Abstract

The X-ray diffraction result of Gd2(MoO4)3: Yb3+/Er3+ phosphors reveals the phase transition process associated with the calcination temperature. Under the same excitation power, the sample prepared at 700 °C shows maximal emission intensity due to the asymmetric structure of the phosphors. In addition, the optical temperature sensing behavior of the samples calcined at different calcination temperatures is also studied in detail. The maximum of absolute sensitivity is found to be 0.02533 K−1 at 482 K, which is obtained for the sample calcined at 700 °C. The result indicates that the samples have a great potential in optical temperature sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

Upconversion luminescence of Ba3La(PO4)3:Yb3+-Er3+/Tm3+ phosphors for optimal temperature sensing

Jiafeng Cao, Jia Zhang, and Xiaowei Li
Appl. Opt. 57(6) 1345-1350 (2018)

Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4

Xiaona Chai, Jun Li, Xusheng Wang, Yanxia Li, and Xi Yao
Opt. Express 24(20) 22438-22447 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
    [Crossref] [PubMed]
  2. J. Y. Park, K. S. Shim, and H. K. Yang, “Synthesis and photoluminescence properties of CaGd2(MoO4)4:Eu3+ red phosphors,” Ceram. Int. 42(5), 5737–5742 (2016).
    [Crossref]
  3. D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
    [Crossref]
  4. L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 Core-Shell Nanoparticles via the Use of laser cavity,” ACS Nano 11(1), 843–849 (2017).
    [Crossref] [PubMed]
  5. A. A. Ansari and M. Alam, “Optical and structural studies of CaMoO4: Sm, CaMoO4:Sm@CaMoO4 and CaMoO4:Sm@CaMoO4@SiO2 core–shell nanoparticles,” J. Lumin. 157, 257–263 (2015).
    [Crossref]
  6. N. Zhou, B. Xu, L. Gan, J. P. Zhang, J. B. Han, and T. Y. Zhai, “Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(7), 1591–1595 (2017).
    [Crossref]
  7. Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
    [Crossref]
  8. J. Liu, A. M. Kaczmarek, and R. V. Deun, “Concentration and temperature dependent upconversion luminescence of CaWO4: Er3+, Yb3+ 3D microstructure materials,” J. Lumin. 188, 604–611 (2017).
    [Crossref]
  9. A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
    [Crossref]
  10. Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
    [Crossref]
  11. L. P. Li, L. J. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. G. Zhang, and W. W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
    [Crossref] [PubMed]
  12. H. Y. Hao, Z. M. Lu, H. Y. Lu, G. H. Ao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor,” Ceram. Int. 43(14), 10948–10954 (2017).
    [Crossref]
  13. A. Pandey, V. K. Rai, V. Kumar, V. J. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
    [Crossref]
  14. D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
    [Crossref]
  15. W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
    [Crossref]
  16. M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+ -Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
    [Crossref]
  17. T. T. Yan, D. S. Zhang, L. Y. Shi, H. P. Yang, H. L. Mai, and J. H. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
    [Crossref]
  18. D. Zhao, F. X. Ma, P. G. Duan, C. K. Nie, J. F. Guo, and R. J. Zhang, “Commensurately modulated structure and luminescent properties of Na3Pr(PO4)2,” J. Lumin. 192, 129–135 (2017).
    [Crossref]
  19. Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
    [Crossref]
  20. Z. Huang, Z. Q. Nie, M. B. Xie, Y. X. Wang, and D. Y. Li, “Excellent optical thermometry based on upconversion emission in SrMoO4:Er3+ phosphor,” Opt. Mater. Express 7(7), 2404 (2017).
    [Crossref]
  21. X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
    [Crossref]
  22. M. Quintanilla, I. X. Cantarelli, M. Pedroni, A. Speghini, and F. Vetrone, “Intense ultraviolet upconversion in water dispersible SrF2:Tm3+, Yb3+ nanoparticles: the effect of the environment on light emissions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3108–3113 (2015).
    [Crossref]
  23. S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
    [Crossref] [PubMed]
  24. H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
    [Crossref]
  25. X. Chai, J. Li, X. S. Wang, Y. X. Li, and X. Yao, “Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4,” Opt. Express 24(20), 22438–22447 (2016).
    [Crossref] [PubMed]
  26. P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneous realization of high- and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
    [Crossref]
  27. A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
    [Crossref]
  28. B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
    [Crossref]
  29. W. Xu, Z. Zhang, and W. Cao, “Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4.,” Opt. Lett. 37(23), 4865–4867 (2012).
    [Crossref] [PubMed]
  30. M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
    [Crossref]
  31. L. Mukhopadhyay and V. K. Rai, “Upconversion based near white light emission, intrinsic optical bistability and temperature sensing in Er3+/Tm3+/Yb3+/Li+:NaZnPO4 phosphors,” New J. Chem. 41(15), 7650–7661 (2017).
    [Crossref]
  32. M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+-Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuators B Chem. 209, 775–780 (2015).
    [Crossref]
  33. N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
    [Crossref]

2017 (10)

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 Core-Shell Nanoparticles via the Use of laser cavity,” ACS Nano 11(1), 843–849 (2017).
[Crossref] [PubMed]

N. Zhou, B. Xu, L. Gan, J. P. Zhang, J. B. Han, and T. Y. Zhai, “Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(7), 1591–1595 (2017).
[Crossref]

J. Liu, A. M. Kaczmarek, and R. V. Deun, “Concentration and temperature dependent upconversion luminescence of CaWO4: Er3+, Yb3+ 3D microstructure materials,” J. Lumin. 188, 604–611 (2017).
[Crossref]

H. Y. Hao, Z. M. Lu, H. Y. Lu, G. H. Ao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor,” Ceram. Int. 43(14), 10948–10954 (2017).
[Crossref]

D. Zhao, F. X. Ma, P. G. Duan, C. K. Nie, J. F. Guo, and R. J. Zhang, “Commensurately modulated structure and luminescent properties of Na3Pr(PO4)2,” J. Lumin. 192, 129–135 (2017).
[Crossref]

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

L. Mukhopadhyay and V. K. Rai, “Upconversion based near white light emission, intrinsic optical bistability and temperature sensing in Er3+/Tm3+/Yb3+/Li+:NaZnPO4 phosphors,” New J. Chem. 41(15), 7650–7661 (2017).
[Crossref]

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+ -Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
[Crossref]

Z. Huang, Z. Q. Nie, M. B. Xie, Y. X. Wang, and D. Y. Li, “Excellent optical thermometry based on upconversion emission in SrMoO4:Er3+ phosphor,” Opt. Mater. Express 7(7), 2404 (2017).
[Crossref]

2016 (9)

L. P. Li, L. J. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. G. Zhang, and W. W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

X. Chai, J. Li, X. S. Wang, Y. X. Li, and X. Yao, “Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4,” Opt. Express 24(20), 22438–22447 (2016).
[Crossref] [PubMed]

H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
[Crossref]

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
[Crossref]

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

J. Y. Park, K. S. Shim, and H. K. Yang, “Synthesis and photoluminescence properties of CaGd2(MoO4)4:Eu3+ red phosphors,” Ceram. Int. 42(5), 5737–5742 (2016).
[Crossref]

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

2015 (8)

A. A. Ansari and M. Alam, “Optical and structural studies of CaMoO4: Sm, CaMoO4:Sm@CaMoO4 and CaMoO4:Sm@CaMoO4@SiO2 core–shell nanoparticles,” J. Lumin. 157, 257–263 (2015).
[Crossref]

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

A. Pandey, V. K. Rai, V. Kumar, V. J. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

M. Quintanilla, I. X. Cantarelli, M. Pedroni, A. Speghini, and F. Vetrone, “Intense ultraviolet upconversion in water dispersible SrF2:Tm3+, Yb3+ nanoparticles: the effect of the environment on light emissions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3108–3113 (2015).
[Crossref]

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneous realization of high- and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+-Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuators B Chem. 209, 775–780 (2015).
[Crossref]

2013 (1)

Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
[Crossref]

2012 (2)

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

W. Xu, Z. Zhang, and W. Cao, “Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4.,” Opt. Lett. 37(23), 4865–4867 (2012).
[Crossref] [PubMed]

2011 (1)

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

2009 (1)

T. T. Yan, D. S. Zhang, L. Y. Shi, H. P. Yang, H. L. Mai, and J. H. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

2007 (1)

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Alam, M.

A. A. Ansari and M. Alam, “Optical and structural studies of CaMoO4: Sm, CaMoO4:Sm@CaMoO4 and CaMoO4:Sm@CaMoO4@SiO2 core–shell nanoparticles,” J. Lumin. 157, 257–263 (2015).
[Crossref]

Ansari, A. A.

A. A. Ansari and M. Alam, “Optical and structural studies of CaMoO4: Sm, CaMoO4:Sm@CaMoO4 and CaMoO4:Sm@CaMoO4@SiO2 core–shell nanoparticles,” J. Lumin. 157, 257–263 (2015).
[Crossref]

Ao, G. H.

H. Y. Hao, Z. M. Lu, H. Y. Lu, G. H. Ao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor,” Ceram. Int. 43(14), 10948–10954 (2017).
[Crossref]

Bao, Y. N.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Bi, W. B.

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

Bi, Y. F.

H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
[Crossref]

Bu, Y. Y.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Caballero, A. C.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cantarelli, I. X.

M. Quintanilla, I. X. Cantarelli, M. Pedroni, A. Speghini, and F. Vetrone, “Intense ultraviolet upconversion in water dispersible SrF2:Tm3+, Yb3+ nanoparticles: the effect of the environment on light emissions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3108–3113 (2015).
[Crossref]

Cantelar, E.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cao, B. S.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Cao, W.

Cao, W. W.

Cao, Y. C.

Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
[Crossref]

Chai, X.

Chen, B. J.

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Chen, D. Q.

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

Chen, X.

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 Core-Shell Nanoparticles via the Use of laser cavity,” ACS Nano 11(1), 843–849 (2017).
[Crossref] [PubMed]

Cusso, F.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Deun, R. V.

J. Liu, A. M. Kaczmarek, and R. V. Deun, “Concentration and temperature dependent upconversion luminescence of CaWO4: Er3+, Yb3+ 3D microstructure materials,” J. Lumin. 188, 604–611 (2017).
[Crossref]

Dong, B.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Dong, H.

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

Du, P.

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneous realization of high- and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

Duan, P. G.

D. Zhao, F. X. Ma, P. G. Duan, C. K. Nie, J. F. Guo, and R. J. Zhang, “Commensurately modulated structure and luminescent properties of Na3Pr(PO4)2,” J. Lumin. 192, 129–135 (2017).
[Crossref]

Fang, J. H.

T. T. Yan, D. S. Zhang, L. Y. Shi, H. P. Yang, H. L. Mai, and J. H. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Fard, F. G.

A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
[Crossref]

Gan, L.

N. Zhou, B. Xu, L. Gan, J. P. Zhang, J. B. Han, and T. Y. Zhai, “Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(7), 1591–1595 (2017).
[Crossref]

Gao, Y. C.

H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
[Crossref]

Goldys, E.

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Guo, J. F.

D. Zhao, F. X. Ma, P. G. Duan, C. K. Nie, J. F. Guo, and R. J. Zhang, “Commensurately modulated structure and luminescent properties of Na3Pr(PO4)2,” J. Lumin. 192, 129–135 (2017).
[Crossref]

Han, J. B.

N. Zhou, B. Xu, L. Gan, J. P. Zhang, J. B. Han, and T. Y. Zhai, “Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(7), 1591–1595 (2017).
[Crossref]

Hao, H. Y.

H. Y. Hao, Z. M. Lu, H. Y. Lu, G. H. Ao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor,” Ceram. Int. 43(14), 10948–10954 (2017).
[Crossref]

H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
[Crossref]

Huang, P.

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

Huang, Z.

Jin, D. Y.

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Jin, L. M.

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 Core-Shell Nanoparticles via the Use of laser cavity,” ACS Nano 11(1), 843–849 (2017).
[Crossref] [PubMed]

Kaczmarek, A. M.

J. Liu, A. M. Kaczmarek, and R. V. Deun, “Concentration and temperature dependent upconversion luminescence of CaWO4: Er3+, Yb3+ 3D microstructure materials,” J. Lumin. 188, 604–611 (2017).
[Crossref]

Khachatourian, A. M.

A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
[Crossref]

Kumar, K.

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+-Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuators B Chem. 209, 775–780 (2015).
[Crossref]

Kumar, V.

A. Pandey, V. K. Rai, V. Kumar, V. J. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

Kumar, V. J.

A. Pandey, V. K. Rai, V. Kumar, V. J. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

Kumari, A.

A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

Li, C.

Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
[Crossref]

Li, C. R.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Li, D. Y.

Li, J.

Li, L. P.

Li, W. P.

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneous realization of high- and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

Li, X. P.

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Li, Y. X.

Liang, Z.

Lin, J.

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Liu, C. S.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, D. M.

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Liu, D. P.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Liu, J.

J. Liu, A. M. Kaczmarek, and R. V. Deun, “Concentration and temperature dependent upconversion luminescence of CaWO4: Er3+, Yb3+ 3D microstructure materials,” J. Lumin. 188, 604–611 (2017).
[Crossref]

Liu, K. C.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Liu, Q.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, T.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Lu, H. Y.

H. Y. Hao, Z. M. Lu, H. Y. Lu, G. H. Ao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor,” Ceram. Int. 43(14), 10948–10954 (2017).
[Crossref]

H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
[Crossref]

Lu, S. C.

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

Lu, Y. Q.

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Lu, Z. M.

H. Y. Hao, Z. M. Lu, H. Y. Lu, G. H. Ao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor,” Ceram. Int. 43(14), 10948–10954 (2017).
[Crossref]

Luo, L. H.

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneous realization of high- and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

Ma, C. S.

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
[Crossref]

Ma, F. X.

D. Zhao, F. X. Ma, P. G. Duan, C. K. Nie, J. F. Guo, and R. J. Zhang, “Commensurately modulated structure and luminescent properties of Na3Pr(PO4)2,” J. Lumin. 192, 129–135 (2017).
[Crossref]

Maciel, G. S.

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

Mahata, M. K.

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+-Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuators B Chem. 209, 775–780 (2015).
[Crossref]

Mai, H. L.

T. T. Yan, D. S. Zhang, L. Y. Shi, H. P. Yang, H. L. Mai, and J. H. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Meng, Q. Y.

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

Meng, R.

H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
[Crossref]

Mensi, M.

A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
[Crossref]

Mi, C.

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Miao, S. M.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Mondal, M.

M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+ -Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
[Crossref]

Mukhopadhyay, L.

L. Mukhopadhyay and V. K. Rai, “Upconversion based near white light emission, intrinsic optical bistability and temperature sensing in Er3+/Tm3+/Yb3+/Li+:NaZnPO4 phosphors,” New J. Chem. 41(15), 7650–7661 (2017).
[Crossref]

Nie, C. K.

D. Zhao, F. X. Ma, P. G. Duan, C. K. Nie, J. F. Guo, and R. J. Zhang, “Commensurately modulated structure and luminescent properties of Na3Pr(PO4)2,” J. Lumin. 192, 129–135 (2017).
[Crossref]

Nie, Z. Q.

Pandey, A.

A. Pandey, V. K. Rai, V. Kumar, V. J. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

Park, J. Y.

J. Y. Park, K. S. Shim, and H. K. Yang, “Synthesis and photoluminescence properties of CaGd2(MoO4)4:Eu3+ red phosphors,” Ceram. Int. 42(5), 5737–5742 (2016).
[Crossref]

Pedroni, M.

M. Quintanilla, I. X. Cantarelli, M. Pedroni, A. Speghini, and F. Vetrone, “Intense ultraviolet upconversion in water dispersible SrF2:Tm3+, Yb3+ nanoparticles: the effect of the environment on light emissions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3108–3113 (2015).
[Crossref]

Popov, S.

A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
[Crossref]

Qiu, J. B.

Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
[Crossref]

Quintanilla, M.

M. Quintanilla, I. X. Cantarelli, M. Pedroni, A. Speghini, and F. Vetrone, “Intense ultraviolet upconversion in water dispersible SrF2:Tm3+, Yb3+ nanoparticles: the effect of the environment on light emissions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3108–3113 (2015).
[Crossref]

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Rai, V. K.

L. Mukhopadhyay and V. K. Rai, “Upconversion based near white light emission, intrinsic optical bistability and temperature sensing in Er3+/Tm3+/Yb3+/Li+:NaZnPO4 phosphors,” New J. Chem. 41(15), 7650–7661 (2017).
[Crossref]

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+ -Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
[Crossref]

A. Pandey, V. K. Rai, V. Kumar, V. J. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+-Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuators B Chem. 209, 775–780 (2015).
[Crossref]

A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

Rakov, N.

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

Sarpoolaky, H.

A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
[Crossref]

Shi, L. Y.

T. T. Yan, D. S. Zhang, L. Y. Shi, H. P. Yang, H. L. Mai, and J. H. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Shim, K. S.

J. Y. Park, K. S. Shim, and H. K. Yang, “Synthesis and photoluminescence properties of CaGd2(MoO4)4:Eu3+ red phosphors,” Ceram. Int. 42(5), 5737–5742 (2016).
[Crossref]

Sinha, S.

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

Siu, C. K.

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 Core-Shell Nanoparticles via the Use of laser cavity,” ACS Nano 11(1), 843–849 (2017).
[Crossref] [PubMed]

Song, Y. L.

H. Y. Hao, Z. M. Lu, H. Y. Lu, G. H. Ao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor,” Ceram. Int. 43(14), 10948–10954 (2017).
[Crossref]

H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
[Crossref]

Soni, A. K.

A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

Speghini, A.

M. Quintanilla, I. X. Cantarelli, M. Pedroni, A. Speghini, and F. Vetrone, “Intense ultraviolet upconversion in water dispersible SrF2:Tm3+, Yb3+ nanoparticles: the effect of the environment on light emissions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3108–3113 (2015).
[Crossref]

Srivastava, C.

M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+ -Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
[Crossref]

Sun, J. S.

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Sun, L. D.

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

Sun, W. J.

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

Swart, H. C.

A. Pandey, V. K. Rai, V. Kumar, V. J. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

Tiwari, S. P.

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

Tong, L. L.

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Toprak, M. S.

A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
[Crossref]

Vasileva, E.

A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
[Crossref]

Vetrone, F.

M. Quintanilla, I. X. Cantarelli, M. Pedroni, A. Speghini, and F. Vetrone, “Intense ultraviolet upconversion in water dispersible SrF2:Tm3+, Yb3+ nanoparticles: the effect of the environment on light emissions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3108–3113 (2015).
[Crossref]

Villegas, M.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Vogt, C.

A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
[Crossref]

Wang, F.

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 Core-Shell Nanoparticles via the Use of laser cavity,” ACS Nano 11(1), 843–849 (2017).
[Crossref] [PubMed]

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Wang, R. F.

Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
[Crossref]

Wang, X. F.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Wang, X. J.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Wang, X. S.

Wang, Y. X.

Z. Huang, Z. Q. Nie, M. B. Xie, Y. X. Wang, and D. Y. Li, “Excellent optical thermometry based on upconversion emission in SrMoO4:Er3+ phosphor,” Opt. Mater. Express 7(7), 2404 (2017).
[Crossref]

H. Y. Hao, Z. M. Lu, H. Y. Lu, G. H. Ao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor,” Ceram. Int. 43(14), 10948–10954 (2017).
[Crossref]

H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
[Crossref]

Wu, J. L.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Wu, Z. L.

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Xia, H. P.

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Xie, M. B.

Xu, B.

N. Zhou, B. Xu, L. Gan, J. P. Zhang, J. B. Han, and T. Y. Zhai, “Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(7), 1591–1595 (2017).
[Crossref]

Xu, M.

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

Xu, W.

Xu, X. S.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Xu, X. X.

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Yan, C. H.

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

Yan, T. T.

T. T. Yan, D. S. Zhang, L. Y. Shi, H. P. Yang, H. L. Mai, and J. H. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Yan, X. H.

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Yang, H. K.

J. Y. Park, K. S. Shim, and H. K. Yang, “Synthesis and photoluminescence properties of CaGd2(MoO4)4:Eu3+ red phosphors,” Ceram. Int. 42(5), 5737–5742 (2016).
[Crossref]

Yang, H. P.

T. T. Yan, D. S. Zhang, L. Y. Shi, H. P. Yang, H. L. Mai, and J. H. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Yang, T.

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Yao, X.

Yi, J.

Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
[Crossref]

Yu, S. F.

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 Core-Shell Nanoparticles via the Use of laser cavity,” ACS Nano 11(1), 843–849 (2017).
[Crossref] [PubMed]

Yue, Q. Y.

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneous realization of high- and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

Zhai, T. Y.

N. Zhou, B. Xu, L. Gan, J. P. Zhang, J. B. Han, and T. Y. Zhai, “Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(7), 1591–1595 (2017).
[Crossref]

Zhang, D. S.

T. T. Yan, D. S. Zhang, L. Y. Shi, H. P. Yang, H. L. Mai, and J. H. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Zhang, J. P.

N. Zhou, B. Xu, L. Gan, J. P. Zhang, J. B. Han, and T. Y. Zhai, “Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(7), 1591–1595 (2017).
[Crossref]

Zhang, J. S.

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Zhang, L. X.

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Zhang, R. J.

D. Zhao, F. X. Ma, P. G. Duan, C. K. Nie, J. F. Guo, and R. J. Zhang, “Commensurately modulated structure and luminescent properties of Na3Pr(PO4)2,” J. Lumin. 192, 129–135 (2017).
[Crossref]

Zhang, X. Q.

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Zhang, X. R.

H. Y. Hao, Z. M. Lu, H. Y. Lu, G. H. Ao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor,” Ceram. Int. 43(14), 10948–10954 (2017).
[Crossref]

H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
[Crossref]

Zhang, Z.

Zhang, Z. G.

Zhang, Z. Y.

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Zhao, D.

D. Zhao, F. X. Ma, P. G. Duan, C. K. Nie, J. F. Guo, and R. J. Zhang, “Commensurately modulated structure and luminescent properties of Na3Pr(PO4)2,” J. Lumin. 192, 129–135 (2017).
[Crossref]

Zhao, Z. Y.

Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
[Crossref]

Zheng, H.

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Zheng, L. J.

Zhong, H.

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Zhou, D. C.

Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
[Crossref]

Zhou, J. J.

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

Zhou, N.

N. Zhou, B. Xu, L. Gan, J. P. Zhang, J. B. Han, and T. Y. Zhai, “Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(7), 1591–1595 (2017).
[Crossref]

Zhou, Y.

ACS Nano (1)

L. M. Jin, X. Chen, C. K. Siu, F. Wang, and S. F. Yu, “Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 Core-Shell Nanoparticles via the Use of laser cavity,” ACS Nano 11(1), 843–849 (2017).
[Crossref] [PubMed]

Appl. Phys. Express (1)

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Appl. Phys. Lett. (1)

B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Ceram. Int. (4)

J. Y. Park, K. S. Shim, and H. K. Yang, “Synthesis and photoluminescence properties of CaGd2(MoO4)4:Eu3+ red phosphors,” Ceram. Int. 42(5), 5737–5742 (2016).
[Crossref]

H. Y. Hao, Z. M. Lu, H. Y. Lu, G. H. Ao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor,” Ceram. Int. 43(14), 10948–10954 (2017).
[Crossref]

W. B. Bi, Q. Y. Meng, W. J. Sun, and S. C. Lu, “Optical temperature sensing properties of Er3+, Yb3+ co-doped NaGd(MoO4)2 phosphor,” Ceram. Int. 43(1), 1460–1465 (2017).
[Crossref]

Y. N. Bao, X. S. Xu, J. L. Wu, K. C. Liu, Z. Y. Zhang, B. S. Cao, and B. Dong, “Thermal-induced local phase transfer on Ln3+ -doped NaYF4 nanoparticles in electrospun ZnO nanofibers: Enhanced upconversion luminescence for temperature sensing,” Ceram. Int. 42(10), 12525–12530 (2016).
[Crossref]

Chem. Eng. J. (1)

M. Mondal, V. K. Rai, and C. Srivastava, “Influence of silica surface coating on optical properties of Er3+ -Yb3+:YMoO4 upconverting nanoparticles,” Chem. Eng. J. 327, 838–848 (2017).
[Crossref]

Chem. Soc. Rev. (1)

H. Dong, L. D. Sun, and C. H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev. 44(6), 1608–1634 (2015).
[Crossref] [PubMed]

J. Alloys Compd. (1)

Y. C. Cao, Z. Y. Zhao, J. Yi, C. S. Ma, D. C. Zhou, R. F. Wang, C. Li, and J. B. Qiu, “Luminescence properties of Sm3+-doped TiO2 nanoparticles: Synthesis, characterization, and mechanism,” J. Alloys Compd. 554, 12–20 (2013).
[Crossref]

J. Lumin. (4)

J. Liu, A. M. Kaczmarek, and R. V. Deun, “Concentration and temperature dependent upconversion luminescence of CaWO4: Er3+, Yb3+ 3D microstructure materials,” J. Lumin. 188, 604–611 (2017).
[Crossref]

A. M. Khachatourian, F. G. Fard, H. Sarpoolaky, C. Vogt, E. Vasileva, M. Mensi, S. Popov, and M. S. Toprak, “Microwave synthesis of Y2O3:Eu3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties,” J. Lumin. 169, 1–8 (2016).
[Crossref]

A. A. Ansari and M. Alam, “Optical and structural studies of CaMoO4: Sm, CaMoO4:Sm@CaMoO4 and CaMoO4:Sm@CaMoO4@SiO2 core–shell nanoparticles,” J. Lumin. 157, 257–263 (2015).
[Crossref]

D. Zhao, F. X. Ma, P. G. Duan, C. K. Nie, J. F. Guo, and R. J. Zhang, “Commensurately modulated structure and luminescent properties of Na3Pr(PO4)2,” J. Lumin. 192, 129–135 (2017).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

N. Zhou, B. Xu, L. Gan, J. P. Zhang, J. B. Han, and T. Y. Zhai, “Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(7), 1591–1595 (2017).
[Crossref]

D. M. Liu, X. X. Xu, F. Wang, J. J. Zhou, C. Mi, L. X. Zhang, Y. Q. Lu, C. S. Ma, E. Goldys, J. Lin, and D. Y. Jin, “Emission stability and reversibility of upconversion nanocrystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(39), 9227–9234 (2016).
[Crossref]

M. Quintanilla, I. X. Cantarelli, M. Pedroni, A. Speghini, and F. Vetrone, “Intense ultraviolet upconversion in water dispersible SrF2:Tm3+, Yb3+ nanoparticles: the effect of the environment on light emissions,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(13), 3108–3113 (2015).
[Crossref]

J. Phys. Chem. Solids (1)

Z. L. Wu, B. J. Chen, X. P. Li, J. S. Sun, J. S. Zhang, H. Zhong, H. Zheng, L. L. Tong, X. Q. Zhang, and H. P. Xia, “Calcination temperature optimization, energy transfer mechanism and fluorescence temperature dependence of KLa(MoO4)2:Eu3+ phosphors,” J. Phys. Chem. Solids 88, 96–103 (2016).
[Crossref]

Mater. Chem. Phys. (1)

T. T. Yan, D. S. Zhang, L. Y. Shi, H. P. Yang, H. L. Mai, and J. H. Fang, “Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres,” Mater. Chem. Phys. 117(1), 234–243 (2009).
[Crossref]

Mater. Lett. (1)

P. Du, L. H. Luo, Q. Y. Yue, and W. P. Li, “The simultaneous realization of high- and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles,” Mater. Lett. 143, 209–211 (2015).
[Crossref]

New J. Chem. (1)

L. Mukhopadhyay and V. K. Rai, “Upconversion based near white light emission, intrinsic optical bistability and temperature sensing in Er3+/Tm3+/Yb3+/Li+:NaZnPO4 phosphors,” New J. Chem. 41(15), 7650–7661 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

RSC Advances (2)

X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu, and X. H. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

H. Y. Lu, R. Meng, H. Y. Hao, Y. F. Bi, Y. C. Gao, Y. L. Song, Y. X. Wang, and X. R. Zhang, “Stark sublevels of Er3+–Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer,” RSC Advances 6(62), 57667–57671 (2016).
[Crossref]

Sens. Actuators B Chem. (5)

A. K. Soni, A. Kumari, and V. K. Rai, “Optical investigation in shuttle like BaMoO4:Er3+–Yb3+ phosphor in display and temperature sensing,” Sens. Actuators B Chem. 216, 64–71 (2015).
[Crossref]

M. K. Mahata, K. Kumar, and V. K. Rai, “Er3+-Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior,” Sens. Actuators B Chem. 209, 775–780 (2015).
[Crossref]

N. Rakov and G. S. Maciel, “Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders,” Sens. Actuators B Chem. 164(1), 96–100 (2012).
[Crossref]

A. Pandey, V. K. Rai, V. Kumar, V. J. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

D. Q. Chen, M. Xu, and P. Huang, “Core@shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

S. Sinha, M. K. Mahata, K. Kumar, S. P. Tiwari, and V. K. Rai, “Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 369–375 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 XRD patterns of GMO: Yb3+/Er3+ phosphors prepared at different calcination temperature (* represents orthorhombic).
Fig. 2
Fig. 2 SEM images of GMO: Yb3+/Er3+ crystals sintered at different temperatures. (a) 600 °C, (b) 700 °C, (c) 800 °C, (d) 900 °C.
Fig. 3
Fig. 3 (a) PL spectra of GMO: Yb3+/Er3+ phosphors annealed at 800°C under 980 nm excitation, (b) Power dependence of green and red emissions, (c) corresponding enhancement factor of green and red emissions as a function of excitation powers, (d) CIE chromaticity diagram of GMO: Yb3+/Er3+ phosphors at different excitation powers.
Fig. 4
Fig. 4 (a) Luminescence spectra of GMO: Yb3+/Er3+ phosphors annealed at temperature from 600 to 900 °C under 253 mW power excitation of a 980 nm laser, (b) The green at 530 nm -to-green at 550 nm emission intensity ratio (I530/I550) at various calcination temperatures, (c) Emission spectra of GMO: Yb3+/Er3+ crystal annealed at 700°C as a function of absolute temperature under 176 mW pump power excitation, (d) I530/I550 as a function of temperature from 299 K to 482 K.
Fig. 5
Fig. 5 (a) CIE coordinate diagram of GMO: Yb3+/Er3+ phosphors annealed at different temperatures under 253 mW power excitation of a 980 nm laser, (b) Color coordinates of GMO: Yb3+/Er3+ crystal annealed at 700°C at various temperatures under 176 mW excitation..
Fig. 6
Fig. 6 (a) The FIR variation of different samples as a function of temperature upon 176 mW power excitation, (b) The value of Ln(R) dependence on 1/T in GMO: Yb3+/Er3+ phosphors at different calcination temperature, (c) The absolute sensitivities (Sa) of GMO: Yb3+/Er3+ crystals prepared at 600, 700, 800 and 900 °C, (d) The relative sensitivities (Sr) of GMO: Yb3+/Er3+ crystals sintered at different temperatures as a function of temperature.

Tables (2)

Tables Icon

Table 1 The comparison of temperature sensing properties of Yb3+/Er3+ co-doped oxide materials.

Tables Icon

Table 2 The comparison of △Ef, △Ee and δ of Yb3+/Er3+ co-doped phosphors.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

W m (T)= W 0 (0) [1exp( hν kT )] m
FIR= I 530 I 550 =Cexp( ΔE kT )
Ln(FIR)=LnC+( ΔE kT )
S a = dR dT =R( ΔE k T 2 )
Ln( R 1 )=4.0 1159.15 T
Ln( R 2 )=4.0 1134.85 T
Ln( R 3 )=3.5 1208.06 T
Ln( R 4 )=3.5 1187.52 T
S a1 = 63289.59 T 2 exp( 1159.15 T )
S a2 = 61962.81 T 2 exp( 1134.85 T )
S a3 = 40010.95 T 2 exp( 1208.06 T )
S a4 = 39330.66 T 2 exp( 1187.52 T )
S r = 1 R dFIR dT = ΔE k T 2
δ= | Δ E f Δ E e | Δ E e

Metrics