Abstract

Tamm polaritons (TPs) are formed at the interface between a semi-infinite periodic dielectric structure (Bragg mirror) and another reflector. They couple to elementary excitations in the materials that form the interface, such as metal plasmons or semiconductor excitons. Here we discuss the formation of TPs in the far-infrared spectral range, in the optical-phonon reststrahlen band of a polar semiconductor such as GaAs, attached to a Bragg reflector (BR). Their dispersion relation and the frequency window for the TP existence are calculated for a GaAs-BR interface. Microcavity structures containing a gap between the two reflectors are also considered, including those containing an inserted graphene layer and the possibility of tuning of the TP states by changing the graphene’s Fermi energy is demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure

Jigang Hu, Enxu Yao, Weiqiang Xie, Wei Liu, Dongmei Li, Yonghua Lu, and Qiwen Zhan
Opt. Express 27(13) 18642-18652 (2019)

Terahertz refractive index sensor based on Tamm plasmon-polaritons with graphene

M. Mehdi Keshavarz and Abbas Alighanbari
Appl. Opt. 58(13) 3604-3612 (2019)

Absorption enhancement in monolayer graphene using Tamm plasmon polaritons

Partha Sona Maji and Ritwick Das
OSA Continuum 1(2) 392-400 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
    [Crossref] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  3. W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
    [Crossref]
  4. S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
    [Crossref]
  5. I. Staude and C. Rockstuhl, “To scatter or not to scatter,” Nat. Mater. 15, 821–822 (2016).
    [Crossref] [PubMed]
  6. I. E. Tamm, Physik. Z. Sovjetunion1, 733 (1932).
  7. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
    [Crossref]
  8. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric bragg mirror,” Phys. Rev. B 76, 165415 (2007).
    [Crossref]
  9. H. Zhou, G. Yang, K. Wang, H. Long, and P. Lu, “Multiple optical Tamm states at a metal–dielectric mirror interface,” Opt. Lett. 35, 4112–4114 (2010).
    [Crossref]
  10. I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99, 151914 (2011).
    [Crossref]
  11. D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Deeply subwavelength electromagnetic Tamm states in graphene metamaterials,” Phys. Rev. B 89, 245414 (2014).
    [Crossref]
  12. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
    [Crossref]
  13. M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
    [Crossref]
  14. N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
    [Crossref]
  15. M. I. Vasilevskiy, D. G. Santiago-Pérez, C. Trallero-Giner, N. M. R. Peres, and A. Kavokin, “Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two bose-einstein condensates,” Phys. Rev. B 92, 245435 (2015).
    [Crossref]
  16. C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Reports on Prog. Phys. 80, 016503 (2017).
    [Crossref]
  17. K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
    [Crossref]
  18. M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon-exciton-polaritons with GaAs quantum wells and MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
    [Crossref]
  19. M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
    [Crossref]
  20. P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sensors Actuators B: Chem. 255, 729 (2018).
    [Crossref]
  21. X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Light trapping schemes in organic cells: A comparison between optical Tamm states and Fabry-Pérot cavity modes,” Org. Electron. 14, 1577–1585 (2013).
    [Crossref]
  22. Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
    [Crossref]
  23. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2010).
    [Crossref]
  24. A. K. Geim, “Graphene: Status and prospects,” Science 324, 1530–15342009.
  25. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
    [Crossref]
  26. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
    [Crossref]
  27. Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
    [Crossref]
  28. X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. R 74, 351–376 (2013).
    [Crossref]
  29. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
    [Crossref]
  30. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tangi, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Reports 4, 5483 (2014).
    [Crossref]
  31. Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevskiy, “Discrete solitons in graphene metamaterials,” Phys. Rev. B 91, 045424 (2015).
    [Crossref]
  32. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5, 536–542 (2017).
    [Crossref]
  33. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
    [Crossref]
  34. J. Silva and M. Vasilevskiy, “Tamm Polaritons and Cavity Modes in the FIR Range,” in 20th International Conference on Transparent Optical Networks (ICTON), (IEEEXplore Digital Library, 2018), pp. 1–4.
  35. E. A. Vinogradov and I. A. Dorofeyev, “Thermally stimulated electromagnetic fields of solids,” Physics-Uspekhi 52, 425 (2009).
    [Crossref]

2018 (3)

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sensors Actuators B: Chem. 255, 729 (2018).
[Crossref]

2017 (3)

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Reports on Prog. Phys. 80, 016503 (2017).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon-exciton-polaritons with GaAs quantum wells and MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5, 536–542 (2017).
[Crossref]

2016 (3)

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

I. Staude and C. Rockstuhl, “To scatter or not to scatter,” Nat. Mater. 15, 821–822 (2016).
[Crossref] [PubMed]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

2015 (4)

M. I. Vasilevskiy, D. G. Santiago-Pérez, C. Trallero-Giner, N. M. R. Peres, and A. Kavokin, “Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two bose-einstein condensates,” Phys. Rev. B 92, 245435 (2015).
[Crossref]

K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
[Crossref]

W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
[Crossref]

Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevskiy, “Discrete solitons in graphene metamaterials,” Phys. Rev. B 91, 045424 (2015).
[Crossref]

2014 (2)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tangi, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Reports 4, 5483 (2014).
[Crossref]

D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Deeply subwavelength electromagnetic Tamm states in graphene metamaterials,” Phys. Rev. B 89, 245414 (2014).
[Crossref]

2013 (3)

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Light trapping schemes in organic cells: A comparison between optical Tamm states and Fabry-Pérot cavity modes,” Org. Electron. 14, 1577–1585 (2013).
[Crossref]

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. R 74, 351–376 (2013).
[Crossref]

2011 (2)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99, 151914 (2011).
[Crossref]

2010 (4)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

H. Zhou, G. Yang, K. Wang, H. Long, and P. Lu, “Multiple optical Tamm states at a metal–dielectric mirror interface,” Opt. Lett. 35, 4112–4114 (2010).
[Crossref]

2009 (3)

E. A. Vinogradov and I. A. Dorofeyev, “Thermally stimulated electromagnetic fields of solids,” Physics-Uspekhi 52, 425 (2009).
[Crossref]

A. K. Geim, “Graphene: Status and prospects,” Science 324, 1530–15342009.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

2008 (2)

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

2005 (1)

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Abdel-Hady, A. G.

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

Abram, R. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Adawi, A. M.

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

Barnes, W. L.

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

Basov, D. N.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Baumann, V.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon-exciton-polaritons with GaAs quantum wells and MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Beckett, S.

W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
[Crossref]

Belov, P.

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99, 151914 (2011).
[Crossref]

Belov, P. A.

D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Deeply subwavelength electromagnetic Tamm states in graphene metamaterials,” Phys. Rev. B 89, 245414 (2014).
[Crossref]

Betzold, S.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Bludov, Y. V.

Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevskiy, “Discrete solitons in graphene metamaterials,” Phys. Rev. B 91, 045424 (2015).
[Crossref]

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Brand, S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

Buslaev, P.

D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Deeply subwavelength electromagnetic Tamm states in graphene metamaterials,” Phys. Rev. B 89, 245414 (2014).
[Crossref]

Cai, H.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

Cardona, M.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2010).
[Crossref]

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Cherotchenko, E.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Cornelius, M.

K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
[Crossref]

Dai, X.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5, 536–542 (2017).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tangi, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Reports 4, 5483 (2014).
[Crossref]

Das, R.

P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sensors Actuators B: Chem. 255, 729 (2018).
[Crossref]

Dickson, W.

W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
[Crossref]

Dietrich, C. P.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Dorofeyev, I. A.

E. A. Vinogradov and I. A. Dorofeyev, “Thermally stimulated electromagnetic fields of solids,” Physics-Uspekhi 52, 425 (2009).
[Crossref]

Egorov, A. Y.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Estrecho, E.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

Feng, J.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Light trapping schemes in organic cells: A comparison between optical Tamm states and Fabry-Pérot cavity modes,” Org. Electron. 14, 1577–1585 (2013).
[Crossref]

Ferreira, A.

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

Fraser, M. D.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Reports on Prog. Phys. 80, 016503 (2017).
[Crossref]

Geim, A. K.

A. K. Geim, “Graphene: Status and prospects,” Science 324, 1530–15342009.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Guinea, F.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Guo, J.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5, 536–542 (2017).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tangi, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Reports 4, 5483 (2014).
[Crossref]

Gutowski, J.

K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
[Crossref]

Henriksen, E. A.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Höfling, S.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon-exciton-polaritons with GaAs quantum wells and MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Reports on Prog. Phys. 80, 016503 (2017).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Hommel, D.

K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Iff, O.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Iorsh, I.

D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Deeply subwavelength electromagnetic Tamm states in graphene metamaterials,” Phys. Rev. B 89, 245414 (2014).
[Crossref]

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99, 151914 (2011).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Iorsh, I. V.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

Jiang, X.

Jiang, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kaliteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

Kalitteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Kamp, M.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Reports on Prog. Phys. 80, 016503 (2017).
[Crossref]

Kavokin, A.

M. I. Vasilevskiy, D. G. Santiago-Pérez, C. Trallero-Giner, N. M. R. Peres, and A. Kavokin, “Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two bose-einstein condensates,” Phys. Rev. B 92, 245435 (2015).
[Crossref]

Kavokin, A. V.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon-exciton-polaritons with GaAs quantum wells and MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Kim, P.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Kivshar, Y.

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99, 151914 (2011).
[Crossref]

Kivshar, Y. S.

Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevskiy, “Discrete solitons in graphene metamaterials,” Phys. Rev. B 91, 045424 (2015).
[Crossref]

D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Deeply subwavelength electromagnetic Tamm states in graphene metamaterials,” Phys. Rev. B 89, 245414 (2014).
[Crossref]

Klaas, M.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon-exciton-polaritons with GaAs quantum wells and MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Klein, T.

K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
[Crossref]

Klembt, S.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
[Crossref]

Kruse, C.

K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
[Crossref]

Li, X.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Light trapping schemes in organic cells: A comparison between optical Tamm states and Fabry-Pérot cavity modes,” Org. Electron. 14, 1577–1585 (2013).
[Crossref]

Li, Z. Q.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Long, H.

Lopez-Garcia, M.

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

Lu, P.

Lu, W.

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. R 74, 351–376 (2013).
[Crossref]

Lundt, N.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon-exciton-polaritons with GaAs quantum wells and MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Luo, J.

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

Luo, X.

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. R 74, 351–376 (2013).
[Crossref]

Maji, P. S.

P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sensors Actuators B: Chem. 255, 729 (2018).
[Crossref]

Malpuech, G.

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Martin, M. C.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

McClatchey, C.

W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
[Crossref]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Murphy, A.

W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
[Crossref]

Murshidy, M. M.

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

Nalitov, A.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

Nalitov, A. V.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Neto, A. H. C.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Ni, Z.

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. R 74, 351–376 (2013).
[Crossref]

Novoselov, K. S.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
[Crossref]

Núnez-Sánchez, S.

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

O’Connor, D.

W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
[Crossref]

Orlov, A.

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99, 151914 (2011).
[Crossref]

Ostrovskaya, E. A.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Reports on Prog. Phys. 80, 016503 (2017).
[Crossref]

Oulton, R.

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

Peres, N. M. R.

M. I. Vasilevskiy, D. G. Santiago-Pérez, C. Trallero-Giner, N. M. R. Peres, and A. Kavokin, “Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two bose-einstein condensates,” Phys. Rev. B 92, 245435 (2015).
[Crossref]

Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevskiy, “Discrete solitons in graphene metamaterials,” Phys. Rev. B 91, 045424 (2015).
[Crossref]

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Pollard, R.

W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
[Crossref]

Qiu, T.

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. R 74, 351–376 (2013).
[Crossref]

Rahman, S.

K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
[Crossref]

Rarity, J. G.

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

Rockstuhl, C.

I. Staude and C. Rockstuhl, “To scatter or not to scatter,” Nat. Mater. 15, 821–822 (2016).
[Crossref] [PubMed]

Santiago-Pérez, D. G.

M. I. Vasilevskiy, D. G. Santiago-Pérez, C. Trallero-Giner, N. M. R. Peres, and A. Kavokin, “Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two bose-einstein condensates,” Phys. Rev. B 92, 245435 (2015).
[Crossref]

Sasin, M. E.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Schneider, C.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Reports on Prog. Phys. 80, 016503 (2017).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon-exciton-polaritons with GaAs quantum wells and MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Sebald, K.

K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
[Crossref]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Serry, M.

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

Shadrivov, I. V.

D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Deeply subwavelength electromagnetic Tamm states in graphene metamaterials,” Phys. Rev. B 89, 245414 (2014).
[Crossref]

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

Shelykh, I. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Shukla, M. K.

P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sensors Actuators B: Chem. 255, 729 (2018).
[Crossref]

Silva, J.

J. Silva and M. Vasilevskiy, “Tamm Polaritons and Cavity Modes in the FIR Range,” in 20th International Conference on Transparent Optical Networks (ICTON), (IEEEXplore Digital Library, 2018), pp. 1–4.

Smirnova, D.

D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Deeply subwavelength electromagnetic Tamm states in graphene metamaterials,” Phys. Rev. B 89, 245414 (2014).
[Crossref]

Smirnova, D. A.

Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevskiy, “Discrete solitons in graphene metamaterials,” Phys. Rev. B 91, 045424 (2015).
[Crossref]

Song, J.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Light trapping schemes in organic cells: A comparison between optical Tamm states and Fabry-Pérot cavity modes,” Org. Electron. 14, 1577–1585 (2013).
[Crossref]

Staude, I.

I. Staude and C. Rockstuhl, “To scatter or not to scatter,” Nat. Mater. 15, 821–822 (2016).
[Crossref] [PubMed]

Stormer, H. L.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Sun, H.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Light trapping schemes in organic cells: A comparison between optical Tamm states and Fabry-Pérot cavity modes,” Org. Electron. 14, 1577–1585 (2013).
[Crossref]

Tamm, I. E.

I. E. Tamm, Physik. Z. Sovjetunion1, 733 (1932).

Tangi, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tangi, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Reports 4, 5483 (2014).
[Crossref]

Tongay, S.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

Trallero-Giner, C.

M. I. Vasilevskiy, D. G. Santiago-Pérez, C. Trallero-Giner, N. M. R. Peres, and A. Kavokin, “Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two bose-einstein condensates,” Phys. Rev. B 92, 245435 (2015).
[Crossref]

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Vasilevskiy, M.

J. Silva and M. Vasilevskiy, “Tamm Polaritons and Cavity Modes in the FIR Range,” in 20th International Conference on Transparent Optical Networks (ICTON), (IEEEXplore Digital Library, 2018), pp. 1–4.

Vasilevskiy, M. I.

M. I. Vasilevskiy, D. G. Santiago-Pérez, C. Trallero-Giner, N. M. R. Peres, and A. Kavokin, “Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two bose-einstein condensates,” Phys. Rev. B 92, 245435 (2015).
[Crossref]

Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevskiy, “Discrete solitons in graphene metamaterials,” Phys. Rev. B 91, 045424 (2015).
[Crossref]

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

Vinogradov, E. A.

E. A. Vinogradov and I. A. Dorofeyev, “Thermally stimulated electromagnetic fields of solids,” Physics-Uspekhi 52, 425 (2009).
[Crossref]

Waldherr, M.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Wang, K.

Wang, X.

Wang, Y.

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

Wen, S.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tangi, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Reports 4, 5483 (2014).
[Crossref]

Winkler, K.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Reports on Prog. Phys. 80, 016503 (2017).
[Crossref]

Wurdack, M.

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon-exciton-polaritons with GaAs quantum wells and MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

Wurtz, G. A.

W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
[Crossref]

Xiang, Y.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5, 536–542 (2017).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tangi, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Reports 4, 5483 (2014).
[Crossref]

Xu, P.

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

Yamamoto, Y.

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Reports on Prog. Phys. 80, 016503 (2017).
[Crossref]

Yang, G.

You, Q.

Yu, P. Y.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2010).
[Crossref]

Zayats, A. V.

W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tangi, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Reports 4, 5483 (2014).
[Crossref]

Zhang, X.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Light trapping schemes in organic cells: A comparison between optical Tamm states and Fabry-Pérot cavity modes,” Org. Electron. 14, 1577–1585 (2013).
[Crossref]

Zheng, Y.

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

Zhou, H.

ACS Photonics (1)

S. Núnez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: A step toward a full molecular-dielectric photonic integration,” ACS Photonics 3, 743–748 (2016).
[Crossref]

Adv. Mat. (1)

W. Dickson, S. Beckett, C. McClatchey, A. Murphy, D. O’Connor, G. A. Wurtz, R. Pollard, and A. V. Zayats, “Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials,” Adv. Mat. 27, 5974–5980 (2015).
[Crossref]

Appl. Phys. Lett. (3)

I. Iorsh, A. Orlov, P. Belov, and Y. Kivshar, “Interface modes in nanostructured metal-dielectric metamaterials,” Appl. Phys. Lett. 99, 151914 (2011).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

K. Sebald, S. Rahman, M. Cornelius, J. Gutowski, T. Klein, S. Klembt, C. Kruse, and D. Hommel, “Tailoring the optical properties of wide-bandgap based microcavities via metal films,” Appl. Phys. Lett. 107, 062101 (2015).
[Crossref]

Int. J. Mod. Phys. B (1)

Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27, 1341001 (2013).
[Crossref]

Mater. Sci. Eng. R (1)

X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and applications,” Mater. Sci. Eng. R 74, 351–376 (2013).
[Crossref]

Nat. Commun. (3)

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon-exciton-polaritons with GaAs quantum wells and MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

M. Waldherr, N. Lundt, M. Klaas, S. Betzold, M. Wurdack, V. Baumann, E. Estrecho, A. Nalitov, E. Cherotchenko, H. Cai, E. A. Ostrovskaya, A. V. Kavokin, S. Tongay, S. Klembt, S. Höfling, and C. Schneider, “Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity,” Nat. Commun. 9, 3286 (2018).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Nat. Mater. (1)

I. Staude and C. Rockstuhl, “To scatter or not to scatter,” Nat. Mater. 15, 821–822 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 4, 630–634 (2011).
[Crossref]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Nat. Phys. (1)

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008).
[Crossref]

Opt. Commun. (1)

Y. Zheng, Y. Wang, J. Luo, and P. Xu, “Optical Tamm states in photonic structures made of inhomogeneous material,” Opt. Commun. 406, 103–106 (2018).
[Crossref]

Opt. Lett. (1)

Org. Electron. (1)

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Light trapping schemes in organic cells: A comparison between optical Tamm states and Fabry-Pérot cavity modes,” Org. Electron. 14, 1577–1585 (2013).
[Crossref]

Photon. Res. (1)

Phys. Rev. B (5)

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevskiy, “Discrete solitons in graphene metamaterials,” Phys. Rev. B 91, 045424 (2015).
[Crossref]

M. I. Vasilevskiy, D. G. Santiago-Pérez, C. Trallero-Giner, N. M. R. Peres, and A. Kavokin, “Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two bose-einstein condensates,” Phys. Rev. B 92, 245435 (2015).
[Crossref]

D. Smirnova, P. Buslaev, I. Iorsh, I. V. Shadrivov, P. A. Belov, and Y. S. Kivshar, “Deeply subwavelength electromagnetic Tamm states in graphene metamaterials,” Phys. Rev. B 89, 245414 (2014).
[Crossref]

Physics-Uspekhi (1)

E. A. Vinogradov and I. A. Dorofeyev, “Thermally stimulated electromagnetic fields of solids,” Physics-Uspekhi 52, 425 (2009).
[Crossref]

Reports on Prog. Phys. (1)

C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto, E. A. Ostrovskaya, and S. Höfling, “Exciton-polariton trapping and potential landscape engineering,” Reports on Prog. Phys. 80, 016503 (2017).
[Crossref]

Rev. Mod. Phys. (1)

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009).
[Crossref]

Sci. Reports (1)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tangi, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Reports 4, 5483 (2014).
[Crossref]

Science (2)

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

A. K. Geim, “Graphene: Status and prospects,” Science 324, 1530–15342009.

Sensors Actuators B: Chem. (1)

P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sensors Actuators B: Chem. 255, 729 (2018).
[Crossref]

Superlattices Microstruct. (1)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47, 44–49 (2010).
[Crossref]

Other (4)

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2010).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
[Crossref]

J. Silva and M. Vasilevskiy, “Tamm Polaritons and Cavity Modes in the FIR Range,” in 20th International Conference on Transparent Optical Networks (ICTON), (IEEEXplore Digital Library, 2018), pp. 1–4.

I. E. Tamm, Physik. Z. Sovjetunion1, 733 (1932).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the studied heterostructure and calculated profile of the magnetic field amplitude corresponding to OTS and external EM wave in air used for probing this confined state considering a structure with and without a graphene sheet (blue solid line and black dashed line, respectively), for a frequency of 35.60 meV and 35.48 meV, respectively, corresponding to the minimum of reflectance in each case. Notice the discontinuity of the magnetic field profile across the graphene layer introduced in the middle of the gap (assuming graphene’s Fermi energy = 0.5 eV) and the continuity of the field profile in the absence of the graphene layer.
Fig. 2
Fig. 2 Eigenmode frequencies, solutions of the dispersion equation (8) calculated for different gap values, for the structure without graphene. The Si/Ge layer thickness is 2.4 μm and the GaAs slab thickness is 10μm, the GaAs phonon damping was neglected. Both the frequency and the wavevector values are presented in energy units. The inset shows the variation of the q = 0 mode with the gap size.
Fig. 3
Fig. 3 Normal incidence reflectance spectra of (a) the structure without gap (δ = 0), with and without graphene layer at the GaAs/BR interface, and (b) structures with different gap widths containing a graphene layer placed at the center of the microcavity. Parameters: GaAs layer thickness 2.37 μm, d = 2.4 μm, N =30 and EF = 0.5 eV.
Fig. 4
Fig. 4 Dependence of the OTS frequency upon graphene’s Fermi energy: (a) extracted from normal incidence reflectance spectra of GaAs/graphene/BR structure and obtained by the phase matching condition (15); (b) for different locations of the graphene sheet as shown in the inset (the values are extracted from the reflectance spectra). Parameters are the same as in Fig. 3.
Fig. 5
Fig. 5 Schemes corresponding to (a) an N-period Bragg reflector, and (b) a structure constituted by two different heterostructures separated by a gap.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

( H A ( r , t ) E A x ( r , t ) ) z = d = T ^ A ( H A ( r , t ) E A x ( r , t ) ) z = 0 + ,
( 1 + r ^ p c k 1 z 1 ω ( 1 r ^ p ) ) = T ^ N 1 ( t ^ p c k 3 z 3 ω t ^ p ) .
k i z = i ( ω c ) 2 q 2 ,
T ^ N 1 ( T ^ A 1 T ^ B 1 ) N ,
GaAs ( ω ) = ( 1 + ω LO 2 ω TO 2 ω TO 2 ω 2 i ω Γ TO ) ,
r ^ 1 ( p ) r ^ 2 ( p ) e 2 i k δ = 1 ,
| r ^ 1 ( p ) | = | r ^ 2 ( p ) | = 1 ,
Δ ϕ = ϕ 1 + ϕ 2 + 2 k δ = 2 π m ,
T ^ δ 2 T ^ G r T ^ δ 2 ( 1 + r ^ 2 ( p ) c k ω ( 1 r ^ 2 ( p ) ) ) = D ( 1 + r ^ 1 ( p ) c k ω ( r ^ 1 ( p ) 1 ) ) ,
T ^ Gr = ( 1 4 π c σ ( ω ) 0 1 ) ,
σ ( ω ) = σ 0 4 E F π 1 Γ i ω .
r ^ 1 ( p ) r ^ 2 ( p ) e i k δ [ 2 π σ ( ω ) k ω 1 ] 2 π σ ( ω ) k ω [ r ^ 1 ( p ) + r ^ 2 ( p ) ] + e i k δ [ 2 π σ ( ω ) k ω + 1 ] = 0 .
r ^ 1 ( p ) r ^ 2 ( p ) e 2 i k δ = 1 + Δ ( k , ω ) ,
Δ ( k , ω ) = 2 π σ ( ω ) k ω ( r ^ 1 ( p ) e i k δ 1 ) ( r ^ 2 ( p ) e i k δ 1 ) .
ϕ 1 + ϕ 2 + 2 k δ = arg [ 1 + Δ ( k , ω ) ] .
H i ( p ) = y ^ H i e i ( k i r ω t )
H r ( p ) = y ^ H r e i ( k r r ω t )
H t ( p ) = y ^ H t e i ( k t r ω t ) ,
H r = r ^ ( p ) H i ;
H t = t ^ ( p ) H i .
( H 1 ( r , t ) E 1 x ( r , t ) ) z = 0 = ( H A ( r , t ) E A x ( r , t ) ) z = 0 + ,
( H 1 ( r , t ) E 1 x ( r , t ) ) z = 0 = ( 1 + r ^ p c k 1 z 1 ω ( 1 r ^ p ) ) H i .
( H A ( r , t ) E A x ( r , t ) ) z = 0 + = T ^ A 1 ( H A ( r , t ) E A x ( r , t ) ) z = d .
T ^ A 1 ( H A ( r , t ) E A x ( r , t ) ) z = d = T ^ A 1 ( H B ( r , t ) E B x ( r , t ) ) z = d + ,
( H B ( r , t ) E B x ( r , t ) ) z = d + = T ^ B 1 ( H B ( r , t ) E B x ( r , t ) ) z = 2 d ,
( H 1 ( r , t ) E 1 x ( r , t ) ) z = 0 = T ^ A 1 T ^ B 1 ( H B ( r , t ) E B x ( r , t ) ) z = 2 d ,
T ^ A , B 1 = ( cos ( k A , B d ) i ω c A , B k A , B sin ( k A , B d ) i c ω k A , B A , B sin ( k A , B d ) cos ( k A , B d ) ) .
( H 1 ( r , t ) E 1 x ( r , t ) ) z = 0 = ( T ^ A 1 T ^ B 1 ) N ( H B ( r , t ) E B x ( r , t ) ) z = 2 N d .
( H 1 ( r , t ) E 1 x ( r , t ) ) z = 0 = ( T ^ A 1 T ^ B 1 ) N ( H 3 ( r , t ) E 3 x ( r , t ) ) z = 2 N d + = ( T ^ A 1 T ^ B 1 ) N ( t ^ p c k 3 z 3 ω t ^ p ) ,
( H y E x ) z = δ 2 = T ^ 1 1 ( H y E x ) z = d 1 δ 2
( H y E x ) z = δ 2 = T ^ 1 1 ( t ^ 1 ( p ) t ^ 1 ( p ) c k ω ) ,
( H y E x ) z = δ 2 = T ^ 2 ( H y E x ) z = d 2 + δ 2 ,
( H y E x ) z = δ 2 = T ^ 2 ( t ^ 2 ( p ) t ^ 2 ( p ) c k ω ) ,
( H y E x ) z = δ 2 = ( cos ( k δ ) i ω c k sin ( k δ ) i c k ω sin ( k δ ) cos ( k δ ) ) ( H y E x ) z = δ 2 ,
( cos ( k δ ) i ω c k sin ( k δ ) i c k ω sin ( k δ ) cos ( k δ ) ) ( H y E x ) z = δ 2 T ^ δ 1 ( H y E x ) z = δ 2 .
T ^ 2 ( t ^ 2 ( p ) t ^ 2 ( p ) c k ω ) = T ^ δ 1 T ^ 1 1 ( t ^ 2 ( p ) t ^ 1 ( p ) c k ω ) ,
T ^ 1 ( t ^ ( p ) c k ω t ^ ( p ) ) = ( 1 + r ^ ( p ) c k ω ( r ^ ( p ) 1 ) ) .
T ^ ( t ^ ( p ) c k ω t ^ ( p ) ) = ( 1 + r ^ ( p ) c k ω ( 1 r ^ ( p ) ) ) .
T ^ δ ( 1 + r ^ 2 ( p ) c k ω ( 1 r ^ 2 ( p ) ) ) = C ( 1 + r ^ 1 ( p ) c k ω ( r ^ 1 ( p ) 1 ) ) .
{ cos ( k δ ) ( 1 + r ^ 2 ( p ) i sin ( k δ ) ( 1 r ^ 2 ( p ) ) = C ( 1 + r ^ 1 ( p ) ) , i sin ( k δ ) ( 1 + r ^ 2 ( p ) ) + cos ( k δ ) ( 1 r ^ 2 ( p ) ) = C ( r ^ 1 ( p ) 1 ) ,
{ e i k δ + r ^ 2 ( p ) e i k δ = C ( 1 + r ^ 1 ( p ) ) , e i k δ + r ^ 2 ( p ) e i k δ = C ( r ^ 1 ( p ) 1 ) .

Metrics