Abstract

We report the optical properties of SU-8 in the mid-infrared (mid-IR) region before and after UV treatment. Samples consisted of SU-8 films of thickness ranging from 10 um to 157 um deposited on gold coated silicon substrates and were prepared using spin coating. Mid-IR diffuse reflectance measurements were conducted using Fourier transform infrared spectroscopy. Spectra measurements imply a change in optical properties of SU-8 upon exposure to UV and heat treatment. A gradual change in optical properties is seen after each step of UV treatment and the baking process. Reflectance spectra of thin-films were also observed to be thickness dependent. We calculate the dielectric function of SU-8 in the range 2 um to 15 um using the reflectance spectra of the samples.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photothermally enabled lithography for refractive-index modulation in SU-8 photoresist

Biow Hiem Ong, Xiaocong Yuan, Shaohua Tao, and Swee Chuan Tjin
Opt. Lett. 31(10) 1367-1369 (2006)

Thermal UV treatment on SU-8 polymer for integrated optics

Xi-Bin Wang, Jian Sun, Chang-Ming Chen, Xiao-Qiang Sun, Fei Wang, and Da-Ming Zhang
Opt. Mater. Express 4(3) 509-517 (2014)

Gain optimization, bleaching, and e-beam structuring of IR-140 doped PMMA and integration with plasmonic waveguides

Maude Amyot-Bourgeois, Elham Karami Keshmarzi, Choloong Hahn, R. Niall Tait, and Pierre Berini
Opt. Mater. Express 7(11) 3963-3978 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. C. LaBianca and J. D. Gelorme, “High-aspect-ratio resist for thick-film applications,” in SPIE’s 1995 Symposium on Microlithography (International Society for Optics and Photonics, 1995), pp. 846–852.
  2. H. Lorenz, M. Laudon, and P. Renaud, “Mechanical characterization of a new high-aspect-ratio near UV-photoresist,” Microelectron. Eng. 41, 371–374 (1998).
    [Crossref]
  3. “ http://www.microchem.com/prod-su8.htm ,”.
  4. A. del Campo and C. Greiner, “Su-8: a photoresist for high-aspect-ratio and 3d submicron lithography,” J. Micromechanics Microengineering 17, R81 (2007).
    [Crossref]
  5. J. Zhang, K. Tan, G. Hong, L. Yang, and H. Gong, “Polymerization optimization of su-8 photoresist and its applications in microfluidic systems and mems,” J. Micromechanics Microengineering 11, 20 (2001).
    [Crossref]
  6. K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of su-8 biocompatibility,” Materials Science and Engineering: C 33, 4453–4459 (2013).
    [Crossref]
  7. J. Sua, F. Gaob, Z. Gub, W. Daic, G. Cernigliaroc, and H. Sun, “Fabrication of su-8 based nanopatterns and their use as a nanoimprint mold,” Proc. SPIE 8974, 897409 (2014).
    [Crossref]
  8. O. P. Parida and N. Bhat, “Characterization of optical properties of su-8 and fabrication of optical components,” in Int. Conf. on Opt. and Photon.(CSIO) (2009), pp. 4–7.
  9. E. Motaharifar, R. Pierce, R. Islam, R. Henderson, J. Hsu, and M. Lee, “Broadband terahertz refraction index dispersion and loss of polymeric dielectric substrate and packaging materials,” Journal of Infrared, Millimeter, and Terahertz Waves 39, 93–104 (2018).
    [Crossref]
  10. T. Tan, D. Wong, P. Lee, R. Rawat, and A. Patran, “Study of a chemically amplified resist for x-ray lithography by fourier transform infrared spectroscopy,” Appl. Spectrosc. 58, 1288–1294 (2004).
    [Crossref]
  11. B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC Press, 1998).
  12. X.-B. Wang, J. Sun, C.-M. Chen, X.-Q. Sun, F. Wang, and D.-M. Zhang, “Thermal uv treatment on su-8 polymer for integrated optics,” Opt. Mater. Express 4, 509–517 (2014).
    [Crossref]
  13. A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
    [Crossref]
  14. A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
    [Crossref] [PubMed]
  15. G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” Journal of Nanoparticle Research 4, 157–165 (2002).
    [Crossref]
  16. A. Heilmann, Polymer Films with Embedded Metal Nanoparticles, vol. 52 (Springer Science & Business Media, 2013).
  17. A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
    [Crossref] [PubMed]
  18. T. Felix, “Devices for lowering the temperature of a body by heat radiation therefrom,” US Patent3,310,102 (1967).
  19. B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
    [Crossref]
  20. P. Grenier, “Radiative cooling-inverse greenhouse effect,” Revue de Physique Appliquee 14, 87–90 (1979).
    [Crossref]
  21. W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97, 054907 (2005).
    [Crossref]
  22. A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104, 183107 (2014).
    [Crossref]
  23. H. W. Verleur, “Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films,” JOSA 58, 1356–1364 (1968).
    [Crossref]
  24. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE press, 1995).

2018 (1)

E. Motaharifar, R. Pierce, R. Islam, R. Henderson, J. Hsu, and M. Lee, “Broadband terahertz refraction index dispersion and loss of polymeric dielectric substrate and packaging materials,” Journal of Infrared, Millimeter, and Terahertz Waves 39, 93–104 (2018).
[Crossref]

2016 (1)

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

2015 (1)

2014 (3)

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104, 183107 (2014).
[Crossref]

J. Sua, F. Gaob, Z. Gub, W. Daic, G. Cernigliaroc, and H. Sun, “Fabrication of su-8 based nanopatterns and their use as a nanoimprint mold,” Proc. SPIE 8974, 897409 (2014).
[Crossref]

X.-B. Wang, J. Sun, C.-M. Chen, X.-Q. Sun, F. Wang, and D.-M. Zhang, “Thermal uv treatment on su-8 polymer for integrated optics,” Opt. Mater. Express 4, 509–517 (2014).
[Crossref]

2013 (1)

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of su-8 biocompatibility,” Materials Science and Engineering: C 33, 4453–4459 (2013).
[Crossref]

2010 (1)

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref] [PubMed]

2007 (1)

A. del Campo and C. Greiner, “Su-8: a photoresist for high-aspect-ratio and 3d submicron lithography,” J. Micromechanics Microengineering 17, R81 (2007).
[Crossref]

2005 (1)

W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97, 054907 (2005).
[Crossref]

2004 (1)

2002 (1)

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” Journal of Nanoparticle Research 4, 157–165 (2002).
[Crossref]

2001 (1)

J. Zhang, K. Tan, G. Hong, L. Yang, and H. Gong, “Polymerization optimization of su-8 photoresist and its applications in microfluidic systems and mems,” J. Micromechanics Microengineering 11, 20 (2001).
[Crossref]

1998 (1)

H. Lorenz, M. Laudon, and P. Renaud, “Mechanical characterization of a new high-aspect-ratio near UV-photoresist,” Microelectron. Eng. 41, 371–374 (1998).
[Crossref]

1979 (1)

P. Grenier, “Radiative cooling-inverse greenhouse effect,” Revue de Physique Appliquee 14, 87–90 (1979).
[Crossref]

1977 (1)

B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[Crossref]

1968 (1)

H. W. Verleur, “Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films,” JOSA 58, 1356–1364 (1968).
[Crossref]

Bartoli, B.

B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[Crossref]

Bhat, N.

O. P. Parida and N. Bhat, “Characterization of optical properties of su-8 and fabrication of optical components,” in Int. Conf. on Opt. and Photon.(CSIO) (2009), pp. 4–7.

Brennick, J. B.

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of su-8 biocompatibility,” Materials Science and Engineering: C 33, 4453–4459 (2013).
[Crossref]

Canetta, C.

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104, 183107 (2014).
[Crossref]

Catalanotti, S.

B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[Crossref]

Cernigliaroc, G.

J. Sua, F. Gaob, Z. Gub, W. Daic, G. Cernigliaroc, and H. Sun, “Fabrication of su-8 based nanopatterns and their use as a nanoimprint mold,” Proc. SPIE 8974, 897409 (2014).
[Crossref]

Chen, C.-M.

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE press, 1995).

Coluzzi, B.

B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[Crossref]

Cuomo, V.

B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[Crossref]

Czapla, B.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

Daic, W.

J. Sua, F. Gaob, Z. Gub, W. Daic, G. Cernigliaroc, and H. Sun, “Fabrication of su-8 based nanopatterns and their use as a nanoimprint mold,” Proc. SPIE 8974, 897409 (2014).
[Crossref]

del Campo, A.

A. del Campo and C. Greiner, “Su-8: a photoresist for high-aspect-ratio and 3d submicron lithography,” J. Micromechanics Microengineering 17, R81 (2007).
[Crossref]

Deller, C.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” Journal of Nanoparticle Research 4, 157–165 (2002).
[Crossref]

Drechsler, U.

W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97, 054907 (2005).
[Crossref]

Dürig, U.

W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97, 054907 (2005).
[Crossref]

Felix, T.

T. Felix, “Devices for lowering the temperature of a body by heat radiation therefrom,” US Patent3,310,102 (1967).

Fisher, W.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” Journal of Nanoparticle Research 4, 157–165 (2002).
[Crossref]

Gaob, F.

J. Sua, F. Gaob, Z. Gub, W. Daic, G. Cernigliaroc, and H. Sun, “Fabrication of su-8 based nanopatterns and their use as a nanoimprint mold,” Proc. SPIE 8974, 897409 (2014).
[Crossref]

Garrett, P.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” Journal of Nanoparticle Research 4, 157–165 (2002).
[Crossref]

Gelorme, J. D.

N. C. LaBianca and J. D. Gelorme, “High-aspect-ratio resist for thick-film applications,” in SPIE’s 1995 Symposium on Microlithography (International Society for Optics and Photonics, 1995), pp. 846–852.

Gentle, A.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” Journal of Nanoparticle Research 4, 157–165 (2002).
[Crossref]

Gentle, A. R.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref] [PubMed]

Ghanekar, A.

Gimi, B.

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of su-8 biocompatibility,” Materials Science and Engineering: C 33, 4453–4459 (2013).
[Crossref]

Gong, H.

J. Zhang, K. Tan, G. Hong, L. Yang, and H. Gong, “Polymerization optimization of su-8 photoresist and its applications in microfluidic systems and mems,” J. Micromechanics Microengineering 11, 20 (2001).
[Crossref]

Greiner, C.

A. del Campo and C. Greiner, “Su-8: a photoresist for high-aspect-ratio and 3d submicron lithography,” J. Micromechanics Microengineering 17, R81 (2007).
[Crossref]

Grenier, P.

P. Grenier, “Radiative cooling-inverse greenhouse effect,” Revue de Physique Appliquee 14, 87–90 (1979).
[Crossref]

Gub, Z.

J. Sua, F. Gaob, Z. Gub, W. Daic, G. Cernigliaroc, and H. Sun, “Fabrication of su-8 based nanopatterns and their use as a nanoimprint mold,” Proc. SPIE 8974, 897409 (2014).
[Crossref]

Güntherodt, H.-J.

W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97, 054907 (2005).
[Crossref]

Heilmann, A.

A. Heilmann, Polymer Films with Embedded Metal Nanoparticles, vol. 52 (Springer Science & Business Media, 2013).

Henderson, R.

E. Motaharifar, R. Pierce, R. Islam, R. Henderson, J. Hsu, and M. Lee, “Broadband terahertz refraction index dispersion and loss of polymeric dielectric substrate and packaging materials,” Journal of Infrared, Millimeter, and Terahertz Waves 39, 93–104 (2018).
[Crossref]

Hong, G.

J. Zhang, K. Tan, G. Hong, L. Yang, and H. Gong, “Polymerization optimization of su-8 photoresist and its applications in microfluidic systems and mems,” J. Micromechanics Microengineering 11, 20 (2001).
[Crossref]

Hsu, J.

E. Motaharifar, R. Pierce, R. Islam, R. Henderson, J. Hsu, and M. Lee, “Broadband terahertz refraction index dispersion and loss of polymeric dielectric substrate and packaging materials,” Journal of Infrared, Millimeter, and Terahertz Waves 39, 93–104 (2018).
[Crossref]

Islam, R.

E. Motaharifar, R. Pierce, R. Islam, R. Henderson, J. Hsu, and M. Lee, “Broadband terahertz refraction index dispersion and loss of polymeric dielectric substrate and packaging materials,” Journal of Infrared, Millimeter, and Terahertz Waves 39, 93–104 (2018).
[Crossref]

LaBianca, N. C.

N. C. LaBianca and J. D. Gelorme, “High-aspect-ratio resist for thick-film applications,” in SPIE’s 1995 Symposium on Microlithography (International Society for Optics and Photonics, 1995), pp. 846–852.

Laudon, M.

H. Lorenz, M. Laudon, and P. Renaud, “Mechanical characterization of a new high-aspect-ratio near UV-photoresist,” Microelectron. Eng. 41, 371–374 (1998).
[Crossref]

Lee, M.

E. Motaharifar, R. Pierce, R. Islam, R. Henderson, J. Hsu, and M. Lee, “Broadband terahertz refraction index dispersion and loss of polymeric dielectric substrate and packaging materials,” Journal of Infrared, Millimeter, and Terahertz Waves 39, 93–104 (2018).
[Crossref]

Lee, P.

Lin, L.

Lorenz, H.

H. Lorenz, M. Laudon, and P. Renaud, “Mechanical characterization of a new high-aspect-ratio near UV-photoresist,” Microelectron. Eng. 41, 371–374 (1998).
[Crossref]

Mayo, J.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104, 183107 (2014).
[Crossref]

Moodie, K. L.

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of su-8 biocompatibility,” Materials Science and Engineering: C 33, 4453–4459 (2013).
[Crossref]

Motaharifar, E.

E. Motaharifar, R. Pierce, R. Islam, R. Henderson, J. Hsu, and M. Lee, “Broadband terahertz refraction index dispersion and loss of polymeric dielectric substrate and packaging materials,” Journal of Infrared, Millimeter, and Terahertz Waves 39, 93–104 (2018).
[Crossref]

Narayanaswamy, A.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104, 183107 (2014).
[Crossref]

Nemani, K. V.

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of su-8 biocompatibility,” Materials Science and Engineering: C 33, 4453–4459 (2013).
[Crossref]

Parida, O. P.

O. P. Parida and N. Bhat, “Characterization of optical properties of su-8 and fabrication of optical components,” in Int. Conf. on Opt. and Photon.(CSIO) (2009), pp. 4–7.

Patran, A.

Pierce, R.

E. Motaharifar, R. Pierce, R. Islam, R. Henderson, J. Hsu, and M. Lee, “Broadband terahertz refraction index dispersion and loss of polymeric dielectric substrate and packaging materials,” Journal of Infrared, Millimeter, and Terahertz Waves 39, 93–104 (2018).
[Crossref]

Rawat, R.

Renaud, P.

H. Lorenz, M. Laudon, and P. Renaud, “Mechanical characterization of a new high-aspect-ratio near UV-photoresist,” Microelectron. Eng. 41, 371–374 (1998).
[Crossref]

Silvestrini, V.

B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[Crossref]

Smith, B. C.

B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC Press, 1998).

Smith, C.

W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97, 054907 (2005).
[Crossref]

Smith, G.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” Journal of Nanoparticle Research 4, 157–165 (2002).
[Crossref]

Smith, G. B.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref] [PubMed]

Srinivasan, A.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

Su, A.

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of su-8 biocompatibility,” Materials Science and Engineering: C 33, 4453–4459 (2013).
[Crossref]

Su, J.

Sua, J.

J. Sua, F. Gaob, Z. Gub, W. Daic, G. Cernigliaroc, and H. Sun, “Fabrication of su-8 based nanopatterns and their use as a nanoimprint mold,” Proc. SPIE 8974, 897409 (2014).
[Crossref]

Sun, H.

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
[Crossref] [PubMed]

J. Sua, F. Gaob, Z. Gub, W. Daic, G. Cernigliaroc, and H. Sun, “Fabrication of su-8 based nanopatterns and their use as a nanoimprint mold,” Proc. SPIE 8974, 897409 (2014).
[Crossref]

Sun, J.

Sun, X.-Q.

Swift, P.

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” Journal of Nanoparticle Research 4, 157–165 (2002).
[Crossref]

Tan, K.

J. Zhang, K. Tan, G. Hong, L. Yang, and H. Gong, “Polymerization optimization of su-8 photoresist and its applications in microfluidic systems and mems,” J. Micromechanics Microengineering 11, 20 (2001).
[Crossref]

Tan, T.

Teh, W.

W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97, 054907 (2005).
[Crossref]

Troise, G.

B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[Crossref]

Verleur, H. W.

H. W. Verleur, “Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films,” JOSA 58, 1356–1364 (1968).
[Crossref]

Wang, F.

Wang, X.-B.

Wong, D.

Yang, L.

J. Zhang, K. Tan, G. Hong, L. Yang, and H. Gong, “Polymerization optimization of su-8 photoresist and its applications in microfluidic systems and mems,” J. Micromechanics Microengineering 11, 20 (2001).
[Crossref]

Zhang, D.-M.

Zhang, J.

J. Zhang, K. Tan, G. Hong, L. Yang, and H. Gong, “Polymerization optimization of su-8 photoresist and its applications in microfluidic systems and mems,” J. Micromechanics Microengineering 11, 20 (2001).
[Crossref]

Zheng, Y.

Appl. Energy (1)

B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977).
[Crossref]

Appl. Phys. Lett. (2)

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109, 061905 (2016).
[Crossref]

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104, 183107 (2014).
[Crossref]

Appl. Spectrosc. (1)

J. Appl. Phys. (1)

W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97, 054907 (2005).
[Crossref]

J. Micromechanics Microengineering (2)

A. del Campo and C. Greiner, “Su-8: a photoresist for high-aspect-ratio and 3d submicron lithography,” J. Micromechanics Microengineering 17, R81 (2007).
[Crossref]

J. Zhang, K. Tan, G. Hong, L. Yang, and H. Gong, “Polymerization optimization of su-8 photoresist and its applications in microfluidic systems and mems,” J. Micromechanics Microengineering 11, 20 (2001).
[Crossref]

JOSA (1)

H. W. Verleur, “Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films,” JOSA 58, 1356–1364 (1968).
[Crossref]

Journal of Infrared, Millimeter, and Terahertz Waves (1)

E. Motaharifar, R. Pierce, R. Islam, R. Henderson, J. Hsu, and M. Lee, “Broadband terahertz refraction index dispersion and loss of polymeric dielectric substrate and packaging materials,” Journal of Infrared, Millimeter, and Terahertz Waves 39, 93–104 (2018).
[Crossref]

Journal of Nanoparticle Research (1)

G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher, “Nanoparticle-doped polymer foils for use in solar control glazing,” Journal of Nanoparticle Research 4, 157–165 (2002).
[Crossref]

Materials Science and Engineering: C (1)

K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro and in vivo evaluation of su-8 biocompatibility,” Materials Science and Engineering: C 33, 4453–4459 (2013).
[Crossref]

Microelectron. Eng. (1)

H. Lorenz, M. Laudon, and P. Renaud, “Mechanical characterization of a new high-aspect-ratio near UV-photoresist,” Microelectron. Eng. 41, 371–374 (1998).
[Crossref]

Nano Lett. (1)

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Proc. SPIE (1)

J. Sua, F. Gaob, Z. Gub, W. Daic, G. Cernigliaroc, and H. Sun, “Fabrication of su-8 based nanopatterns and their use as a nanoimprint mold,” Proc. SPIE 8974, 897409 (2014).
[Crossref]

Revue de Physique Appliquee (1)

P. Grenier, “Radiative cooling-inverse greenhouse effect,” Revue de Physique Appliquee 14, 87–90 (1979).
[Crossref]

Other (7)

O. P. Parida and N. Bhat, “Characterization of optical properties of su-8 and fabrication of optical components,” in Int. Conf. on Opt. and Photon.(CSIO) (2009), pp. 4–7.

“ http://www.microchem.com/prod-su8.htm ,”.

N. C. LaBianca and J. D. Gelorme, “High-aspect-ratio resist for thick-film applications,” in SPIE’s 1995 Symposium on Microlithography (International Society for Optics and Photonics, 1995), pp. 846–852.

A. Heilmann, Polymer Films with Embedded Metal Nanoparticles, vol. 52 (Springer Science & Business Media, 2013).

T. Felix, “Devices for lowering the temperature of a body by heat radiation therefrom,” US Patent3,310,102 (1967).

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE press, 1995).

B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of sample preparation, UV exposure and heat treatment steps.
Fig. 2
Fig. 2 (a) Effect on reflectance spectrum after each treatment step on the 10 µm sample of SU-8; stage I: soft baking, stage II: UV exposure, stage III: post-exposure bake and stage IV: hard bake. Shaded region highlights wavelengths at which a significant change in reflectance is seen. (b) Measured reflectance of UV and heat treated SU-8 samples with various film thicknesses.
Fig. 3
Fig. 3 Estimated refractive indices of UV treated SU-8
Fig. 4
Fig. 4 Comparison of measured and calculated reflectance of UV treated SU-8 samples with different thickness.

Tables (2)

Tables Icon

Table 1 Lorentz-Drude oscillator parameters of SU-8 after UV and heat treatment

Tables Icon

Table 2 Lorentz-Drude oscillator parameters of SU-8 before UV exposure

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε + k = 1 N s k 1 ( ω ω k ) 2 j Γ k ( ω ω k ) .
r c = 1 2 [ | R T E | 2 + | R T M | 2 ]
R ( μ ) = R 12 ( μ ) + R 23 ( μ ) e 2 j k 2 z L 1 + R 12 ( μ ) R 23 ( μ ) e 2 j k 2 z L
δ = i = 1 M [ r m r c ] 2 | 10 μ m + i = 1 M [ r m r c ] 2 | 20 μ m + i = 1 M [ r m r c ] 2 | 50 μ m + i = 1 M [ r m r c ] 2 | 157 μ m

Metrics