Abstract

Simple methods to control the self-organization of gold atoms on commonly employed transparent dielectrics are presented. On one hand, surface diffusion of gold atoms can be suppressed to a sufficient degree as to realize ultra-thin (as low as approximately 5 nm) void-free semi-transparent conducting gold films over macroscopic areas while, on the other hand, their high surface mobility can be harnessed to fabricate large-area substrates compatible with cell culturing and imaging, having widely tunable field-enhancement properties for surface-enhanced Raman scattering.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulation and experimental investigation of optical transparency in gold island films

Alexander Axelevitch, Boris Apter, and Gady Golan
Opt. Express 21(4) 4126-4138 (2013)

Multi-level surface enhanced Raman scattering using AgOx thin film

Ming Lun Tseng, Chia Min Chang, Bo Han Cheng, Pin Chieh Wu, Kuang Sheng Chung, Min-Kai Hsiao, Hsin Wei Huang, Ding-Wei Huang, Hai-Pang Chiang, Pui Tak Leung, and Din Ping Tsai
Opt. Express 21(21) 24460-24467 (2013)

Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids

Robin M. Cole, Sumeet Mahajan, Phil N. Bartlett, and Jeremy J. Baumberg
Opt. Express 17(16) 13298-13308 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857).
    [Crossref]
  2. W. R. Grove, “On the electro-chemical polarity of gases,” Philos. Trans. R. Soc. Lond. 142(0), 87–101 (1852).
    [Crossref]
  3. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths Scientific Publications, 1955).
  4. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
    [Crossref] [PubMed]
  5. J. B. Khurgin, “Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea?” Philos Trans A Math Phys Eng Sci 375(2090), 20160068 (2017).
    [Crossref] [PubMed]
  6. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  7. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
    [Crossref] [PubMed]
  8. H. Qian, Y. Xiao, and Z. Liu, “Giant Kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
    [Crossref] [PubMed]
  9. R. Malureanu and A. Lavrinenko, “Ultra-thin films for plasmonics: a technology overview,” Nanotechnol. Rev. 4(3), 259–275 (2015).
    [Crossref]
  10. D. S. Ghosh, “Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry,” Springer Theses, (2013)
  11. R. S. Sennett and G. D. Scott, “The structure of evaporated metal films and their optical properties,” J. Opt. Soc. Am. 40(4), 203–211 (1950).
    [Crossref]
  12. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
    [Crossref] [PubMed]
  13. S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
    [Crossref] [PubMed]
  14. S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
    [Crossref]
  15. P. Pavaskar, I.-K. Hsu, J. Theiss, W. Hsuan Hung, and S. B. Cronin, “A microscopic study of strongly plasmonic Au and Ag island thin films,” J. Appl. Phys. 113(3), 034302 (2013).
    [Crossref]
  16. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235147 (2012).
    [Crossref]
  17. F. Javier García de Abajo, “Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008).
    [Crossref]
  18. W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22(26), 31665–31676 (2014).
    [Crossref] [PubMed]
  19. C. A. Goss, D. H. Charych, and M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63(1), 85–88 (1991).
    [Crossref]
  20. T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
    [Crossref] [PubMed]
  21. J. Sukham, O. Takayama, A. V. Lavrinenko, and R. Malureanu, “High-Quality ultrathin gold layers with an APTMS adhesion for optimal performance of surface plasmon polariton-based devices,” ACS Appl. Mater. Interfaces 9(29), 25049–25056 (2017).
    [Crossref] [PubMed]
  22. I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties,” Chem. Mater. 16(18), 3476–3483 (2004).
    [Crossref]
  23. R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” arXiv:1809.01449 [cond-mat.mes-hall].
  24. M. Woehrmann and M. Toepper, “Polymerization of Thin Film Polymers,” in New Polymers for Special Applications (Ailton De Souza Gomes, IntechOpen, 2012).
    [Crossref]
  25. K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
    [Crossref]
  26. A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and Structural Properties of Ultra‐thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
    [Crossref]
  27. I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation Loss of Long-Range Surface Plasmon Polariton Gold Stripe Waveguides in the Thin-Film Limit,” Plasmonics 8(4), 1613–1619 (2013).
    [Crossref]
  28. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  29. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78(6), 802–804 (2001).
    [Crossref]
  30. Y. Fang, N.-H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
    [Crossref] [PubMed]
  31. V. Merk, J. Kneipp, and K. Leosson, “Gap size reduction and increased SERS enhancement in lithographically patterned nanoparticle arrays by templated growth,” Adv. Opt. Mater. 1(4), 313–318 (2013).
    [Crossref]
  32. W. Ostwald, “Studien über die Bildung und Umwandlung fester Körper,” Z. Phys. Chem. 22(1), 289–330 (1897).
    [Crossref]
  33. M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
    [Crossref] [PubMed]
  34. P. Joshia and V. Santhanam, “Paper-based SERS active substrates on demand,” RSC Advances 6(72), 68545–68552 (2016).
    [Crossref]
  35. S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011).
    [Crossref] [PubMed]
  36. K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
    [Crossref]
  37. X. Cao, Y. Shan, L. Tan, X. Yu, M. Bao, W. Li, and H. Shi, “Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy,” J. Mater. Chem. B Mater. Biol. Med. 5(30), 5983–5995 (2017).
    [Crossref]
  38. X. Sun and H. Li, “Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy,” Nanotechnology 24(35), 355706 (2013).
    [Crossref] [PubMed]

2017 (4)

J. B. Khurgin, “Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea?” Philos Trans A Math Phys Eng Sci 375(2090), 20160068 (2017).
[Crossref] [PubMed]

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

J. Sukham, O. Takayama, A. V. Lavrinenko, and R. Malureanu, “High-Quality ultrathin gold layers with an APTMS adhesion for optimal performance of surface plasmon polariton-based devices,” ACS Appl. Mater. Interfaces 9(29), 25049–25056 (2017).
[Crossref] [PubMed]

X. Cao, Y. Shan, L. Tan, X. Yu, M. Bao, W. Li, and H. Shi, “Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy,” J. Mater. Chem. B Mater. Biol. Med. 5(30), 5983–5995 (2017).
[Crossref]

2016 (3)

P. Joshia and V. Santhanam, “Paper-based SERS active substrates on demand,” RSC Advances 6(72), 68545–68552 (2016).
[Crossref]

S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
[Crossref] [PubMed]

H. Qian, Y. Xiao, and Z. Liu, “Giant Kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
[Crossref] [PubMed]

2015 (2)

R. Malureanu and A. Lavrinenko, “Ultra-thin films for plasmonics: a technology overview,” Nanotechnol. Rev. 4(3), 259–275 (2015).
[Crossref]

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and Structural Properties of Ultra‐thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

2014 (1)

2013 (6)

P. Pavaskar, I.-K. Hsu, J. Theiss, W. Hsuan Hung, and S. B. Cronin, “A microscopic study of strongly plasmonic Au and Ag island thin films,” J. Appl. Phys. 113(3), 034302 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation Loss of Long-Range Surface Plasmon Polariton Gold Stripe Waveguides in the Thin-Film Limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

V. Merk, J. Kneipp, and K. Leosson, “Gap size reduction and increased SERS enhancement in lithographically patterned nanoparticle arrays by templated growth,” Adv. Opt. Mater. 1(4), 313–318 (2013).
[Crossref]

X. Sun and H. Li, “Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy,” Nanotechnology 24(35), 355706 (2013).
[Crossref] [PubMed]

2012 (3)

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[Crossref] [PubMed]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

2011 (1)

S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011).
[Crossref] [PubMed]

2010 (3)

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

2008 (2)

F. Javier García de Abajo, “Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008).
[Crossref]

Y. Fang, N.-H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[Crossref] [PubMed]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2004 (1)

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties,” Chem. Mater. 16(18), 3476–3483 (2004).
[Crossref]

2002 (1)

2001 (1)

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78(6), 802–804 (2001).
[Crossref]

1991 (1)

C. A. Goss, D. H. Charych, and M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63(1), 85–88 (1991).
[Crossref]

1950 (1)

1897 (1)

W. Ostwald, “Studien über die Bildung und Umwandlung fester Körper,” Z. Phys. Chem. 22(1), 289–330 (1897).
[Crossref]

1857 (1)

M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857).
[Crossref]

1852 (1)

W. R. Grove, “On the electro-chemical polarity of gases,” Philos. Trans. R. Soc. Lond. 142(0), 87–101 (1852).
[Crossref]

Agnarsson, B.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Albert, J.

Alivisatos, A. P.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Asiala, S. M.

S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011).
[Crossref] [PubMed]

Badizadegan, K.

Bao, M.

X. Cao, Y. Shan, L. Tan, X. Yu, M. Bao, W. Li, and H. Shi, “Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy,” J. Mater. Chem. B Mater. Biol. Med. 5(30), 5983–5995 (2017).
[Crossref]

Barkay, Z.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties,” Chem. Mater. 16(18), 3476–3483 (2004).
[Crossref]

Barry, S. T.

Beermann, J.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
[Crossref] [PubMed]

Biagioni, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Bjerneld, E. J.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78(6), 802–804 (2001).
[Crossref]

Boisen, A.

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[Crossref] [PubMed]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Boone, C.

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Bozhevolnyi, S. I.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Brüning, C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Cabrini, S.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Callegari, V.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Cao, X.

X. Cao, Y. Shan, L. Tan, X. Yu, M. Bao, W. Li, and H. Shi, “Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy,” J. Mater. Chem. B Mater. Biol. Med. 5(30), 5983–5995 (2017).
[Crossref]

Carminati, R.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Castanié, E.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Charych, D. H.

C. A. Goss, D. H. Charych, and M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63(1), 85–88 (1991).
[Crossref]

Coello, V.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
[Crossref] [PubMed]

Cronin, S. B.

P. Pavaskar, I.-K. Hsu, J. Theiss, W. Hsuan Hung, and S. B. Cronin, “A microscopic study of strongly plasmonic Au and Ag island thin films,” J. Appl. Phys. 113(3), 034302 (2013).
[Crossref]

Dasari, R. R.

De Wilde, Y.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Dhuey, S.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Dlott, D. D.

Y. Fang, N.-H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[Crossref] [PubMed]

Doron-Mor, I.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties,” Chem. Mater. 16(18), 3476–3483 (2004).
[Crossref]

Fang, Y.

Y. Fang, N.-H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[Crossref] [PubMed]

Faraday, M.

M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857).
[Crossref]

Feichtner, T.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Feld, M. S.

Filip-Granit, N.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties,” Chem. Mater. 16(18), 3476–3483 (2004).
[Crossref]

Forchel, A.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Frydendahl, C.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
[Crossref] [PubMed]

Gargas, D.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Gather, M. C.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Geisler, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Goss, C. A.

C. A. Goss, D. H. Charych, and M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63(1), 85–88 (1991).
[Crossref]

Grove, W. R.

W. R. Grove, “On the electro-chemical polarity of gases,” Philos. Trans. R. Soc. Lond. 142(0), 87–101 (1852).
[Crossref]

Gunnarsson, L.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78(6), 802–804 (2001).
[Crossref]

Habteyes, T. G.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Haka, A. S.

Hecht, B.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Hsu, I.-K.

P. Pavaskar, I.-K. Hsu, J. Theiss, W. Hsuan Hung, and S. B. Cronin, “A microscopic study of strongly plasmonic Au and Ag island thin films,” J. Appl. Phys. 113(3), 034302 (2013).
[Crossref]

Hsuan Hung, W.

P. Pavaskar, I.-K. Hsu, J. Theiss, W. Hsuan Hung, and S. B. Cronin, “A microscopic study of strongly plasmonic Au and Ag island thin films,” J. Appl. Phys. 113(3), 034302 (2013).
[Crossref]

Huang, J.-S.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Hübner, J.

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[Crossref] [PubMed]

Ingason, A. S.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Javier García de Abajo, F.

F. Javier García de Abajo, “Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008).
[Crossref]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Joshia, P.

P. Joshia and V. Santhanam, “Paper-based SERS active substrates on demand,” RSC Advances 6(72), 68545–68552 (2016).
[Crossref]

Käll, M.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78(6), 802–804 (2001).
[Crossref]

Kamp, M.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Kasemo, B.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78(6), 802–804 (2001).
[Crossref]

Kéna-Cohen, S.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and Structural Properties of Ultra‐thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Kern, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Khurgin, J. B.

J. B. Khurgin, “Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea?” Philos Trans A Math Phys Eng Sci 375(2090), 20160068 (2017).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kneipp, H.

Kneipp, J.

V. Merk, J. Kneipp, and K. Leosson, “Gap size reduction and increased SERS enhancement in lithographically patterned nanoparticle arrays by templated growth,” Adv. Opt. Mater. 1(4), 313–318 (2013).
[Crossref]

Kneipp, K.

Kossoy, A.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and Structural Properties of Ultra‐thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation Loss of Long-Range Surface Plasmon Polariton Gold Stripe Waveguides in the Thin-Film Limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

Krachmalnicoff, V.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Lavrinenko, A.

R. Malureanu and A. Lavrinenko, “Ultra-thin films for plasmonics: a technology overview,” Nanotechnol. Rev. 4(3), 259–275 (2015).
[Crossref]

Lavrinenko, A. V.

J. Sukham, O. Takayama, A. V. Lavrinenko, and R. Malureanu, “High-Quality ultrathin gold layers with an APTMS adhesion for optimal performance of surface plasmon polariton-based devices,” ACS Appl. Mater. Interfaces 9(29), 25049–25056 (2017).
[Crossref] [PubMed]

Leone, S. R.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Leosson, K.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and Structural Properties of Ultra‐thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation Loss of Long-Range Surface Plasmon Polariton Gold Stripe Waveguides in the Thin-Film Limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

V. Merk, J. Kneipp, and K. Leosson, “Gap size reduction and increased SERS enhancement in lithographically patterned nanoparticle arrays by templated growth,” Adv. Opt. Mater. 1(4), 313–318 (2013).
[Crossref]

Li, H.

X. Sun and H. Li, “Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy,” Nanotechnology 24(35), 355706 (2013).
[Crossref] [PubMed]

Li, W.

X. Cao, Y. Shan, L. Tan, X. Yu, M. Bao, W. Li, and H. Shi, “Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy,” J. Mater. Chem. B Mater. Biol. Med. 5(30), 5983–5995 (2017).
[Crossref]

Liu, Z.

H. Qian, Y. Xiao, and Z. Liu, “Giant Kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
[Crossref] [PubMed]

Maier, S. A.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and Structural Properties of Ultra‐thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Majda, M.

C. A. Goss, D. H. Charych, and M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63(1), 85–88 (1991).
[Crossref]

Malureanu, R.

J. Sukham, O. Takayama, A. V. Lavrinenko, and R. Malureanu, “High-Quality ultrathin gold layers with an APTMS adhesion for optimal performance of surface plasmon polariton-based devices,” ACS Appl. Mater. Interfaces 9(29), 25049–25056 (2017).
[Crossref] [PubMed]

R. Malureanu and A. Lavrinenko, “Ultra-thin films for plasmonics: a technology overview,” Nanotechnol. Rev. 4(3), 259–275 (2015).
[Crossref]

Mandia, D. J.

Merk, V.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and Structural Properties of Ultra‐thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

V. Merk, J. Kneipp, and K. Leosson, “Gap size reduction and increased SERS enhancement in lithographically patterned nanoparticle arrays by templated growth,” Adv. Opt. Mater. 1(4), 313–318 (2013).
[Crossref]

Mortensen, N. A.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
[Crossref] [PubMed]

Motz, J. T.

Novikov, S. M.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
[Crossref] [PubMed]

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Olafsson, S.

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Ostwald, W.

W. Ostwald, “Studien über die Bildung und Umwandlung fester Körper,” Z. Phys. Chem. 22(1), 289–330 (1897).
[Crossref]

Pavaskar, P.

P. Pavaskar, I.-K. Hsu, J. Theiss, W. Hsuan Hung, and S. B. Cronin, “A microscopic study of strongly plasmonic Au and Ag island thin films,” J. Appl. Phys. 113(3), 034302 (2013).
[Crossref]

Petronis, S.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78(6), 802–804 (2001).
[Crossref]

Prangsma, J. C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Qian, H.

H. Qian, Y. Xiao, and Z. Liu, “Giant Kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
[Crossref] [PubMed]

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Rubinstein, I.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties,” Chem. Mater. 16(18), 3476–3483 (2004).
[Crossref]

Santhanam, V.

P. Joshia and V. Santhanam, “Paper-based SERS active substrates on demand,” RSC Advances 6(72), 68545–68552 (2016).
[Crossref]

Schmidt, M. S.

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[Crossref] [PubMed]

Schuck, P. J.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Schultz, Z. D.

S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011).
[Crossref] [PubMed]

Scott, G. D.

Sennett, R. S.

Sennhauser, U.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Seong, N.-H.

Y. Fang, N.-H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[Crossref] [PubMed]

Shafer-Peltier, K. E.

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Shan, Y.

X. Cao, Y. Shan, L. Tan, X. Yu, M. Bao, W. Li, and H. Shi, “Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy,” J. Mater. Chem. B Mater. Biol. Med. 5(30), 5983–5995 (2017).
[Crossref]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Shi, H.

X. Cao, Y. Shan, L. Tan, X. Yu, M. Bao, W. Li, and H. Shi, “Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy,” J. Mater. Chem. B Mater. Biol. Med. 5(30), 5983–5995 (2017).
[Crossref]

Simakov, D.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and Structural Properties of Ultra‐thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Slovinsky, I.

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation Loss of Long-Range Surface Plasmon Polariton Gold Stripe Waveguides in the Thin-Film Limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

Stefansson, G. K.

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation Loss of Long-Range Surface Plasmon Polariton Gold Stripe Waveguides in the Thin-Film Limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

Stenger, N.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

S. M. Novikov, J. Beermann, C. Frydendahl, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “Enhancement of two-photon photoluminescence and SERS for low-coverage gold films,” Opt. Express 24(15), 16743–16751 (2016).
[Crossref] [PubMed]

Sukham, J.

J. Sukham, O. Takayama, A. V. Lavrinenko, and R. Malureanu, “High-Quality ultrathin gold layers with an APTMS adhesion for optimal performance of surface plasmon polariton-based devices,” ACS Appl. Mater. Interfaces 9(29), 25049–25056 (2017).
[Crossref] [PubMed]

Sun, X.

X. Sun and H. Li, “Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy,” Nanotechnology 24(35), 355706 (2013).
[Crossref] [PubMed]

Takayama, O.

J. Sukham, O. Takayama, A. V. Lavrinenko, and R. Malureanu, “High-Quality ultrathin gold layers with an APTMS adhesion for optimal performance of surface plasmon polariton-based devices,” ACS Appl. Mater. Interfaces 9(29), 25049–25056 (2017).
[Crossref] [PubMed]

Tan, L.

X. Cao, Y. Shan, L. Tan, X. Yu, M. Bao, W. Li, and H. Shi, “Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy,” J. Mater. Chem. B Mater. Biol. Med. 5(30), 5983–5995 (2017).
[Crossref]

Theiss, J.

P. Pavaskar, I.-K. Hsu, J. Theiss, W. Hsuan Hung, and S. B. Cronin, “A microscopic study of strongly plasmonic Au and Ag island thin films,” J. Appl. Phys. 113(3), 034302 (2013).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Vaskevich, A.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties,” Chem. Mater. 16(18), 3476–3483 (2004).
[Crossref]

Weinmann, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wood, E.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Wu, X.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

Xiao, Y.

H. Qian, Y. Xiao, and Z. Liu, “Giant Kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
[Crossref] [PubMed]

Xu, H.

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78(6), 802–804 (2001).
[Crossref]

Yoshizawa, N.

Yu, X.

X. Cao, Y. Shan, L. Tan, X. Yu, M. Bao, W. Li, and H. Shi, “Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy,” J. Mater. Chem. B Mater. Biol. Med. 5(30), 5983–5995 (2017).
[Crossref]

Zenin, V. A.

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Zhou, W.

Ziegler, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

J. Sukham, O. Takayama, A. V. Lavrinenko, and R. Malureanu, “High-Quality ultrathin gold layers with an APTMS adhesion for optimal performance of surface plasmon polariton-based devices,” ACS Appl. Mater. Interfaces 9(29), 25049–25056 (2017).
[Crossref] [PubMed]

ACS Nano (1)

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

S. M. Novikov, C. Frydendahl, J. Beermann, V. A. Zenin, N. Stenger, V. Coello, N. A. Mortensen, and S. I. Bozhevolnyi, “White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold,” ACS Photonics 4(5), 1207–1215 (2017).
[Crossref]

Adv. Mater. (1)

M. S. Schmidt, J. Hübner, and A. Boisen, “Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy,” Adv. Mater. 24(10), OP11–OP18 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and Structural Properties of Ultra‐thin Gold Films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

V. Merk, J. Kneipp, and K. Leosson, “Gap size reduction and increased SERS enhancement in lithographically patterned nanoparticle arrays by templated growth,” Adv. Opt. Mater. 1(4), 313–318 (2013).
[Crossref]

Anal. Chem. (1)

C. A. Goss, D. H. Charych, and M. Majda, “Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates,” Anal. Chem. 63(1), 85–88 (1991).
[Crossref]

Analyst (Lond.) (1)

S. M. Asiala and Z. D. Schultz, “Characterization of hotspots in a highly enhancing SERS substrate,” Analyst (Lond.) 136(21), 4472–4479 (2011).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78(6), 802–804 (2001).
[Crossref]

Appl. Spectrosc. (1)

Chem. Mater. (1)

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties,” Chem. Mater. 16(18), 3476–3483 (2004).
[Crossref]

J. Appl. Phys. (1)

P. Pavaskar, I.-K. Hsu, J. Theiss, W. Hsuan Hung, and S. B. Cronin, “A microscopic study of strongly plasmonic Au and Ag island thin films,” J. Appl. Phys. 113(3), 034302 (2013).
[Crossref]

J. Mater. Chem. B Mater. Biol. Med. (1)

X. Cao, Y. Shan, L. Tan, X. Yu, M. Bao, W. Li, and H. Shi, “Hollow Au nanoflower substrates for identification and discrimination of the differentiation of bone marrow mesenchymal stem cells by surface-enhanced Raman spectroscopy,” J. Mater. Chem. B Mater. Biol. Med. 5(30), 5983–5995 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

F. Javier García de Abajo, “Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008).
[Crossref]

Nanophotonics (1)

K. Leosson, A. S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, and M. C. Gather, “Ultra-thin gold films on transparent polymers,” Nanophotonics 2(1), 3–11 (2013).
[Crossref]

Nanotechnol. Rev. (1)

R. Malureanu and A. Lavrinenko, “Ultra-thin films for plasmonics: a technology overview,” Nanotechnol. Rev. 4(3), 259–275 (2015).
[Crossref]

Nanotechnology (1)

X. Sun and H. Li, “Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy,” Nanotechnology 24(35), 355706 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1(9), 150 (2010).
[Crossref] [PubMed]

H. Qian, Y. Xiao, and Z. Liu, “Giant Kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
[Crossref] [PubMed]

Opt. Express (2)

Philos Trans A Math Phys Eng Sci (1)

J. B. Khurgin, “Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea?” Philos Trans A Math Phys Eng Sci 375(2090), 20160068 (2017).
[Crossref] [PubMed]

Philos. Trans. R. Soc. Lond. (2)

M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. 147(0), 145–181 (1857).
[Crossref]

W. R. Grove, “On the electro-chemical polarity of gases,” Philos. Trans. R. Soc. Lond. 142(0), 87–101 (1852).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235147 (2012).
[Crossref]

Phys. Rev. Lett. (1)

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Plasmonics (1)

I. Slovinsky, G. K. Stefansson, A. Kossoy, and K. Leosson, “Propagation Loss of Long-Range Surface Plasmon Polariton Gold Stripe Waveguides in the Thin-Film Limit,” Plasmonics 8(4), 1613–1619 (2013).
[Crossref]

RSC Advances (1)

P. Joshia and V. Santhanam, “Paper-based SERS active substrates on demand,” RSC Advances 6(72), 68545–68552 (2016).
[Crossref]

Science (3)

Y. Fang, N.-H. Seong, and D. D. Dlott, “Measurement of the distribution of site enhancements in surface-enhanced Raman scattering,” Science 321(5887), 388–392 (2008).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Z. Phys. Chem. (1)

W. Ostwald, “Studien über die Bildung und Umwandlung fester Körper,” Z. Phys. Chem. 22(1), 289–330 (1897).
[Crossref]

Other (4)

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” arXiv:1809.01449 [cond-mat.mes-hall].

M. Woehrmann and M. Toepper, “Polymerization of Thin Film Polymers,” in New Polymers for Special Applications (Ailton De Souza Gomes, IntechOpen, 2012).
[Crossref]

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths Scientific Publications, 1955).

D. S. Ghosh, “Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry,” Springer Theses, (2013)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) XRR measurements (red symbols) for a gold film of 5.4 nm deposited thickness on an activated fused silica substrate. A good fit to the measured data (black line) is obtained with a two-layer model for the gold film, where the lower layer is characterized by the bulk density of gold. (b) Optical transmission of the same film, showing a discrepancy between the measured data (red symbols) and the idealized transmission curve (dashed line) that can be accounted for by introducing graded interfaces in the model (solid line). (c) The idealized gold transmission at 550 nm (dashed line) compared to measured data (red symbols).
Fig. 2
Fig. 2 Patterned gold particles (left SEM image) on a thermally oxidized Si surface (100 nm oxide thickness) ripened by repeated deposition and annealing of thin (< = 6 nm) gold layers (middle and right SEM images). The recrystallization of the gold particles is also clearly seen from appearance of facets in the annealed structure. Scale bar is 100 nm. The plot shows development of average diameter and minimum spacing of the initially patterned particles, A, at subsequent processing steps, B, C and D (step D not shown, further details can be found in Ref [27].).
Fig. 3
Fig. 3 Self-organized gold islands fabricated by successive deposition and annealing of ultra-thin gold layers (1,2 and 3 cycles, respectively) on thermally oxidized silicon substrates. Scale bar is 100 nm. The plot shows the maximum amplitude of the local electric field between islands relative to the incident field, as determined by a numerical (FDTD) simulation of a similar structure of gold islands.
Fig. 4
Fig. 4 (a) Rhodamine 6G spectrum recorded on a gold film substrate with randomly arranged nanoparticles prepared with three cycles of deposition and annealing as described in the text and shown in Fig. 3. (b) Raman spectrum from a fixed undifferentiated MSC cultured on a gold nanoparticle film. The broad background signal from 1100 to 1600 cm−1 originates from the glass substrate. (c) Raman image (462 cm−1 band) overlaid on an optical microscope image of the MSCs.

Metrics