Abstract

In this work, Hf-doped VO2 thin films were fabricated using pulsed laser deposition. We found samples with Hf doping concentrations of 0-3 at.% showed monoclinic VO2(M) phase. When Hf doping concentration increased up to 5-8 at.%, the VO2(M) phase disappeared, and the samples showed a change to VO2(B) structure. Metal-insulator transition (MIT) properties were observed for Hf doping concentration up to 3 at.%. We observed a significant reduction of the phase transition hysteresis width with Hf doping. The temperature-electrical resistance hysteresis curves during MIT show widths of 1.9 °C and 2.7 °C for 1 at.% and 3 at.% Hf-doped VO2 thin films, compared to that of 8.3 °C for pure VO2 thin films. Temperature dependent optical transmittance of Hf doped VO2 thin films also shows similar reduction of phase transition hysteresis width, consistent with the resistance change. Raman spectra revealed significant change in the vibrational intensity of Ag phonon modes that depended also on MIT of thin films and had almost no hysteresis upon Hf doping. Finally, the thermal infrared radiation of Hf-doped VO2(M) thin films was investigated. The hysteretic behavior of the radiation temperature is significantly reduced, making Hf:VO2 a promising candidate for infrared camouflage and thermal radiation control applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films

Taixing Huang, Lin Yang, Jun Qin, Fei Huang, Xupeng Zhu, Peiheng Zhou, Bo Peng, Huigao Duan, Longjiang Deng, and Lei Bi
Opt. Mater. Express 6(11) 3609-3621 (2016)

Significant change in optical and thermochromic properties for VO2 films post-treated by low-energy argon ions

Maodong Zhu, Hu Wang, Hongji Qi, Dongping Zhang, and Weizhong Lv
Opt. Mater. Express 9(4) 1979-1989 (2019)

Asymmetric hysteresis in vanadium dioxide thin films

Marc Currie, Virginia D. Wheeler, Brian Downey, Neeraj Nepal, Syed B. Qadri, James A. Wollmershauser, Jason Avila, and Luke Nyakiti
Opt. Mater. Express 9(9) 3717-3728 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
    [Crossref] [PubMed]
  2. X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
    [Crossref]
  3. E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of sub wavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
    [Crossref]
  4. G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
    [Crossref]
  5. J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
    [Crossref] [PubMed]
  6. X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
    [Crossref]
  7. C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
    [Crossref]
  8. L. Phan, D. D. Ordinario, E. Karshalev, W. G. Walkup, M. A. Shenk, and A. A. Gorodetsky, “Infrared invisibility stickers inspired by cephalopods,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(25), 6493–6498 (2015).
    [Crossref]
  9. F. Béteille, L. Mazerolles, and J. Livage, “Microstructure and metal-insulating transition of VO2 thin films,” Mater. Res. Bull. 34(14–15), 2177–2184 (1999).
    [Crossref]
  10. L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
    [Crossref] [PubMed]
  11. L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method,” J. Phys. Chem. B 110(39), 19083–19086 (2006).
    [Crossref] [PubMed]
  12. G. H. Jaffari and W. Mahmood, “Investigation of phase evolution and control over phase transformation temperature and thermal hysteresis using stoichiometry and co-doping in VO2 thin films,” AIP Adv. 7(11), 115312 (2017).
    [Crossref]
  13. S. Chen, J. J. Liu, L. H. Wang, H. J. Luo, and Y. F. Gao, “Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti Doping: A Joint Experimental and Theoretical Study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
    [Crossref]
  14. Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).
  15. D.-H. Qiu, Q.-Y. Wen, Q.-H. Yang, C. Zhi, Y.-L. Jing, and H.-W. Zhang, “Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal-insulator transition characteristics of them,” Wuli Xuebao 62(21), 217201 (2013).
  16. M. Pan, J. Liu, H. Zhong, S. Wang, Z. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268(1-2), 178–183 (2004).
    [Crossref]
  17. C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
    [Crossref]
  18. H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
    [Crossref]
  19. P. Schilbe, “Raman scattering in VO2,” Physica B 316–317, 600–602 (2002).
    [Crossref]
  20. F. U. Begara, A. Crunteanu, and J.-P. Raskin, “Raman and XPS characterization of vanadium oxide thin films with temperature,” Appl. Surf. Sci. 403, 717–727 (2017).
    [Crossref]
  21. J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, “ZhangChen, and Chuanxiang Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
    [Crossref]
  22. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
    [Crossref]
  23. F. Théobald, R. Cabala, and E. Bernard, “Essai sur la Structure de VO2(B),” J. Solid State Chem. 17(4), 431–438 (1976).
    [Crossref]
  24. B. Guo, D. Wan, A. Ishaq, H. Luo, and Y. Gao, “Direct synthesis of high-performance thermal sensitive VO2(B) thin film by chemical vapor deposition for using in uncooled infrared detectors,” J. Alloys Compd. 715, 129–136 (2017).
    [Crossref]
  25. Y. Oka, T. Yao, N. Yamamoto, Y. Ueda, and A. Hayashi, “Phase Transition and V4+-V4+ Pairing in VO2(B),” J. Solid State Chem. 105(1), 271–278 (1993).
    [Crossref]
  26. R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield, and T. Thundat, “Effect of process parameters on phase stability and metal-insulator transition of vanadium dioxide (VO2) thin films by pulsed laser deposition,” Acta Mater. 137, 12–21 (2017).
    [Crossref]
  27. H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
    [Crossref] [PubMed]

2017 (5)

G. H. Jaffari and W. Mahmood, “Investigation of phase evolution and control over phase transformation temperature and thermal hysteresis using stoichiometry and co-doping in VO2 thin films,” AIP Adv. 7(11), 115312 (2017).
[Crossref]

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

F. U. Begara, A. Crunteanu, and J.-P. Raskin, “Raman and XPS characterization of vanadium oxide thin films with temperature,” Appl. Surf. Sci. 403, 717–727 (2017).
[Crossref]

R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield, and T. Thundat, “Effect of process parameters on phase stability and metal-insulator transition of vanadium dioxide (VO2) thin films by pulsed laser deposition,” Acta Mater. 137, 12–21 (2017).
[Crossref]

B. Guo, D. Wan, A. Ishaq, H. Luo, and Y. Gao, “Direct synthesis of high-performance thermal sensitive VO2(B) thin film by chemical vapor deposition for using in uncooled infrared detectors,” J. Alloys Compd. 715, 129–136 (2017).
[Crossref]

2016 (1)

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

2015 (3)

G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
[Crossref]

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

L. Phan, D. D. Ordinario, E. Karshalev, W. G. Walkup, M. A. Shenk, and A. A. Gorodetsky, “Infrared invisibility stickers inspired by cephalopods,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(25), 6493–6498 (2015).
[Crossref]

2014 (1)

S. Chen, J. J. Liu, L. H. Wang, H. J. Luo, and Y. F. Gao, “Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti Doping: A Joint Experimental and Theoretical Study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

2013 (3)

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

D.-H. Qiu, Q.-Y. Wen, Q.-H. Yang, C. Zhi, Y.-L. Jing, and H.-W. Zhang, “Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal-insulator transition characteristics of them,” Wuli Xuebao 62(21), 217201 (2013).

2012 (2)

X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
[Crossref]

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

2011 (1)

J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, “ZhangChen, and Chuanxiang Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

2010 (1)

2008 (1)

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

2006 (2)

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method,” J. Phys. Chem. B 110(39), 19083–19086 (2006).
[Crossref] [PubMed]

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of sub wavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

2005 (1)

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

2004 (1)

M. Pan, J. Liu, H. Zhong, S. Wang, Z. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268(1-2), 178–183 (2004).
[Crossref]

2002 (1)

P. Schilbe, “Raman scattering in VO2,” Physica B 316–317, 600–602 (2002).
[Crossref]

2001 (1)

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

1999 (1)

F. Béteille, L. Mazerolles, and J. Livage, “Microstructure and metal-insulating transition of VO2 thin films,” Mater. Res. Bull. 34(14–15), 2177–2184 (1999).
[Crossref]

1993 (1)

Y. Oka, T. Yao, N. Yamamoto, Y. Ueda, and A. Hayashi, “Phase Transition and V4+-V4+ Pairing in VO2(B),” J. Solid State Chem. 105(1), 271–278 (1993).
[Crossref]

1976 (1)

F. Théobald, R. Cabala, and E. Bernard, “Essai sur la Structure de VO2(B),” J. Solid State Chem. 17(4), 431–438 (1976).
[Crossref]

Arcangeletti, E.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Atwater, H. A.

Aydin, K.

Baldassare, L.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Bao-Ying, F.

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

Begara, F. U.

F. U. Begara, A. Crunteanu, and J.-P. Raskin, “Raman and XPS characterization of vanadium oxide thin films with temperature,” Appl. Surf. Sci. 403, 717–727 (2017).
[Crossref]

Bernard, E.

F. Théobald, R. Cabala, and E. Bernard, “Essai sur la Structure de VO2(B),” J. Solid State Chem. 17(4), 431–438 (1976).
[Crossref]

Béteille, F.

F. Béteille, L. Mazerolles, and J. Livage, “Microstructure and metal-insulating transition of VO2 thin films,” Mater. Res. Bull. 34(14–15), 2177–2184 (1999).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Boeri, L.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Briggs, R. M.

Cabala, R.

F. Théobald, R. Cabala, and E. Bernard, “Essai sur la Structure de VO2(B),” J. Solid State Chem. 17(4), 431–438 (1976).
[Crossref]

Cao, C.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
[Crossref] [PubMed]

J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, “ZhangChen, and Chuanxiang Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

Capasso, F.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Chae, B.-G.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Chen, C. H.

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

Chen, L.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Chen, S.

S. Chen, J. J. Liu, L. H. Wang, H. J. Luo, and Y. F. Gao, “Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti Doping: A Joint Experimental and Theoretical Study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

Chen, W.

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method,” J. Phys. Chem. B 110(39), 19083–19086 (2006).
[Crossref] [PubMed]

Chen, X.

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

M. Pan, J. Liu, H. Zhong, S. Wang, Z. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268(1-2), 178–183 (2004).
[Crossref]

Chen, X. Q.

X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
[Crossref]

Chen, Z.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
[Crossref] [PubMed]

J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, “ZhangChen, and Chuanxiang Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

Chu, J.

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Conder, K.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Crunteanu, A.

F. U. Begara, A. Crunteanu, and J.-P. Raskin, “Raman and XPS characterization of vanadium oxide thin films with temperature,” Appl. Surf. Sci. 403, 717–727 (2017).
[Crossref]

Dai, L.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
[Crossref] [PubMed]

Di Castro, D.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Donev, E. U.

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of sub wavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

Du, J.

J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, “ZhangChen, and Chuanxiang Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

Fan, S.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Feldman, L. C.

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of sub wavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

Gao, Y.

B. Guo, D. Wan, A. Ishaq, H. Luo, and Y. Gao, “Direct synthesis of high-performance thermal sensitive VO2(B) thin film by chemical vapor deposition for using in uncooled infrared detectors,” J. Alloys Compd. 715, 129–136 (2017).
[Crossref]

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
[Crossref] [PubMed]

J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, “ZhangChen, and Chuanxiang Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

Gao, Y. F.

S. Chen, J. J. Liu, L. H. Wang, H. J. Luo, and Y. F. Gao, “Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti Doping: A Joint Experimental and Theoretical Study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Gorodetsky, A. A.

L. Phan, D. D. Ordinario, E. Karshalev, W. G. Walkup, M. A. Shenk, and A. A. Gorodetsky, “Infrared invisibility stickers inspired by cephalopods,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(25), 6493–6498 (2015).
[Crossref]

Goswami, A.

R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield, and T. Thundat, “Effect of process parameters on phase stability and metal-insulator transition of vanadium dioxide (VO2) thin films by pulsed laser deposition,” Acta Mater. 137, 12–21 (2017).
[Crossref]

Gu, E. D.

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method,” J. Phys. Chem. B 110(39), 19083–19086 (2006).
[Crossref] [PubMed]

Gu, Q.

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Guo, B.

B. Guo, D. Wan, A. Ishaq, H. Luo, and Y. Gao, “Direct synthesis of high-performance thermal sensitive VO2(B) thin film by chemical vapor deposition for using in uncooled infrared detectors,” J. Alloys Compd. 715, 129–136 (2017).
[Crossref]

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Haglund, R. F.

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of sub wavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

Han, X.

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

Hayashi, A.

Y. Oka, T. Yao, N. Yamamoto, Y. Ueda, and A. Hayashi, “Phase Transition and V4+-V4+ Pairing in VO2(B),” J. Solid State Chem. 105(1), 271–278 (1993).
[Crossref]

He, X.

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Hu, B.

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method,” J. Phys. Chem. B 110(39), 19083–19086 (2006).
[Crossref] [PubMed]

Hu, T.

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method,” J. Phys. Chem. B 110(39), 19083–19086 (2006).
[Crossref] [PubMed]

Ishaq, A.

B. Guo, D. Wan, A. Ishaq, H. Luo, and Y. Gao, “Direct synthesis of high-performance thermal sensitive VO2(B) thin film by chemical vapor deposition for using in uncooled infrared detectors,” J. Alloys Compd. 715, 129–136 (2017).
[Crossref]

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Jaffari, G. H.

G. H. Jaffari and W. Mahmood, “Investigation of phase evolution and control over phase transformation temperature and thermal hysteresis using stoichiometry and co-doping in VO2 thin films,” AIP Adv. 7(11), 115312 (2017).
[Crossref]

Jia, Y.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Jiang, K.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Jiang-Heng, P.

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

Jiao, Z.

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

Jing, Y.-L.

D.-H. Qiu, Q.-Y. Wen, Q.-H. Yang, C. Zhi, Y.-L. Jing, and H.-W. Zhang, “Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal-insulator transition characteristics of them,” Wuli Xuebao 62(21), 217201 (2013).

Kang, K.-Y.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Kang, L.

J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, “ZhangChen, and Chuanxiang Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

Kaplan, G.

Karshalev, E.

L. Phan, D. D. Ordinario, E. Karshalev, W. G. Walkup, M. A. Shenk, and A. A. Gorodetsky, “Infrared invisibility stickers inspired by cephalopods,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(25), 6493–6498 (2015).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Khorshidi, B.

R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield, and T. Thundat, “Effect of process parameters on phase stability and metal-insulator transition of vanadium dioxide (VO2) thin films by pulsed laser deposition,” Acta Mater. 137, 12–21 (2017).
[Crossref]

Kim, G.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Kim, H.-T.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Kim, K.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Ko, C.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Lee, S.-J.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Li, Z.

M. Pan, J. Liu, H. Zhong, S. Wang, Z. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268(1-2), 178–183 (2004).
[Crossref]

Li, Z.-P.

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

Lim, Y.-S.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Liu, H.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Liu, J.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

M. Pan, J. Liu, H. Zhong, S. Wang, Z. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268(1-2), 178–183 (2004).
[Crossref]

Liu, J. J.

S. Chen, J. J. Liu, L. H. Wang, H. J. Luo, and Y. F. Gao, “Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti Doping: A Joint Experimental and Theoretical Study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

Liu, K.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Liu, X.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
[Crossref] [PubMed]

Liu, Z.-M.

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

Livage, J.

F. Béteille, L. Mazerolles, and J. Livage, “Microstructure and metal-insulating transition of VO2 thin films,” Mater. Res. Bull. 34(14–15), 2177–2184 (1999).
[Crossref]

Lopez, R.

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of sub wavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

Lu, W.

M. Pan, J. Liu, H. Zhong, S. Wang, Z. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268(1-2), 178–183 (2004).
[Crossref]

Luo, H.

B. Guo, D. Wan, A. Ishaq, H. Luo, and Y. Gao, “Direct synthesis of high-performance thermal sensitive VO2(B) thin film by chemical vapor deposition for using in uncooled infrared detectors,” J. Alloys Compd. 715, 129–136 (2017).
[Crossref]

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
[Crossref] [PubMed]

J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, “ZhangChen, and Chuanxiang Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

Luo, H. J.

S. Chen, J. J. Liu, L. H. Wang, H. J. Luo, and Y. F. Gao, “Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti Doping: A Joint Experimental and Theoretical Study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

Lupi, S.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Lv, Q.

X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
[Crossref]

Ma, H.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Mahmood, W.

G. H. Jaffari and W. Mahmood, “Investigation of phase evolution and control over phase transformation temperature and thermal hysteresis using stoichiometry and co-doping in VO2 thin films,” AIP Adv. 7(11), 115312 (2017).
[Crossref]

Mai, L. Q.

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method,” J. Phys. Chem. B 110(39), 19083–19086 (2006).
[Crossref] [PubMed]

Malavasi, L.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Marini, C.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Mazerolles, L.

F. Béteille, L. Mazerolles, and J. Livage, “Microstructure and metal-insulating transition of VO2 thin films,” Mater. Res. Bull. 34(14–15), 2177–2184 (1999).
[Crossref]

McGee, R.

R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield, and T. Thundat, “Effect of process parameters on phase stability and metal-insulator transition of vanadium dioxide (VO2) thin films by pulsed laser deposition,” Acta Mater. 137, 12–21 (2017).
[Crossref]

McGuire, K.

R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield, and T. Thundat, “Effect of process parameters on phase stability and metal-insulator transition of vanadium dioxide (VO2) thin films by pulsed laser deposition,” Acta Mater. 137, 12–21 (2017).
[Crossref]

Oka, Y.

Y. Oka, T. Yao, N. Yamamoto, Y. Ueda, and A. Hayashi, “Phase Transition and V4+-V4+ Pairing in VO2(B),” J. Solid State Chem. 105(1), 271–278 (1993).
[Crossref]

Ordinario, D. D.

L. Phan, D. D. Ordinario, E. Karshalev, W. G. Walkup, M. A. Shenk, and A. A. Gorodetsky, “Infrared invisibility stickers inspired by cephalopods,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(25), 6493–6498 (2015).
[Crossref]

Pan, M.

M. Pan, J. Liu, H. Zhong, S. Wang, Z. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268(1-2), 178–183 (2004).
[Crossref]

Perucchi, A.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Phan, L.

L. Phan, D. D. Ordinario, E. Karshalev, W. G. Walkup, M. A. Shenk, and A. A. Gorodetsky, “Infrared invisibility stickers inspired by cephalopods,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(25), 6493–6498 (2015).
[Crossref]

Pomjakushina, E.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Postorino, P.

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

Pryce, I. M.

Qiu, D.-H.

D.-H. Qiu, Q.-Y. Wen, Q.-H. Yang, C. Zhi, Y.-L. Jing, and H.-W. Zhang, “Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal-insulator transition characteristics of them,” Wuli Xuebao 62(21), 217201 (2013).

Ramanathan, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Raskin, J.-P.

F. U. Begara, A. Crunteanu, and J.-P. Raskin, “Raman and XPS characterization of vanadium oxide thin films with temperature,” Appl. Surf. Sci. 403, 717–727 (2017).
[Crossref]

Scheuer, J.

Schilbe, P.

P. Schilbe, “Raman scattering in VO2,” Physica B 316–317, 600–602 (2002).
[Crossref]

Schofield, K.

R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield, and T. Thundat, “Effect of process parameters on phase stability and metal-insulator transition of vanadium dioxide (VO2) thin films by pulsed laser deposition,” Acta Mater. 137, 12–21 (2017).
[Crossref]

Shenk, M. A.

L. Phan, D. D. Ordinario, E. Karshalev, W. G. Walkup, M. A. Shenk, and A. A. Gorodetsky, “Infrared invisibility stickers inspired by cephalopods,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(25), 6493–6498 (2015).
[Crossref]

Shi, S.

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Théobald, F.

F. Théobald, R. Cabala, and E. Bernard, “Essai sur la Structure de VO2(B),” J. Solid State Chem. 17(4), 431–438 (1976).
[Crossref]

Thundat, T.

R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield, and T. Thundat, “Effect of process parameters on phase stability and metal-insulator transition of vanadium dioxide (VO2) thin films by pulsed laser deposition,” Acta Mater. 137, 12–21 (2017).
[Crossref]

Ueda, Y.

Y. Oka, T. Yao, N. Yamamoto, Y. Ueda, and A. Hayashi, “Phase Transition and V4+-V4+ Pairing in VO2(B),” J. Solid State Chem. 105(1), 271–278 (1993).
[Crossref]

Villegas, J. Y.

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of sub wavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

Walkup, W. G.

L. Phan, D. D. Ordinario, E. Karshalev, W. G. Walkup, M. A. Shenk, and A. A. Gorodetsky, “Infrared invisibility stickers inspired by cephalopods,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(25), 6493–6498 (2015).
[Crossref]

Wan, D.

B. Guo, D. Wan, A. Ishaq, H. Luo, and Y. Gao, “Direct synthesis of high-performance thermal sensitive VO2(B) thin film by chemical vapor deposition for using in uncooled infrared detectors,” J. Alloys Compd. 715, 129–136 (2017).
[Crossref]

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Wang, C.

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Wang, H.

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Wang, L. H.

S. Chen, J. J. Liu, L. H. Wang, H. J. Luo, and Y. F. Gao, “Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti Doping: A Joint Experimental and Theoretical Study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

Wang, S.

M. Pan, J. Liu, H. Zhong, S. Wang, Z. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268(1-2), 178–183 (2004).
[Crossref]

Wei, Y.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Wen, Q.-Y.

D.-H. Qiu, Q.-Y. Wen, Q.-H. Yang, C. Zhi, Y.-L. Jing, and H.-W. Zhang, “Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal-insulator transition characteristics of them,” Wuli Xuebao 62(21), 217201 (2013).

Wu, Y.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Xiao, L.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Xiao-Hua, W.

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

Xing, H.

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Xiong, B. F.

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

Xu, X.

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Yamamoto, N.

Y. Oka, T. Yao, N. Yamamoto, Y. Ueda, and A. Hayashi, “Phase Transition and V4+-V4+ Pairing in VO2(B),” J. Solid State Chem. 105(1), 271–278 (1993).
[Crossref]

Yang, Q.-H.

D.-H. Qiu, Q.-Y. Wen, Q.-H. Yang, C. Zhi, Y.-L. Jing, and H.-W. Zhang, “Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal-insulator transition characteristics of them,” Wuli Xuebao 62(21), 217201 (2013).

Yao, T.

Y. Oka, T. Yao, N. Yamamoto, Y. Ueda, and A. Hayashi, “Phase Transition and V4+-V4+ Pairing in VO2(B),” J. Solid State Chem. 105(1), 271–278 (1993).
[Crossref]

Ya-Qin, H.

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

Yi, L.

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

Yi, X. J.

X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
[Crossref]

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

Youn, D.-H.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Zhang, H.-W.

D.-H. Qiu, Q.-Y. Wen, Q.-H. Yang, C. Zhi, Y.-L. Jing, and H.-W. Zhang, “Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal-insulator transition characteristics of them,” Wuli Xuebao 62(21), 217201 (2013).

Zhang, J.

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

Zhang, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Zhang, Z.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
[Crossref] [PubMed]

J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, “ZhangChen, and Chuanxiang Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

Zhao, Q.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Zhao, W.

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Zhao, X. G.

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

Zhi, C.

D.-H. Qiu, Q.-Y. Wen, Q.-H. Yang, C. Zhi, Y.-L. Jing, and H.-W. Zhang, “Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal-insulator transition characteristics of them,” Wuli Xuebao 62(21), 217201 (2013).

Zhong, H.

M. Pan, J. Liu, H. Zhong, S. Wang, Z. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268(1-2), 178–183 (2004).
[Crossref]

Zhou, J.

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo, and Y. Gao, “Sputtering Deposition of Sandwich-Structured V2O5/Metal (V, W)/V2O5 Multilayers for the Preparation of High-Performance Thermally Sensitive VO2 Thin Films with Selectivity of VO2 (B) and VO2 (M) Polymorph,” ACS Appl. Mater. Interfaces 8(12), 7884–7890 (2016).
[Crossref] [PubMed]

Acta Mater. (1)

R. McGee, A. Goswami, B. Khorshidi, K. McGuire, K. Schofield, and T. Thundat, “Effect of process parameters on phase stability and metal-insulator transition of vanadium dioxide (VO2) thin films by pulsed laser deposition,” Acta Mater. 137, 12–21 (2017).
[Crossref]

AIP Adv. (1)

G. H. Jaffari and W. Mahmood, “Investigation of phase evolution and control over phase transformation temperature and thermal hysteresis using stoichiometry and co-doping in VO2 thin films,” AIP Adv. 7(11), 115312 (2017).
[Crossref]

Appl. Phys. Lett. (1)

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86(24), 242101 (2005).
[Crossref]

Appl. Surf. Sci. (2)

F. U. Begara, A. Crunteanu, and J.-P. Raskin, “Raman and XPS characterization of vanadium oxide thin films with temperature,” Appl. Surf. Sci. 403, 717–727 (2017).
[Crossref]

X. Xu, X. He, H. Wang, Q. Gu, S. Shi, H. Xing, C. Wang, J. Zhang, X. Chen, and J. Chu, “The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures,” Appl. Surf. Sci. 261, 83–87 (2012).
[Crossref]

J. Alloys Compd. (1)

B. Guo, D. Wan, A. Ishaq, H. Luo, and Y. Gao, “Direct synthesis of high-performance thermal sensitive VO2(B) thin film by chemical vapor deposition for using in uncooled infrared detectors,” J. Alloys Compd. 715, 129–136 (2017).
[Crossref]

J. Cryst. Growth (1)

M. Pan, J. Liu, H. Zhong, S. Wang, Z. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268(1-2), 178–183 (2004).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L. Phan, D. D. Ordinario, E. Karshalev, W. G. Walkup, M. A. Shenk, and A. A. Gorodetsky, “Infrared invisibility stickers inspired by cephalopods,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(25), 6493–6498 (2015).
[Crossref]

J. Phys. Chem. B (1)

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method,” J. Phys. Chem. B 110(39), 19083–19086 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

S. Chen, J. J. Liu, L. H. Wang, H. J. Luo, and Y. F. Gao, “Unraveling Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti Doping: A Joint Experimental and Theoretical Study,” J. Phys. Chem. C 118(33), 18938–18944 (2014).
[Crossref]

J. Solid State Chem. (2)

Y. Oka, T. Yao, N. Yamamoto, Y. Ueda, and A. Hayashi, “Phase Transition and V4+-V4+ Pairing in VO2(B),” J. Solid State Chem. 105(1), 271–278 (1993).
[Crossref]

F. Théobald, R. Cabala, and E. Bernard, “Essai sur la Structure de VO2(B),” J. Solid State Chem. 17(4), 431–438 (1976).
[Crossref]

Mater. Res. Bull. (1)

F. Béteille, L. Mazerolles, and J. Livage, “Microstructure and metal-insulating transition of VO2 thin films,” Mater. Res. Bull. 34(14–15), 2177–2184 (1999).
[Crossref]

Nano Lett. (1)

L. Xiao, H. Ma, J. Liu, W. Zhao, Y. Jia, Q. Zhao, K. Liu, Y. Wu, Y. Wei, S. Fan, and K. Jiang, “Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films,” Nano Lett. 15(12), 8365–8370 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Optik (Stuttg.) (1)

X. Q. Chen, Q. Lv, and X. J. Yi, “Smart window coating based on nanostructured VO2 thin film,” Optik (Stuttg.) 123(13), 1187–1189 (2012).
[Crossref]

Phys. Rev. B (2)

C. Marini, E. Arcangeletti, D. Di Castro, L. Baldassare, A. Perucchi, S. Lupi, L. Malavasi, L. Boeri, E. Pomjakushina, K. Conder, and P. Postorino, “Optical properties of V1−xCrxO2 compounds under high pressure,” Phys. Rev. B 77(23), 235111 (2008).
[Crossref]

E. U. Donev, J. Y. Villegas, R. Lopez, R. F. Haglund, and L. C. Feldman, “Optical properties of sub wavelength hole arrays in vanadium dioxide thin films,” Phys. Rev. B 73(20), 201401 (2006).
[Crossref]

Phys. Rev. X (1)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance,” Phys. Rev. X 3(4), 041004 (2013).
[Crossref]

Physica B (1)

P. Schilbe, “Raman scattering in VO2,” Physica B 316–317, 600–602 (2002).
[Crossref]

Sci. Rep. (1)

J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, and X. Liu, “VO2 thermochromic smart window for energy savings and generation,” Sci. Rep. 3(3), 3029 (2013).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

C. H. Chen, X. J. Yi, X. G. Zhao, and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators B Chem. 90(3), 212–214 (2001).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, “ZhangChen, and Chuanxiang Cao, “Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition,” Sol. Energy Mater. Sol. Cells 95(2), 469–475 (2011).
[Crossref]

Wuli Xuebao (2)

Z. Jiao, L. Yi, Z.-M. Liu, Z.-P. Li, H. Ya-Qin, P. Jiang-Heng, F. Bao-Ying, W. Xiao-Hua, and X. Han, “Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film,” Wuli Xuebao 66, 238101 (2017).

D.-H. Qiu, Q.-Y. Wen, Q.-H. Yang, C. Zhi, Y.-L. Jing, and H.-W. Zhang, “Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal-insulator transition characteristics of them,” Wuli Xuebao 62(21), 217201 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) XRD patterns of Hf:VO2 samples at different Hf doping concentrations; (b) the grain size and lattice spacing d (011) values of samples at different Hf doping concentrations.
Fig. 2
Fig. 2 AFM 2D and 3D images (insets) of Hf-doped VO2 samples with different Hf doping concentrations (a) 0 at.%, (b) 1 at.% and (c) 3 at.%.
Fig. 3
Fig. 3 (a) Sheet resistance curves of HVO samples at different doping concentrations; Also shown are their Gauss fit curves using d(lg(R))/d(T) for (b) VO2, (c) HVO1 and (d) HVO3 samples.
Fig. 4
Fig. 4 Optical transmittance curves measured at different temperatures during the heating and cooling process of Hf-doped VO2 samples for (a) VO2 (b) HVO1 and (c) HVO3 respectively. (d) Optical transmittance at 1500 nm versus temperature for all 3 samples. Notice the feature labeled by “*” is due to changing lamps in the UV-Vis characterizations.
Fig. 5
Fig. 5 The temperature dependent Raman spectra during the heating and cooling stages of samples at different doping concentrations, (a) and (b) 0 at.%, (c) and (d) 1 at.%,(e) and (f) 3 at.%; (g) peak intensity versus temperature curves of the Raman peak at 193 cm−1; (h) peak intensity versus temperature curves of the Raman peak at ~616 cm−1.
Fig. 6
Fig. 6 The thermal infrared radiation temperature(IRT) versus the background temperature (BGT) during the heating and cooling process for samples with different Hf doping concentration, (a) VO2, (c) HVO1 and (e) HVO3, respectively. Several thermal radiation images and the IRT reading at different BGT were also presented in (b), (d) and (f).
Fig. 7
Fig. 7 XRD patterns of samples with Hf doping concentrations of 5 at.% and 8 at.%.
Fig. 8
Fig. 8 The sheet resistance curves of samples at doping concentrations of 5 at.% and 8 at.%.

Metrics