oxyfluoride aluminosilicate glass,” J. Mol. Struct. 1001(1-3), 78–82 (2011).
[Crossref]

Paluszkiewicz, C.

M. Środa and C. Paluszkiewicz, “The structural role of alkaline earth ions in oxyfluoride aluminosilicate glasses-Infrared spectroscopy study,” Vib. Spectrosc. 48(2), 246–250 (2008).
[Crossref]

Paré, C.

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-Doped LMA Triple-Clad Fiber for Power Amplifiers,” Proc. SPIE 6453, 645308 (2007).
[Crossref]

Paschotta, R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “lifetime quentching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Pax, P. H.

Peacock, A. C.

Peng, X.

Pinheiro, A. S.

A. S. Pinheiro, A. M. Freitas, G. H. Silva, M. J. V. Bell, V. Anjos, A. P. Carmo, and N. O. Dantas, “Laser performace parameters of Yb3+ doped UV-transparent phosphate glasses,” Chem. Phys. Lett. 592, 164–169 (2014).
[Crossref]

Prod’homme, L.

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Richardson, K.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Rivero, C.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Runge, A. F. J. J.

Ryan, C.

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Tech. 34, 1435–1441 (2016).

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref] [PubMed]

Sanamyan, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Schuster, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Schwuchow, A.

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

Seddon, A. B.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Shakhmatkin, B. A.

B. A. Shakhmatkin, N. M. Vedishcheva, and A. C. Wright, “Thermodynamic modelling of the structure of oxyhalide glasses,” J. Non-Cryst. Solids 345–346, 461–468 (2004).
[Crossref]

Shelby, J. E.

J. E. Shelby, “Effect of morphology on the properties of alkaline earth silicate glasses,” J. Appl. Phys. 50(12), 8010–8015 (1979).
[Crossref]

Shibata, S.

Shori, R. K.

Shverdin, M. Y.

Siders, C. W.

Silva, G. H.

A. S. Pinheiro, A. M. Freitas, G. H. Silva, M. J. V. Bell, V. Anjos, A. P. Carmo, and N. O. Dantas, “Laser performace parameters of Yb3+ doped UV-transparent phosphate glasses,” Chem. Phys. Lett. 592, 164–169 (2014).
[Crossref]

Singh, P.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

Smith, A. V.

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 153–158 (2009).
[Crossref]

Smith, J. J.

Smith, R. G.

Sridharan, A. K.

Sroda, M.

M. Środa and Z. Olejniczak, “19F MAS-NMR studies of strontium oxyfluoride aluminosilicate glass,” J. Mol. Struct. 1001(1-3), 78–82 (2011).
[Crossref]

M. Środa and C. Paluszkiewicz, “The structural role of alkaline earth ions in oxyfluoride aluminosilicate glasses-Infrared spectroscopy study,” Vib. Spectrosc. 48(2), 246–250 (2008).
[Crossref]

Stamboulis, A.

A. K. Swarnakar, A. Stamboulis, D. Holland, and O. Van Der Biest, “Improved Prediction of Young’s Modulus of Fluorine-Containing Glasses Using MAS-NMR Structural Data,” J. Am. Ceram. Soc. 96(4), 1271–1277 (2013).
[Crossref]

R. G. Hill, A. Stamboulis, and R. V. Law, “Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy,” J. Dent. 34(8), 525–532 (2006).
[Crossref] [PubMed]

Stappaerts, E. A.

Stebbins, J. F.

T. J. Kiczenski and J. F. Stebbins, “Fluorine sites in calcium and barium oxyfluorides: F-19 NMR on crystalline model compounds and glasses,” J. Non-Cryst. Solids 306(2), 160–168 (2002).
[Crossref]

Stolen, R.

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Su, Z.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Sugimoto, N.

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y (2006).

Sun, L.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The effect of fluorine anions on the luminescent properties of Eu-Doped oxyfluoride aluminosilicate,” J. Am. Ceram. Soc. 93(10), 3095–3098 (2010).
[Crossref]

Suzuki, S.

Swarnakar, A. K.

A. K. Swarnakar, A. Stamboulis, D. Holland, and O. Van Der Biest, “Improved Prediction of Young’s Modulus of Fluorine-Containing Glasses Using MAS-NMR Structural Data,” J. Am. Ceram. Soc. 96(4), 1271–1277 (2013).
[Crossref]

Takahashi, S.

Tam, H.

Tritt, T. M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Tropper, A. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “lifetime quentching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Tuggle, M.

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Tech. 34, 1435–1441 (2016).

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref] [PubMed]

Unger, S.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Van Der Biest, O.

A. K. Swarnakar, A. Stamboulis, D. Holland, and O. Van Der Biest, “Improved Prediction of Young’s Modulus of Fluorine-Containing Glasses Using MAS-NMR Structural Data,” J. Am. Ceram. Soc. 96(4), 1271–1277 (2013).
[Crossref]

Vedishcheva, N. M.

B. A. Shakhmatkin, N. M. Vedishcheva, and A. C. Wright, “Thermodynamic modelling of the structure of oxyhalide glasses,” J. Non-Cryst. Solids 345–346, 461–468 (2004).
[Crossref]

Virgo, D.

B. O. Mysen and D. Virgo, “Interaction Between Fluorine and Silica in Quenched Melts on the Joins SiO2 - AlF3 and SiO2 - NaF Determined by Raman Spectroscopy,” Phys. Chem. Miner. 12(2), 77–85 (1985).
[Crossref]

Weber, M.

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” Quantum Electron. IEEE J. 19(10), 1600–1608 (1983).
[Crossref]

Weber, M. J.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[Crossref]

Wilkinson, G. R.

D. G. Mead and G. R. Wilkinson, “The temperature dependence of the Raman spectra of some alkaline earth crystals with the fluorite structure,” J. Phys. C Solid State Phys. 10(7), 1063–1072 (1977).
[Crossref]

Wondraczek, K.

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Wood, D. L.

Wright, A. C.

B. A. Shakhmatkin, N. M. Vedishcheva, and A. C. Wright, “Thermodynamic modelling of the structure of oxyhalide glasses,” J. Non-Cryst. Solids 345–346, 461–468 (2004).
[Crossref]

Yablon, A. D.

Yadav, A. K.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

Yang, Y.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The effect of fluorine anions on the luminescent properties of Eu-Doped oxyfluoride aluminosilicate,” J. Am. Ceram. Soc. 93(10), 3095–3098 (2010).
[Crossref]

Yao, T.

Zeng, H.

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The effect of fluorine anions on the luminescent properties of Eu-Doped oxyfluoride aluminosilicate,” J. Am. Ceram. Soc. 93(10), 3095–3098 (2010).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–23 (2014).
[Crossref]

Zhang, J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Zheng, H.

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-Doped LMA Triple-Clad Fiber for Power Amplifiers,” Proc. SPIE 6453, 645308 (2007).
[Crossref]

Ziegler, D. C.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[Crossref]

Adv. Opt. Technol. (1)

K. Schuster, S. Unger, C. Aichele, F. Lindner, S. Grimm, D. Litzkendorf, J. Kobelke, J. Bierlich, K. Wondraczek, and H. Bartelt, “Material and technology trends in fiber optics,” Adv. Opt. Technol. 3, 447–468 (2014).

Am. Ceram. Soc. Bull. (1)

S. L. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Am. Ceram. Soc. Bull. 92, 24–29 (2013).

Am. Mineral. (2)

C. Dalou, C. Le Losq, B. O. Mysen, and G. D. Cody, “Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature,” Am. Mineral. 100(10), 2272–2283 (2015).
[Crossref]

P. F. McMillan, “Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy,” Am. Mineral. 69, 622–644 (1984).

Appl. Opt. (3)

Chem. Phys. Lett. (1)

A. S. Pinheiro, A. M. Freitas, G. H. Silva, M. J. V. Bell, V. Anjos, A. P. Carmo, and N. O. Dantas, “Laser performace parameters of Yb3+ doped UV-transparent phosphate glasses,” Chem. Phys. Lett. 592, 164–169 (2014).
[Crossref]

Electron. Lett. (2)

P. D. Dragic and J. Ballato, “Characterisation of Raman gain spectra in Yb:YAG-derived optical fibres,” Electron. Lett. 49(14), 895–897 (2013).
[Crossref]

P. Dragic and J. Ballato, “Characterization of the Raman gain spectra in Yb:YAG-derived optical fibers,” Electron. Lett. 49(14), 895–897 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, “Optical damage limits to pulse energy from fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 153–158 (2009).
[Crossref]

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1–23 (2014).
[Crossref]

Int. J. Appl. Glass Sci. (1)

D. Litzkendorf, S. Grimm, K. Schuster, J. Kobelke, A. Schwuchow, A. Ludwig, J. Kirchhof, M. Leich, S. Jetschke, J. Dellith, J. L. Auguste, and G. Humbert, “Study of Lanthanum Aluminum Silicate Glasses for Passive and Active Optical Fibers,” Int. J. Appl. Glass Sci. 3(4), 321–331 (2012).
[Crossref]

J. Am. Ceram. Soc. (2)

A. K. Swarnakar, A. Stamboulis, D. Holland, and O. Van Der Biest, “Improved Prediction of Young’s Modulus of Fluorine-Containing Glasses Using MAS-NMR Structural Data,” J. Am. Ceram. Soc. 96(4), 1271–1277 (2013).
[Crossref]

Z. Lin, H. Zeng, Y. Yang, X. Liang, G. Chen, and L. Sun, “The effect of fluorine anions on the luminescent properties of Eu-Doped oxyfluoride aluminosilicate,” J. Am. Ceram. Soc. 93(10), 3095–3098 (2010).
[Crossref]

J. Appl. Phys. (3)

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[Crossref]

J. E. Shelby, “Effect of morphology on the properties of alkaline earth silicate glasses,” J. Appl. Phys. 50(12), 8010–8015 (1979).
[Crossref]

J. Dent. (1)

R. G. Hill, A. Stamboulis, and R. V. Law, “Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy,” J. Dent. 34(8), 525–532 (2006).
[Crossref] [PubMed]

J. Lightwave Tech. (1)

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Tech. 34, 1435–1441 (2016).

J. Lightwave Technol. (4)

J. Mol. Struct. (1)

M. Środa and Z. Olejniczak, “19F MAS-NMR studies of strontium oxyfluoride aluminosilicate glass,” J. Mol. Struct. 1001(1-3), 78–82 (2011).
[Crossref]

J. Non-Cryst. Solids (3)

F. L. Galeener, “Raman and ESR studies of the thermal history of amorphous SiO2,” J. Non-Cryst. Solids 71(1-3), 373–386 (1985).
[Crossref]

T. J. Kiczenski and J. F. Stebbins, “Fluorine sites in calcium and barium oxyfluorides: F-19 NMR on crystalline model compounds and glasses,” J. Non-Cryst. Solids 306(2), 160–168 (2002).
[Crossref]

B. A. Shakhmatkin, N. M. Vedishcheva, and A. C. Wright, “Thermodynamic modelling of the structure of oxyhalide glasses,” J. Non-Cryst. Solids 345–346, 461–468 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. C Solid State Phys. (1)

D. G. Mead and G. R. Wilkinson, “The temperature dependence of the Raman spectra of some alkaline earth crystals with the fluorite structure,” J. Phys. C Solid State Phys. 10(7), 1063–1072 (1977).
[Crossref]

Materials (Basel) (1)

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials (Basel) 7(6), 4411–4430 (2014).
[Crossref] [PubMed]

Nat. Photon. (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photon. 6(9), 627–635 (2012).
[Crossref]

Opt. Commun. (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “lifetime quentching in Yb-doped fibers,” Opt. Commun. 136(5-6), 375–378 (1997).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. (2)

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, “The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers,” Opt. Mater. 35(9), 1627–1632 (2013).
[Crossref]

Opt. Mater. Express (2)

Phys. Chem. Glasses (1)

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Phys. Chem. Miner. (1)

B. O. Mysen and D. Virgo, “Interaction Between Fluorine and Silica in Quenched Melts on the Joins SiO2 - AlF3 and SiO2 - NaF Determined by Raman Spectroscopy,” Phys. Chem. Miner. 12(2), 77–85 (1985).
[Crossref]

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Proc. SPIE (2)

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y (2006).

P. Laperle, C. Paré, H. Zheng, and A. Croteau, “Yb-Doped LMA Triple-Clad Fiber for Power Amplifiers,” Proc. SPIE 6453, 645308 (2007).
[Crossref]

Quantum Electron. IEEE J. (1)

M. Weber, J. Lynch, D. Blackburn, and D. Cronin, “Dependence of the stimulated emission cross section of Yb3+ on host glass composition,” Quantum Electron. IEEE J. 19(10), 1600–1608 (1983).
[Crossref]

RSC Advances (1)

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(83), 67583–67609 (2015).
[Crossref]

Vib. Spectrosc. (1)

M. Środa and C. Paluszkiewicz, “The structural role of alkaline earth ions in oxyfluoride aluminosilicate glasses-Infrared spectroscopy study,” Vib. Spectrosc. 48(2), 246–250 (2008).
[Crossref]

Other (11)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995).

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

K. C. Crouch, R. B. Rayment, and G. W. Marks, “Elastic Properties of Fluorides of Groups IA and IIA,” Final Rep. ZR 011 01 01 (NELC Z1), Nav. Undersea Warf. Center, DTIC Doc. # 848978 (1968).

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, Optical Materials Characterization Final Technical Report February 1, 1978 - September 30, 1978 (1978).

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. A. Material additivity models and basic glass properties,” Int. J. Appl. Glas. Sci. DOI 10.1111/ijag.12328 (2018).

M. Cavillon, “Molten core fabrication of intrinsically low nonlinearity glass optical fibers,” PhD Dissertation, Clemson University (2018).

P. Dragic, M. Cavillon, and J. Ballato, “The linear and nonlinear refractive index of amorphous Al2O3 deduced from aluminosilicate optical fibers,” Int. J. Appl. Glas. Sci. DOI 10.1111/ijag.12337 (2017).

J. Ballato, M. Cavillon, and P. Dragic, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. I. Thermodynamics of Optical Scattering,” Int. J. Appl. Glas. Sci. DOI 10.1111/ijag.12327 (2018).

P. D. Dragic, M. Cavillon, A. Mironov, C. Kucera, T. Hawkins, J. G. Eden, and J. Ballato, “Yb-Doped Fluorosilicate Optical Fiber Development For Laser Cooling and Radiation Balancing Applications,” in Frontiers in Optics(p. JW4A.81), Optical Society of America (2017).

N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, “Low Quantum Defect Lasers via Yb-Doped Multicomponent Fluorosilicate Optical Fiber,” in Submitted to CLEO2018.

S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, “Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature,” in In Advanced Solid-State Photonics (P. TuB4). Optical Society of America (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Effect of fluorine to the diminution of the refractive index for multicomponent fluorosilicate glass optical fibers (in red) and for fluorine-doped silica glass (in blue, data taken from Ref [28]).
Fig. 2
Fig. 2 a) Corrected and normalized spontaneous Raman spectra for Yb-doped fibers (and SiO2 as a reference). b) Relative Raman gain coefficient (RGC) for the Yb-doped fibers studied herein (in orange) as a function of SiO2 concentration. Complementary data points for optical fibers developed using the molten core method are reported to serve as comparison [9,10,45].
Fig. 3
Fig. 3 Measured and normalized Brillouin gain spectrum (BGS) of the YbF-SrAlSiF A fiber segment (solid red line), at room temperature and zero-strain. The measured spectrum is fit with a Lorentzian curve (dashed black line). The peak situated at ~11 GHz is the signature of the SMF-28 used in the measurement apparatus.
Fig. 4
Fig. 4 Thermo-optic coefficient (TOC) as a function of fluorine concentration (in atomic percent, At%) for both fluorosilicate fibers (in red) and F-doped silica glasses (in blue, taken from [28]).
Fig. 5
Fig. 5 a) Normalized emission cross section spectra for Yb-doped fibers. b) Normalized absorption cross section spectra for two fibers (Yb-SrAlSiF B and YbF-SrAlSiF A) relative to a commercial aluminosilicate laser fiber.
Fig. 6
Fig. 6 Absolute absorption and emission cross section spectra for YbF-SrAlSiF A fiber. The cross sections were determined using Eq. (1). The emission and absorption cross sections were set to be equivalent at the zero-phonon wavelength.
Fig. 7
Fig. 7 Average emission wavelength (nm) as a function of fluorine concentration (in atomic percent, At%).
Fig. 8
Fig. 8 Laser data for both YbF-SrAlSiF A and commercial Yb-doped aluminosilicate fibers, using pump wavelength of 976 nm, and output wavelength of 1010 nm.

Tables (5)

Tables Icon

Table 1 Draw temperatures and initial precursor compositions of the fabricated fibers.

Tables Icon

Table 2 Elemental compositions (at core center, in atomic percent, At%), core and cladding diameters (ϕcore and ϕclad, in µm), typical fiber parameters: fundamental LP0 mode index (n0) and mode area (Aeff, in × 10−12 m2), refractive index difference between core center and cladding (Δn, in × 10−3), and attenuation coefficient (α, in dB/m, at 1534 nm).

Tables Icon

Table 3 Brillouin gain coefficient (BGC), Raman gain coefficient (RGC), and Thermo-optic coefficient (TOC) of multicomponent fluorosilicate optical fibers.

Tables Icon

Table 4 Brillouin frequency shift (νB, in GHz), Brillouin linewidth (ΔνB, at 11 GHz and given in MHz), and longitudinal acoustic velocity (Va, in m/s) of the characterized fibers.

Tables Icon

Table 5 Yb and F fiber concentrations (at the core center, in atomic percent, At%), fluorescence lifetimes (τ, in µs), average emission wavelengths (λav, in nm), averaged emission cross sections (σem,av, in × 10−20 cm2) and performance figure of merit M, (M = σem,av × τ, in × 10−20 cm2.ms).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ(λ)= 1 λ 5 τn 2 c I(λ) I(λ)λdλ
BGC ( m W )= 2πn 7 p 12 2 0 2 V a ρΔν B .

Metrics