Abstract

Research in terahertz (THz) science and technology has been booming in view of its potential application in a variety of light-matter interaction areas. Intrinsic indium antimonide (InSb) is an excellent tunable candidate material that supports surface plasmon polaritons (SPPs) in the THz range. In this paper, we present calculations to demonstrate the feasibility of exciting SPPs using an InSb graded grating structure. The InSb structure exhibits an extraordinary property of trapping and releasing electromagnetic waves in terahertz regimes (0.084–0.326 THz). With a fixed frequency, the electric field magnitude distributions of the gradient InSb grating waveguide at different temperatures are compared; these show that the InSb grating structure is an excellent candidate for trapping and releasing SPPs in the THz range. The thermo-optic property of InSb permits the meaningful application for compact low-frequency surface-plasmon optical devices in the future.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material

Yan Liu, Yibo Wang, Genquan Han, Yao Shao, Cizhe Fang, Siqing Zhang, Yan Huang, Jincheng Zhang, and Yue Hao
Opt. Express 25(2) 1278-1287 (2017)

Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate

Lin Chen, Tian Zhang, Xun Li, and Guoping Wang
Opt. Express 21(23) 28628-28637 (2013)

Transmission of THz radiation through InSb gratings of subwavelength apertures

Jaime Gómez Rivas, Christof Janke, Peter Haring Bolivar, and Heinrich Kurz
Opt. Express 13(3) 847-859 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
    [Crossref]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  3. F. Xia, L. Sekaric, and Y. Vlasov, “optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
    [Crossref]
  4. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31(4), 456–458 (2006).
    [Crossref] [PubMed]
  5. M. SoljaČiĆ and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [Crossref] [PubMed]
  6. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  7. L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
    [Crossref]
  8. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated brillouin scattering,” Science 318(5857), 1748–1750 (2007).
    [Crossref] [PubMed]
  9. H. Nakamura, Y. Sugimoto, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12(26), 6606–6614 (2004).
    [Crossref]
  10. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
    [Crossref] [PubMed]
  11. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
    [Crossref] [PubMed]
  12. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
    [Crossref] [PubMed]
  13. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [Crossref]
  14. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [Crossref] [PubMed]
  15. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
    [Crossref] [PubMed]
  16. C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
    [Crossref]
  17. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
    [Crossref] [PubMed]
  18. L. Chen, P. W. Guo, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
    [Crossref]
  19. H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]
  20. B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
    [Crossref] [PubMed]
  21. Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
    [Crossref]
  22. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
    [Crossref] [PubMed]
  23. A. Berrier, R. Ulbricht, M. Bonn, and J. G. Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express 18(22), 23226–23235 (2010).
    [Crossref] [PubMed]
  24. M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6(1), 26452 (2016).
    [Crossref] [PubMed]
  25. Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
    [Crossref] [PubMed]
  26. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref] [PubMed]
  27. Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” JOSA B 35(5), 1192–1199 (2018).
    [Crossref]
  28. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
    [Crossref]
  29. T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
    [Crossref]
  30. S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
    [Crossref] [PubMed]
  31. S. Lin, K. Bhattarai, J. Zhou, and D. Talbayev, “Thin InSb layers with metallic gratings: a novel platform for spectrally-selective THz plasmonic sensing,” Opt. Express 24(17), 19448–19457 (2016).
    [Crossref] [PubMed]
  32. S. Lin, S. Silva, J. Zhou, and D. Talbayev, “A One‐Way Mirror: High‐Performance Terahertz Optical Isolator Based on Magnetoplasmonics,” Advanced Optical Materials, 1800572 (2018).
    [Crossref]
  33. W. Li, Q. Meng, R. Huang, Z. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
    [Crossref]
  34. A. Keshavarz and A. Zakery, “A Novel Terahertz Semiconductor Metamaterial for Slow Light Device and Dual-Band Modulator Applications,” Plasmonics 13(2), 459–466 (2018).
    [Crossref]
  35. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  36. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  37. Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25(2), 1278–1287 (2017).
    [Crossref] [PubMed]
  38. J. Gómez Rivas, C. Janke, P. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
    [Crossref] [PubMed]
  39. Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).
  40. J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
    [Crossref]
  41. J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
    [Crossref]

2018 (5)

Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
[Crossref] [PubMed]

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” JOSA B 35(5), 1192–1199 (2018).
[Crossref]

W. Li, Q. Meng, R. Huang, Z. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

A. Keshavarz and A. Zakery, “A Novel Terahertz Semiconductor Metamaterial for Slow Light Device and Dual-Band Modulator Applications,” Plasmonics 13(2), 459–466 (2018).
[Crossref]

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

2017 (1)

2016 (2)

S. Lin, K. Bhattarai, J. Zhou, and D. Talbayev, “Thin InSb layers with metallic gratings: a novel platform for spectrally-selective THz plasmonic sensing,” Opt. Express 24(17), 19448–19457 (2016).
[Crossref] [PubMed]

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

2014 (3)

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

2012 (2)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

2011 (2)

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

L. Chen, P. W. Guo, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

2008 (4)

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
[Crossref] [PubMed]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

2007 (3)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

2006 (4)

J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31(4), 456–458 (2006).
[Crossref] [PubMed]

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[Crossref]

J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[Crossref]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2005 (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

J. Gómez Rivas, C. Janke, P. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
[Crossref] [PubMed]

2004 (3)

H. Nakamura, Y. Sugimoto, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12(26), 6606–6614 (2004).
[Crossref]

M. SoljaČiĆ and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

2001 (1)

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1998 (1)

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Ang, S. S.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Asakawa, K.

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Atwater, H.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Barnes, W. L.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartoli, F. J.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

L. Chen, P. W. Guo, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Beggs, D. M.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Berrier, A.

Bhattarai, K.

Bolivar, P.

Bonn, M.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Chen, L.

L. Chen, P. W. Guo, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

Cheng, Q.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Cui, T. J.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

DeRose, G. A.

Ding, Y. J.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Ebbesen, T. W.

Fan, S.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

Fang, C.

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25(2), 1278–1287 (2017).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Gan, Q.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

L. Chen, P. W. Guo, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Gao, Y.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

Ghahraloud, H.

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” JOSA B 35(5), 1192–1199 (2018).
[Crossref]

Gómez Rivas, J.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[Crossref]

J. Gómez Rivas, C. Janke, P. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
[Crossref] [PubMed]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Guo, P. W.

L. Chen, P. W. Guo, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Han, G.

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25(2), 1278–1287 (2017).
[Crossref] [PubMed]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Hanham, S. M.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Hao, Y.

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25(2), 1278–1287 (2017).
[Crossref] [PubMed]

Haring Bolivar, P.

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[Crossref]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Helm, H.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Hendry, E.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

Huang, R.

W. Li, Q. Meng, R. Huang, Z. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

Huang, Y.

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25(2), 1278–1287 (2017).
[Crossref] [PubMed]

Hwang, J. H.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Isaac, T. H.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

Jang, J. H.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Jang, M. S.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

Janke, C.

Jiang, W. X.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Joannopoulos, J. D.

M. SoljaČiĆ and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref] [PubMed]

Kanyang, R.

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

Keshavarz, A.

A. Keshavarz and A. Zakery, “A Novel Terahertz Semiconductor Metamaterial for Slow Light Device and Dual-Band Modulator Applications,” Plasmonics 13(2), 459–466 (2018).
[Crossref]

Kim, D.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Kim, H. W.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Kim, K.-Y.

Klein, N.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Krauss, T. F.

Kurz, H.

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[Crossref]

J. Gómez Rivas, C. Janke, P. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
[Crossref] [PubMed]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

Kuttge, M.

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[Crossref]

Lee, B.

Lee, I.-M.

Lee, S.-Y.

Lewen, F.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Lezec, H. J.

Li, W.

W. Li, Q. Meng, R. Huang, Z. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

Liao, Z.

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Lim, K. P.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Lin, S.

Linke, R. A.

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25(2), 1278–1287 (2017).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Meng, Q.

W. Li, Q. Meng, R. Huang, Z. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

Na, H.

Nakamura, H.

Ngo, C. Y.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Nouman, M. T.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

O’Faolain, L.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pan, B. C.

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Park, J.

Pellerin, K. M.

Pendry, J. B.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Poon, J. K. S.

Rivas, J. G.

A. Berrier, R. Ulbricht, M. Bonn, and J. G. Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express 18(22), 23226–23235 (2010).
[Crossref] [PubMed]

J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[Crossref]

Sambles, J. R.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[Crossref]

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[Crossref]

Schotsch, C.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Shao, Y.

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25(2), 1278–1287 (2017).
[Crossref] [PubMed]

Shen, X. P.

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

SoljaCiC, M.

M. SoljaČiĆ and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref] [PubMed]

Sugimoto, Y.

Talbayev, D.

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Teng, J. H.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Thevenaz, L.

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

Thio, T.

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Ulbricht, R.

Vafapour, Z.

Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
[Crossref] [PubMed]

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” JOSA B 35(5), 1192–1199 (2018).
[Crossref]

Vezenov, D.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Wagner, K.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

Wang, Y.

White, T. P.

Winnewisser, C.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Woo, J. M.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

Yariv, A.

Yoon, S. F.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Zakery, A.

A. Keshavarz and A. Zakery, “A Novel Terahertz Semiconductor Metamaterial for Slow Light Device and Dual-Band Modulator Applications,” Plasmonics 13(2), 459–466 (2018).
[Crossref]

Zhang, B.

W. Li, Q. Meng, R. Huang, Z. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

Zhang, J.

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25(2), 1278–1287 (2017).
[Crossref] [PubMed]

Zhang, S.

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

Y. Liu, Y. Wang, G. Han, Y. Shao, C. Fang, S. Zhang, Y. Huang, J. Zhang, and Y. Hao, “Engineering rainbow trapping and releasing in ultrathin THz plasmonic graded metallic grating strip with thermo-optic material,” Opt. Express 25(2), 1278–1287 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhao, J.

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Zhong, Z.

W. Li, Q. Meng, R. Huang, Z. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

Zhou, J.

Zhu, L.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

Adv. Mater. (1)

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband Terahertz Plasmonic Response of Touching InSb Disks,” Adv. Mater. 24(35), OP226–OP230 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[Crossref]

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

J. Phys. D. (1)

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D. 47(31), 315103 (2014).
[Crossref]

JOSA B (1)

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” JOSA B 35(5), 1192–1199 (2018).
[Crossref]

Laser Photonics Rev. (1)

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

M. SoljaČiĆ and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref] [PubMed]

Nat. Photonics (3)

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Nature (3)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

W. Li, Q. Meng, R. Huang, Z. Zhong, and B. Zhang, “Thermally tunable broadband terahertz metamaterials with negative refractive index,” Opt. Commun. 412, 85–89 (2018).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

photon Journal. (1)

Y. Liu, R. Kanyang, G. Han, Y. Shao, C. Fang, Y. Huang, S. Zhang, J. Zhang, and Y. Hao, “Rainbow trapping in highly doped silicon graded grating strip at the terahertz range,” photon Journal. 10, 5700309 (2018).

Phys. Rev. B (4)

J. A. Sánchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B 73(20), 205410 (2006).
[Crossref]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003).
[Crossref]

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77(11), 113411 (2008).
[Crossref]

L. Chen, P. W. Guo, Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[Crossref]

Phys. Rev. Lett. (3)

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

Plasmonics (1)

A. Keshavarz and A. Zakery, “A Novel Terahertz Semiconductor Metamaterial for Slow Light Device and Dual-Band Modulator Applications,” Plasmonics 13(2), 459–466 (2018).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz modulator based on metamaterials integrated with metal-semiconductor-metal varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Science (2)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Other (1)

S. Lin, S. Silva, J. Zhou, and D. Talbayev, “A One‐Way Mirror: High‐Performance Terahertz Optical Isolator Based on Magnetoplasmonics,” Advanced Optical Materials, 1800572 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 3D schematic of the designed plasmonic graded grating waveguide with intrinsic InSb.
Fig. 2
Fig. 2 (a) The dispersion relations of SPPs in one unit of the designed spoof plasmonic graded grating waveguides with different groove depths. Parameters of a, d, H, and t are fixed at 150, 65, 600, and 65 μm, respectively. (b) The dispersive relations of highly doped InSb. (c) The dispersive relations of highly doped silicon. (d) Skin depth as a function of the plasma frequency and of the scattering rate at the frequency of 0.9THz. The white dot corresponds to the value for doped silicon, and the yellow dot corresponds to the value for gold. The red ellipse corresponds to the region of doped InSb, and the green ellipse corresponds to the region of intrinsic InSb with different temperatures.
Fig. 3
Fig. 3 2D electric field magnitude distributions of the designed spoof plasmonic graded grating waveguides with intrinsic InSb at different frequencies. (a) 0.084 THz, (b) 0.112 THz, (c) 0.151 THz, (d) 0.214 THz, (e) 0.326 THz.
Fig. 4
Fig. 4 The real part (a) and imaginary part (b) of the permittivity of InSb as a function of frequency at different temperatures. (c) Thermal dependence of the first gap of SPPs on InSb grooves. The lines represent the lower and higher frequencies for the upper and lower band edges (corresponding to ω+ and ω- in the Eq. (2)). The grooves have a depth of h = 100 μm. Shaded areas indicate the spectral region where the thermally-induced shift of the lower band edge occurs.
Fig. 5
Fig. 5 The dispersion relations of SPPs in one unit of the designed spoof plasmonic graded grating waveguides with different groove depths at different temperatures.
Fig. 6
Fig. 6 2D electric field magnitude distributions of the designed spoof plasmonic graded grating waveguides along intrinsic InSb at different temperatures.
Fig. 7
Fig. 7 (a) The relationship between propagation decay coefficient α and the constant depth of grating. 1/α increases with the depth of grating increases. (b) Estimation of the SPPs lifetime, τ, along the grating surfaces for various depths. The blue dots are extracted data for various depths, the red line is an exponential growth fitted to guide the eyes. (c) The relationship between propagation decay coefficient α and the constant depth of grating at 0.112 THz and 0.151 THz. (d) Estimation of the SPPs lifetime at 0.112 THz and 0.151 THz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε(ω )=ε (1 ω p 2 ω 2 + τ 2 + i ω p 2 τ 1 ω( ω 2 + τ 2 ) ),
ω ± (T) c G 2 { 1 1 ε(T) [ 1+ s 0 (T) f 0 | s 0 (T) f 1 | ] 2 } 1 2 ,
ε(ω,T)= ε ω p 2 (T) ω[ ω+iΓ(T) ] ,
s 0 (T) 1ε(T) δ(T)ε(T) { 1 [ δ(T) ] 2 } 1 2 ,
δ spp 2 c 0 ω ( ε ' +1 ε ' ) 3 2 ε ' 2 ε '' ,
δ InSb c 0 ω ( ε ' +1 ε '2 ) 1 2 ,

Metrics