Abstract

Second-order optical susceptibility, χ(2), has been induced in thermally poled chalcogenide glasses, doped with varying levels of sodium. Using alkali-doped chalcogenide glasses, the second harmonic generation (SHG) capability is retained for over a year whereas in alkali-free glasses it disappears in days. The enhanced stability is attributed to a stabilization of the space charge through structural re-arrangements. Polarization-resolved SHG shows that the induced electric field has components in three spatial directions, all with varying extents of stability. Using structured electrodes, we demonstrate the ability to control the various electric field components’ geometry, location and stability to realize a long-lived, nonlinear grating in an alkali-doped chalcogenide glass.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photoinduced stable second-harmonic generation in chalcogenide glasses

Jianrong Qiu, Jinahi Si, and K. Hirao
Opt. Lett. 26(12) 914-916 (2001)

Thermal poling behavior and SHG stability in arsenic-germanium sulfide glasses

William T. Shoulders, Jacklyn Novak, Marc Dussauze, J. David Musgraves, and Kathleen Richardson
Opt. Mater. Express 3(6) 700-710 (2013)

References

  • View by:
  • |
  • |
  • |

  1. U. Österberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett. 11(8), 516–518 (1986).
    [Crossref] [PubMed]
  2. E. M. Vogel, “Glasses as nonlinear photonic materials,” J. Am. Ceram. Soc. 72(5), 719–724 (1989).
    [Crossref]
  3. R. A. Myers, N. Mukherjee, and S. R. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [Crossref] [PubMed]
  4. A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
    [Crossref]
  5. A. Obata, S. Nakamura, Y. Moriyoshi, and K. Yamashita, “Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition,” J. Biomed. Mater. Res. A 67(2), 413–420 (2003).
    [Crossref] [PubMed]
  6. C. R. Mariappan and B. Roling, “Investigation of bioglass-electrode interfaces after thermal poling,” Solid State Ion. 179(19-20), 671–677 (2008).
    [Crossref]
  7. C. R. Mariappan, D. M. Yunos, A. R. Boccaccini, and B. Roling, “Bioactivity of electro-thermally poled bioactive silicate glass,” Acta Biomater. 5(4), 1274–1283 (2009).
    [Crossref] [PubMed]
  8. A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling,” J. Phys. Chem. C 119(40), 22999–23007 (2015).
    [Crossref]
  9. A. Strauß, U. Jauernig, V. Reichel, and H. Bartelt, “Generation of green light in a thermally poled silica fiber by quasi-phase-matched second harmonic generation,” Optik (Stuttg.) 121(5), 490–493 (2010).
    [Crossref]
  10. M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express 13(11), 4064–4069 (2005).
    [Crossref] [PubMed]
  11. Y. Nakane, H. Nasu, J. Heo, T. Hashimoto, and K. Kamiya, “Second harmonic generation from thermally poled Ge-S glass system,” J. Ceram. Soc. Jpn. 113(1323), 728–732 (2005).
    [Crossref]
  12. L. A. H. Fleming, D. M. Goldie, and A. Abdolvand, “Imprinting of glass,” Opt. Mater. Express 5(8), 1674–1681 (2015).
    [Crossref]
  13. A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
    [Crossref] [PubMed]
  14. H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
    [Crossref]
  15. A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17-18), 849–855 (2010).
    [Crossref]
  16. G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
    [Crossref]
  17. P. G. Kazansky and P. S. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
    [Crossref]
  18. M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012).
    [Crossref]
  19. Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, and S. Lacroix, “Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films,” Electron. Lett. 36(8), 733–734 (2000).
    [Crossref]
  20. M. Dussauze, X. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express 2(1), 45–54 (2012).
    [Crossref]
  21. W. T. Shoulders, J. Novak, M. Dussauze, J. D. Musgraves, and K. Richardson, “Thermal poling behavior and SHG stability in arsenic-germanium sulfide glasses,” Opt. Mater. Express 3(6), 700–710 (2013).
    [Crossref]
  22. M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
    [Crossref]
  23. R. Jing, Y. Guang, Z. Huidan, C. Guorong, K. Tanaka, K. Fujita, S. Murai, and Y. Tsujiie, “Second-harmonic generation in thermally poled chalcohalide glass,” Opt. Lett. 31(23), 3492–3494 (2006).
    [Crossref] [PubMed]
  24. V. Rodriguez and C. Sourisseau, “General Maker-fringe ellipsometric analyses in multilayer nonlinear and linear anisotropic optical media,” J. Opt. Soc. Am. B 19(11), 2650–2664 (2002).
    [Crossref]
  25. V. Rodriguez, “Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: Theory and materials,” J. Chem. Phys. 128(6), 064707 (2008).
    [Crossref] [PubMed]
  26. T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques: An Introduction (CRC Press, 2009).
  27. D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Ion depletion of glass at a blocking anode - 1, 2,” J. Am. Ceram. Soc. 57, 291–300 (1974).
    [Crossref]
  28. D. A. Kleinman, “Nonlinear Dielectric Polarization in Optical Media,” Phys. Rev. 126(6), 1977–1979 (1962).
    [Crossref]
  29. P. N. Butcher and D. Cotter, The elements of nonlinear optics (Cambridge University Press, 1990).
  30. L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
    [Crossref]
  31. K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
    [Crossref] [PubMed]
  32. K. Richardson, T. Cardinal, M. Richardson, A. Schulte, and S. Seal, “Engineering Glassy Chalcogenide Materials for Integrated Optics Applications,” in Photo-Induced Metastability in Amorphous Semiconductors, A. V. Kolobov, ed. (Wiley-VCH Verlag GmbH & Co. KGaA, 2003), pp. 383–405.
  33. M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
    [Crossref]

2016 (1)

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

2015 (4)

L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
[Crossref]

L. A. H. Fleming, D. M. Goldie, and A. Abdolvand, “Imprinting of glass,” Opt. Mater. Express 5(8), 1674–1681 (2015).
[Crossref]

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling,” J. Phys. Chem. C 119(40), 22999–23007 (2015).
[Crossref]

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

2013 (1)

2012 (2)

M. Dussauze, X. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express 2(1), 45–54 (2012).
[Crossref]

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012).
[Crossref]

2010 (2)

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17-18), 849–855 (2010).
[Crossref]

A. Strauß, U. Jauernig, V. Reichel, and H. Bartelt, “Generation of green light in a thermally poled silica fiber by quasi-phase-matched second harmonic generation,” Optik (Stuttg.) 121(5), 490–493 (2010).
[Crossref]

2009 (1)

C. R. Mariappan, D. M. Yunos, A. R. Boccaccini, and B. Roling, “Bioactivity of electro-thermally poled bioactive silicate glass,” Acta Biomater. 5(4), 1274–1283 (2009).
[Crossref] [PubMed]

2008 (4)

C. R. Mariappan and B. Roling, “Investigation of bioglass-electrode interfaces after thermal poling,” Solid State Ion. 179(19-20), 671–677 (2008).
[Crossref]

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

V. Rodriguez, “Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: Theory and materials,” J. Chem. Phys. 128(6), 064707 (2008).
[Crossref] [PubMed]

2007 (1)

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

2006 (1)

2005 (2)

M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express 13(11), 4064–4069 (2005).
[Crossref] [PubMed]

Y. Nakane, H. Nasu, J. Heo, T. Hashimoto, and K. Kamiya, “Second harmonic generation from thermally poled Ge-S glass system,” J. Ceram. Soc. Jpn. 113(1323), 728–732 (2005).
[Crossref]

2003 (1)

A. Obata, S. Nakamura, Y. Moriyoshi, and K. Yamashita, “Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition,” J. Biomed. Mater. Res. A 67(2), 413–420 (2003).
[Crossref] [PubMed]

2002 (1)

2000 (1)

Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, and S. Lacroix, “Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films,” Electron. Lett. 36(8), 733–734 (2000).
[Crossref]

1994 (1)

P. G. Kazansky and P. S. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[Crossref]

1992 (1)

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

1991 (1)

1990 (1)

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
[Crossref] [PubMed]

1989 (1)

E. M. Vogel, “Glasses as nonlinear photonic materials,” J. Am. Ceram. Soc. 72(5), 719–724 (1989).
[Crossref]

1986 (1)

1974 (1)

D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Ion depletion of glass at a blocking anode - 1, 2,” J. Am. Ceram. Soc. 57, 291–300 (1974).
[Crossref]

1962 (1)

D. A. Kleinman, “Nonlinear Dielectric Polarization in Optical Media,” Phys. Rev. 126(6), 1977–1979 (1962).
[Crossref]

Abdolvand, A.

Adam, J.-L.

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Adamietz, F.

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
[Crossref]

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling,” J. Phys. Chem. C 119(40), 22999–23007 (2015).
[Crossref]

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012).
[Crossref]

M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express 13(11), 4064–4069 (2005).
[Crossref] [PubMed]

Bartelt, H.

A. Strauß, U. Jauernig, V. Reichel, and H. Bartelt, “Generation of green light in a thermally poled silica fiber by quasi-phase-matched second harmonic generation,” Optik (Stuttg.) 121(5), 490–493 (2010).
[Crossref]

Boccaccini, A. R.

C. R. Mariappan, D. M. Yunos, A. R. Boccaccini, and B. Roling, “Bioactivity of electro-thermally poled bioactive silicate glass,” Acta Biomater. 5(4), 1274–1283 (2009).
[Crossref] [PubMed]

Bohnke, O.

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Bondu, F.

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

Brueck, S. R.

Cardinal, T.

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling,” J. Phys. Chem. C 119(40), 22999–23007 (2015).
[Crossref]

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012).
[Crossref]

M. Dussauze, X. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express 2(1), 45–54 (2012).
[Crossref]

Carlson, D. E.

D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Ion depletion of glass at a blocking anode - 1, 2,” J. Am. Ceram. Soc. 57, 291–300 (1974).
[Crossref]

Chafer, M.

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

Cremoux, T.

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012).
[Crossref]

Dam, D.

Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, and S. Lacroix, “Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films,” Electron. Lett. 36(8), 733–734 (2000).
[Crossref]

Deepak, K. L. N.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

Delaporte, P.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

Dussauze, M.

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
[Crossref]

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling,” J. Phys. Chem. C 119(40), 22999–23007 (2015).
[Crossref]

W. T. Shoulders, J. Novak, M. Dussauze, J. D. Musgraves, and K. Richardson, “Thermal poling behavior and SHG stability in arsenic-germanium sulfide glasses,” Opt. Mater. Express 3(6), 700–710 (2013).
[Crossref]

M. Dussauze, X. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express 2(1), 45–54 (2012).
[Crossref]

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012).
[Crossref]

M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express 13(11), 4064–4069 (2005).
[Crossref] [PubMed]

Duverger, C.

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Elliott, S. R.

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
[Crossref] [PubMed]

Fargin, E.

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
[Crossref]

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling,” J. Phys. Chem. C 119(40), 22999–23007 (2015).
[Crossref]

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012).
[Crossref]

M. Dussauze, X. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express 2(1), 45–54 (2012).
[Crossref]

M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express 13(11), 4064–4069 (2005).
[Crossref] [PubMed]

Fargues, A.

L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
[Crossref]

Fleming, L. A. H.

Fujita, K.

Goldie, D. M.

Grojo, D.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

Guang, Y.

Guignard, M.

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Guorong, C.

Hang, K. W.

D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Ion depletion of glass at a blocking anode - 1, 2,” J. Am. Ceram. Soc. 57, 291–300 (1974).
[Crossref]

Hashimoto, T.

Y. Nakane, H. Nasu, J. Heo, T. Hashimoto, and K. Kamiya, “Second harmonic generation from thermally poled Ge-S glass system,” J. Ceram. Soc. Jpn. 113(1323), 728–732 (2005).
[Crossref]

Heo, J.

Y. Nakane, H. Nasu, J. Heo, T. Hashimoto, and K. Kamiya, “Second harmonic generation from thermally poled Ge-S glass system,” J. Ceram. Soc. Jpn. 113(1323), 728–732 (2005).
[Crossref]

Huidan, Z.

Inami, S.

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
[Crossref] [PubMed]

Ishii, K.

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

Jauernig, U.

A. Strauß, U. Jauernig, V. Reichel, and H. Bartelt, “Generation of green light in a thermally poled silica fiber by quasi-phase-matched second harmonic generation,” Optik (Stuttg.) 121(5), 490–493 (2010).
[Crossref]

Jing, R.

Kamiya, K.

Y. Nakane, H. Nasu, J. Heo, T. Hashimoto, and K. Kamiya, “Second harmonic generation from thermally poled Ge-S glass system,” J. Ceram. Soc. Jpn. 113(1323), 728–732 (2005).
[Crossref]

Karvinen, P.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Kazansky, P. G.

P. G. Kazansky and P. S. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[Crossref]

Kleinman, D. A.

D. A. Kleinman, “Nonlinear Dielectric Polarization in Optical Media,” Phys. Rev. 126(6), 1977–1979 (1962).
[Crossref]

Kudlinski, A.

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Kuittinen, M.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Lacroix, S.

Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, and S. Lacroix, “Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films,” Electron. Lett. 36(8), 733–734 (2000).
[Crossref]

Lahaye, M.

Leinonen, K.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Lepicard, A.

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling,” J. Phys. Chem. C 119(40), 22999–23007 (2015).
[Crossref]

Lipovskii, A. A.

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17-18), 849–855 (2010).
[Crossref]

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Maeda, R.

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

Maier, J.

Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, and S. Lacroix, “Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films,” Electron. Lett. 36(8), 733–734 (2000).
[Crossref]

Margulis, W.

Mariappan, C. R.

C. R. Mariappan, D. M. Yunos, A. R. Boccaccini, and B. Roling, “Bioactivity of electro-thermally poled bioactive silicate glass,” Acta Biomater. 5(4), 1274–1283 (2009).
[Crossref] [PubMed]

C. R. Mariappan and B. Roling, “Investigation of bioglass-electrode interfaces after thermal poling,” Solid State Ion. 179(19-20), 671–677 (2008).
[Crossref]

Marquestaut, N.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

Martinelli, G.

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Melehin, V. G.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Mito, K.

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

Miyazawa, S.

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

Moréac, A.

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Moriyoshi, Y.

A. Obata, S. Nakamura, Y. Moriyoshi, and K. Yamashita, “Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition,” J. Biomed. Mater. Res. A 67(2), 413–420 (2003).
[Crossref] [PubMed]

Mukherjee, N.

Murai, S.

Musgraves, J. D.

Myers, R. A.

Nakamura, S.

A. Obata, S. Nakamura, Y. Moriyoshi, and K. Yamashita, “Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition,” J. Biomed. Mater. Res. A 67(2), 413–420 (2003).
[Crossref] [PubMed]

Nakane, Y.

Y. Nakane, H. Nasu, J. Heo, T. Hashimoto, and K. Kamiya, “Second harmonic generation from thermally poled Ge-S glass system,” J. Ceram. Soc. Jpn. 113(1323), 728–732 (2005).
[Crossref]

Nasu, H.

Y. Nakane, H. Nasu, J. Heo, T. Hashimoto, and K. Kamiya, “Second harmonic generation from thermally poled Ge-S glass system,” J. Ceram. Soc. Jpn. 113(1323), 728–732 (2005).
[Crossref]

Nazabal, V.

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Novak, J.

Obata, A.

A. Obata, S. Nakamura, Y. Moriyoshi, and K. Yamashita, “Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition,” J. Biomed. Mater. Res. A 67(2), 413–420 (2003).
[Crossref] [PubMed]

Okada, A.

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

Österberg, U.

Quiquempois, Y.

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, and S. Lacroix, “Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films,” Electron. Lett. 36(8), 733–734 (2000).
[Crossref]

Reichel, V.

A. Strauß, U. Jauernig, V. Reichel, and H. Bartelt, “Generation of green light in a thermally poled silica fiber by quasi-phase-matched second harmonic generation,” Optik (Stuttg.) 121(5), 490–493 (2010).
[Crossref]

Richardson, K.

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling,” J. Phys. Chem. C 119(40), 22999–23007 (2015).
[Crossref]

W. T. Shoulders, J. Novak, M. Dussauze, J. D. Musgraves, and K. Richardson, “Thermal poling behavior and SHG stability in arsenic-germanium sulfide glasses,” Opt. Mater. Express 3(6), 700–710 (2013).
[Crossref]

Rodriguez, V.

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
[Crossref]

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling,” J. Phys. Chem. C 119(40), 22999–23007 (2015).
[Crossref]

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012).
[Crossref]

M. Dussauze, X. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express 2(1), 45–54 (2012).
[Crossref]

V. Rodriguez, “Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: Theory and materials,” J. Chem. Phys. 128(6), 064707 (2008).
[Crossref] [PubMed]

M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express 13(11), 4064–4069 (2005).
[Crossref] [PubMed]

V. Rodriguez and C. Sourisseau, “General Maker-fringe ellipsometric analyses in multilayer nonlinear and linear anisotropic optical media,” J. Opt. Soc. Am. B 19(11), 2650–2664 (2002).
[Crossref]

Roling, B.

C. R. Mariappan, D. M. Yunos, A. R. Boccaccini, and B. Roling, “Bioactivity of electro-thermally poled bioactive silicate glass,” Acta Biomater. 5(4), 1274–1283 (2009).
[Crossref] [PubMed]

C. R. Mariappan and B. Roling, “Investigation of bioglass-electrode interfaces after thermal poling,” Solid State Ion. 179(19-20), 671–677 (2008).
[Crossref]

Rusan, V. V.

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17-18), 849–855 (2010).
[Crossref]

Russel, P. S. J.

P. G. Kazansky and P. S. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[Crossref]

Santos, L.

L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
[Crossref]

Sasaki, K.

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

Shimakawa, K.

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
[Crossref] [PubMed]

Shoulders, W. T.

Smektala, F.

M. Dussauze, X. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express 2(1), 45–54 (2012).
[Crossref]

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Sourisseau, C.

Stegeman, G.

Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, and S. Lacroix, “Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films,” Electron. Lett. 36(8), 733–734 (2000).
[Crossref]

Stockdale, G. F.

D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Ion depletion of glass at a blocking anode - 1, 2,” J. Am. Ceram. Soc. 57, 291–300 (1974).
[Crossref]

Strauß, A.

A. Strauß, U. Jauernig, V. Reichel, and H. Bartelt, “Generation of green light in a thermally poled silica fiber by quasi-phase-matched second harmonic generation,” Optik (Stuttg.) 121(5), 490–493 (2010).
[Crossref]

Svirko, Y. P.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Tagantsev, D. K.

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17-18), 849–855 (2010).
[Crossref]

Takagi, H.

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

Takahashi, M.

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

Tanaka, K.

Truong, L. N.

L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
[Crossref]

Tsujiie, Y.

Turcotte, K.

Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, and S. Lacroix, “Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films,” Electron. Lett. 36(8), 733–734 (2000).
[Crossref]

Uteza, O.

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

Vigouroux, H.

L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
[Crossref]

Villeneuve, A.

Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, and S. Lacroix, “Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films,” Electron. Lett. 36(8), 733–734 (2000).
[Crossref]

Vogel, E. M.

E. M. Vogel, “Glasses as nonlinear photonic materials,” J. Am. Ceram. Soc. 72(5), 719–724 (1989).
[Crossref]

Yamashita, K.

A. Obata, S. Nakamura, Y. Moriyoshi, and K. Yamashita, “Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition,” J. Biomed. Mater. Res. A 67(2), 413–420 (2003).
[Crossref] [PubMed]

Yang, G.

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012).
[Crossref]

Yunos, D. M.

C. R. Mariappan, D. M. Yunos, A. R. Boccaccini, and B. Roling, “Bioactivity of electro-thermally poled bioactive silicate glass,” Acta Biomater. 5(4), 1274–1283 (2009).
[Crossref] [PubMed]

Zeghlache, H.

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Zheng, X.

Zhurikhina, V. V.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Acta Biomater. (1)

C. R. Mariappan, D. M. Yunos, A. R. Boccaccini, and B. Roling, “Bioactivity of electro-thermally poled bioactive silicate glass,” Acta Biomater. 5(4), 1274–1283 (2009).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

M. Guignard, V. Nazabal, F. Smektala, J.-L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois,, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007).
[Crossref]

Adv. Opt. Mater. (1)

M. Dussauze, V. Rodriguez, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, and E. Fargin, “Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials,” Adv. Opt. Mater. 4(6), 929–935 (2016).
[Crossref]

Appl. Phys. Express (1)

H. Takagi, S. Miyazawa, M. Takahashi, and R. Maeda, “Electrostatic imprint process for glass,” Appl. Phys. Express 1, 024003 (2008).
[Crossref]

Appl. Phys. Lett. (2)

A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides,” Appl. Phys. Lett. 60(23), 2853–2855 (1992).
[Crossref]

L. N. Truong, M. Dussauze, E. Fargin, L. Santos, H. Vigouroux, A. Fargues, F. Adamietz, and V. Rodriguez, “Isotropic octupolar second harmonic generation response in LaBGeO5 glass-ceramic with spherulitic precipitation,” Appl. Phys. Lett. 106(16), 161901 (2015).
[Crossref]

Electron. Lett. (1)

Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, and S. Lacroix, “Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films,” Electron. Lett. 36(8), 733–734 (2000).
[Crossref]

Int. J. Appl. Glass Sci. (1)

M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal Poling of Optical Glasses: Mechanisms and Second-Order Optical Properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012).
[Crossref]

J. Am. Ceram. Soc. (2)

E. M. Vogel, “Glasses as nonlinear photonic materials,” J. Am. Ceram. Soc. 72(5), 719–724 (1989).
[Crossref]

D. E. Carlson, K. W. Hang, and G. F. Stockdale, “Ion depletion of glass at a blocking anode - 1, 2,” J. Am. Ceram. Soc. 57, 291–300 (1974).
[Crossref]

J. Appl. Phys. (1)

G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K. L. N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, and E. Fargin, “Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling,” J. Appl. Phys. 118(4), 043105 (2015).
[Crossref]

J. Biomed. Mater. Res. A (1)

A. Obata, S. Nakamura, Y. Moriyoshi, and K. Yamashita, “Electrical polarization of bioactive glass and assessment of their in vitro apatite deposition,” J. Biomed. Mater. Res. A 67(2), 413–420 (2003).
[Crossref] [PubMed]

J. Ceram. Soc. Jpn. (1)

Y. Nakane, H. Nasu, J. Heo, T. Hashimoto, and K. Kamiya, “Second harmonic generation from thermally poled Ge-S glass system,” J. Ceram. Soc. Jpn. 113(1323), 728–732 (2005).
[Crossref]

J. Chem. Phys. (1)

V. Rodriguez, “Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: Theory and materials,” J. Chem. Phys. 128(6), 064707 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling,” J. Phys. Chem. C 119(40), 22999–23007 (2015).
[Crossref]

Nanotechnology (1)

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melehin, V. V. Zhurikhina, and Y. P. Svirko, “Electric field imprinting of sub-micron patterns in glass-metal nanocomposites,” Nanotechnology 19(41), 415304 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

P. G. Kazansky and P. S. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (3)

Optik (Stuttg.) (1)

A. Strauß, U. Jauernig, V. Reichel, and H. Bartelt, “Generation of green light in a thermally poled silica fiber by quasi-phase-matched second harmonic generation,” Optik (Stuttg.) 121(5), 490–493 (2010).
[Crossref]

Phys. Rev. (1)

D. A. Kleinman, “Nonlinear Dielectric Polarization in Optical Media,” Phys. Rev. 126(6), 1977–1979 (1962).
[Crossref]

Phys. Rev. B Condens. Matter (1)

K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
[Crossref] [PubMed]

Solid State Ion. (2)

C. R. Mariappan and B. Roling, “Investigation of bioglass-electrode interfaces after thermal poling,” Solid State Ion. 179(19-20), 671–677 (2008).
[Crossref]

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ion. 181(17-18), 849–855 (2010).
[Crossref]

Other (3)

K. Richardson, T. Cardinal, M. Richardson, A. Schulte, and S. Seal, “Engineering Glassy Chalcogenide Materials for Integrated Optics Applications,” in Photo-Induced Metastability in Amorphous Semiconductors, A. V. Kolobov, ed. (Wiley-VCH Verlag GmbH & Co. KGaA, 2003), pp. 383–405.

P. N. Butcher and D. Cotter, The elements of nonlinear optics (Cambridge University Press, 1990).

T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques: An Introduction (CRC Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The Maker fringe set-up with the various scans possibilities shown and the laboratory reference.
Fig. 2
Fig. 2 Secondary Ion Mass Spectroscopy depth profile of the various constituents of glasses doped with 3 mol% Na2S prior poling (a) and after thermal poling (b). The 0 nm mark corresponds to the surface on the anode side.
Fig. 3
Fig. 3 Left, θ-scans (pp) measured on the day of thermal poling on glasses with various doping level (0, 1 and 3 mol%). Right top row, θ-scans (pp) measured on samples doped with 1 and 3 mol% of Na2S on Day 20. Right bottom row, ψ-scans (p and s) measured on sample doped at 3 mol%. The red broken lines correspond to the fit of an EFISH process with an electric field induced along z. For comparison reason, the SHG intensities were normalized to the square of the incident laser power.
Fig. 4
Fig. 4 SHG polarization dependence measured at normal incidence (a) and polar plot of the same Maker fringes with the fit from an electric field induced along x and y (b).
Fig. 5
Fig. 5 (a) Nonlinear diffraction patterns in transmission measured on the day of thermal poling and 145 days after poling (b) along with the position of the diffractive peaks (red in a and b) obtained after Fourier transform of the in-plane components of the structured electric field case #1, (c) representation of two envisioned possibilities of electric field structuring, (d) diffraction peaks obtained from both configurations of Ey after Fourier transform

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

χ (2) =3 χ (3) E stat  
E stat =(a E x +b E y )
[ d 11 d 12 d 13 0 0 d 21 d 21 d 22 d 23 0 0 d 12 0 0 0 d 23 d 13 0 ]
d 11 =a χ xxxx (3) E x
d 12 =a χ xyyx ( 3 ) E x +b χ xyyy ( 3 ) E y
d 13 =a χ xzzx ( 3 ) E x +b χ xzzy ( 3 ) E y
χ xxxx (3) =  χ xxyy (3) + χ xyxy (3) + χ xyyx (3)
[ d 11 d 12 d 12 0 0 d 21 d 21 d 22 d 21 0 0 d 12 0 0 0 d 21 d 12 0 ]
I ψs 2ω   |   P s 2ω (ψ) | 2 =  ( E 0 ω ) 4 8 | d 11 2 cos 4 (ψ)+  d 12 2 sin 4 (ψ)+2( 2 ( d 21 ) 2 d 11 . d 12 ) sin 2 ( ψ ) cos 2 (ψ)  |
I ψp 2ω   |   P p 2ω (ψ) | 2 =  ( E 0 ω ) 4 8 | d 21 2 cos 4 (ψ)+  d 22 2 sin 4 (ψ)+2( 2 ( d 12 ) 2 d 21 . d 22 ) sin 2 ( ψ ) cos 2 (ψ)  |

Metrics