Abstract

In femtosecond laser helical drilling, the laser focus moves downward into the workpiece as material is removed, which is one of the main features used to improve the processing efficiency. Numerical modeling is the primary method used to study this process. To reduce the spatial scale of the numerical model, the influence of the helical trajectory was not considered in this study. Instead, the influences of the pulse interval and the downward velocity of the laser focus on the ablation process during deep-hole processing with multi-pulse femtosecond laser ablation were explored, and the existing two-temperature model was adapted. We used the critical-point phase separation model to describe the material ablation process with a femtosecond laser. Using a copper workpiece, we simulated an ablation process in which multiple pulses from a femtosecond laser were focused onto the workpiece and the focus moved into the workpiece at a constant speed. We used the finite element method to determine the variation in the electron and lattice temperatures, as well as the ablation depth under different pulse intervals with the focus moving downward at different velocities. The results demonstrate that the pulse interval is an important factor affecting the ablation depth during multi-pulse femtosecond laser ablation. As the pulse interval increased, the ablation depth first increased and then decreased. The laser ablation efficiency was highest when the pulse interval was 200 ps. The downward velocity of the laser focus determined the defocusing distance during laser processing. We obtained a high processing efficiency when a reasonable downward velocity was adopted to maintain the defocusing distance within approximately 50 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates

Francesca Di Niso, Caterina Gaudiuso, Teresa Sibillano, Francesco Paolo Mezzapesa, Antonio Ancona, and Pietro Mario Lugarà
Opt. Express 22(10) 12200-12210 (2014)

Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays

Caterina Gaudiuso, Giuseppe Giannuzzi, Annalisa Volpe, Pietro Mario Lugarà, Isabelle Choquet, and Antonio Ancona
Opt. Express 26(4) 3801-3813 (2018)

Effect of the hot electron blast force on ultrafast laser ablation of nickel thin film

Yonggang Shen, Yong Gan, Wanjun Qi, Yaogen Shen, and Zhen Chen
Appl. Opt. 54(7) 1737-1742 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Ding, B. T. Hu, and Y. H. Li, “Numerical simulation of copper ablation by ultrashort laser pulses,” arXiv: Plasma Physics 1107.3710, (2011).
  2. N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Deep-hole drilling in Fe by ultrashort laser pulses: molecular dynamics simulation study,” in XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, (2005), Vol. 5777, pp. 846–849.
  3. J. K. Chen, Y. Ren, and Y. Zhang, “Heat transfer in metal films irradiated by combined nanosecond laser pulse and femtosecond pulse train,” Front. Heat Mass Transfer 3(2), 023001 (2012).
    [Crossref]
  4. L. L. Dasallas and W. O. Garcia, “Numerical simulation of femtosecond pulsed laser ablation of copper for oblique angle of incidence through two-temperature model,” Mater. Res. Express 5(1), 016518 (2018).
    [Crossref]
  5. L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transfer 50(17–18), 3461–3470 (2007).
    [Crossref]
  6. C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chen, and H. L. Tsai, “Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system,” in Laser-based Micro-and Nanopackaging and Assembly IV, (2010), Vol. 7585, p. 75850I.
  7. J. Zhang, Y. Chen, M. Hu, and X. Chen, “An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum,” J. Appl. Phys. 117(6), 063104 (2015).
    [Crossref]
  8. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66(2), 776–781 (1974).
  9. Y. Zhang, D. Y. Tzou, and J. K. Chen, “Micro-and nanoscale heat transfer in femtosecond laser processing of metals,” arXiv: Computational Physics 1511.03566, (2015).
  10. B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D: Appl. Phys. 50(19), 193001 (2017).
    [Crossref]
  11. Q. L. Xiong and X. G. Tian, “Effect of multi-pulses train on the thermomechanical response of a metal thin film,” J. Therm. Stresses 39(1), 1–10 (2016).
    [Crossref]
  12. J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52(13–14), 3091–3100 (2009).
    [Crossref]
  13. Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
    [Crossref]
  14. X. Qi-lin, Z. Li, and T. Xiao-geng, “Ultrafast thermomechanical responses of a copper film under femtosecond laser trains: a molecular dynamics study,” Proc. R. Soc. London, Ser. A 471(2184), 20150614 (2015).
    [Crossref]
  15. A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo, V. Bharadwaj, R. Ramponi, and S. Eaton, “Ablation of Copper Metal Films by Femtosecond Laser Multipulse Irradiation,” Appl. Sci. 8(10), 1826 (2018).
    [Crossref]
  16. D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, “Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum,” Phys. Rev. E 65(1), 016409 (2001).
    [Crossref]
  17. B. Wu and Y. C. Shin, “A simple model for high fluence ultra-short pulsed laser metal ablation,” Appl. Surf. Sci. 253(8), 4079–4084 (2007).
    [Crossref]
  18. C. A. Dold, “Picosecond laser processing of diamond cutting edges,” ETH Zurich (2013).
  19. C. W. Cheng, S. Y. Wang, K. P. Chang, and J. K. Chen, “Femtosecond laser ablation of copper at high laser fluence: Modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
    [Crossref]
  20. S. Y. Wang, Y. Ren, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Micromachining of copper by femtosecond laser pulses,” Appl. Surf. Sci. 265, 302–308 (2013).
    [Crossref]
  21. S. Y. Wang, Y. Ren, K. P. Chang, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Ablation of Copper by a Single Ultrashort Laser Pulse,” J. Laser Micro/Nanoeng. 9(2), 88–92 (2014).
    [Crossref]
  22. X. J. Li, Y. W. Dong, C. P. Yin, Q. Zhao, and Y. C. You, “Geometric parameters evolution experiment of hole during femtosecond laser helical drilling,” Chinese J. Lasers (2018).

2018 (2)

L. L. Dasallas and W. O. Garcia, “Numerical simulation of femtosecond pulsed laser ablation of copper for oblique angle of incidence through two-temperature model,” Mater. Res. Express 5(1), 016518 (2018).
[Crossref]

A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo, V. Bharadwaj, R. Ramponi, and S. Eaton, “Ablation of Copper Metal Films by Femtosecond Laser Multipulse Irradiation,” Appl. Sci. 8(10), 1826 (2018).
[Crossref]

2017 (1)

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D: Appl. Phys. 50(19), 193001 (2017).
[Crossref]

2016 (2)

Q. L. Xiong and X. G. Tian, “Effect of multi-pulses train on the thermomechanical response of a metal thin film,” J. Therm. Stresses 39(1), 1–10 (2016).
[Crossref]

C. W. Cheng, S. Y. Wang, K. P. Chang, and J. K. Chen, “Femtosecond laser ablation of copper at high laser fluence: Modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

2015 (2)

X. Qi-lin, Z. Li, and T. Xiao-geng, “Ultrafast thermomechanical responses of a copper film under femtosecond laser trains: a molecular dynamics study,” Proc. R. Soc. London, Ser. A 471(2184), 20150614 (2015).
[Crossref]

J. Zhang, Y. Chen, M. Hu, and X. Chen, “An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum,” J. Appl. Phys. 117(6), 063104 (2015).
[Crossref]

2014 (1)

S. Y. Wang, Y. Ren, K. P. Chang, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Ablation of Copper by a Single Ultrashort Laser Pulse,” J. Laser Micro/Nanoeng. 9(2), 88–92 (2014).
[Crossref]

2013 (1)

S. Y. Wang, Y. Ren, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Micromachining of copper by femtosecond laser pulses,” Appl. Surf. Sci. 265, 302–308 (2013).
[Crossref]

2012 (1)

J. K. Chen, Y. Ren, and Y. Zhang, “Heat transfer in metal films irradiated by combined nanosecond laser pulse and femtosecond pulse train,” Front. Heat Mass Transfer 3(2), 023001 (2012).
[Crossref]

2011 (1)

Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
[Crossref]

2009 (1)

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52(13–14), 3091–3100 (2009).
[Crossref]

2007 (2)

L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transfer 50(17–18), 3461–3470 (2007).
[Crossref]

B. Wu and Y. C. Shin, “A simple model for high fluence ultra-short pulsed laser metal ablation,” Appl. Surf. Sci. 253(8), 4079–4084 (2007).
[Crossref]

2001 (1)

D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, “Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum,” Phys. Rev. E 65(1), 016409 (2001).
[Crossref]

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66(2), 776–781 (1974).

Abdelmalek, A.

A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo, V. Bharadwaj, R. Ramponi, and S. Eaton, “Ablation of Copper Metal Films by Femtosecond Laser Multipulse Irradiation,” Appl. Sci. 8(10), 1826 (2018).
[Crossref]

Amara, E. H.

A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo, V. Bharadwaj, R. Ramponi, and S. Eaton, “Ablation of Copper Metal Films by Femtosecond Laser Multipulse Irradiation,” Appl. Sci. 8(10), 1826 (2018).
[Crossref]

Anisimov, S. I.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D: Appl. Phys. 50(19), 193001 (2017).
[Crossref]

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66(2), 776–781 (1974).

Atanasov, P. A.

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Deep-hole drilling in Fe by ultrashort laser pulses: molecular dynamics simulation study,” in XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, (2005), Vol. 5777, pp. 846–849.

Bedrane, Z.

A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo, V. Bharadwaj, R. Ramponi, and S. Eaton, “Ablation of Copper Metal Films by Femtosecond Laser Multipulse Irradiation,” Appl. Sci. 8(10), 1826 (2018).
[Crossref]

Berger, P.

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Deep-hole drilling in Fe by ultrashort laser pulses: molecular dynamics simulation study,” in XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, (2005), Vol. 5777, pp. 846–849.

Bharadwaj, V.

A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo, V. Bharadwaj, R. Ramponi, and S. Eaton, “Ablation of Copper Metal Films by Femtosecond Laser Multipulse Irradiation,” Appl. Sci. 8(10), 1826 (2018).
[Crossref]

Chang, K. P.

C. W. Cheng, S. Y. Wang, K. P. Chang, and J. K. Chen, “Femtosecond laser ablation of copper at high laser fluence: Modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

S. Y. Wang, Y. Ren, K. P. Chang, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Ablation of Copper by a Single Ultrashort Laser Pulse,” J. Laser Micro/Nanoeng. 9(2), 88–92 (2014).
[Crossref]

Chen, C. W.

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chen, and H. L. Tsai, “Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system,” in Laser-based Micro-and Nanopackaging and Assembly IV, (2010), Vol. 7585, p. 75850I.

Chen, J. K.

C. W. Cheng, S. Y. Wang, K. P. Chang, and J. K. Chen, “Femtosecond laser ablation of copper at high laser fluence: Modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

S. Y. Wang, Y. Ren, K. P. Chang, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Ablation of Copper by a Single Ultrashort Laser Pulse,” J. Laser Micro/Nanoeng. 9(2), 88–92 (2014).
[Crossref]

S. Y. Wang, Y. Ren, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Micromachining of copper by femtosecond laser pulses,” Appl. Surf. Sci. 265, 302–308 (2013).
[Crossref]

J. K. Chen, Y. Ren, and Y. Zhang, “Heat transfer in metal films irradiated by combined nanosecond laser pulse and femtosecond pulse train,” Front. Heat Mass Transfer 3(2), 023001 (2012).
[Crossref]

Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
[Crossref]

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52(13–14), 3091–3100 (2009).
[Crossref]

Y. Zhang, D. Y. Tzou, and J. K. Chen, “Micro-and nanoscale heat transfer in femtosecond laser processing of metals,” arXiv: Computational Physics 1511.03566, (2015).

Chen, X.

J. Zhang, Y. Chen, M. Hu, and X. Chen, “An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum,” J. Appl. Phys. 117(6), 063104 (2015).
[Crossref]

Chen, Y.

J. Zhang, Y. Chen, M. Hu, and X. Chen, “An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum,” J. Appl. Phys. 117(6), 063104 (2015).
[Crossref]

Cheng, C. W.

C. W. Cheng, S. Y. Wang, K. P. Chang, and J. K. Chen, “Femtosecond laser ablation of copper at high laser fluence: Modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

S. Y. Wang, Y. Ren, K. P. Chang, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Ablation of Copper by a Single Ultrashort Laser Pulse,” J. Laser Micro/Nanoeng. 9(2), 88–92 (2014).
[Crossref]

S. Y. Wang, Y. Ren, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Micromachining of copper by femtosecond laser pulses,” Appl. Surf. Sci. 265, 302–308 (2013).
[Crossref]

Dasallas, L. L.

L. L. Dasallas and W. O. Garcia, “Numerical simulation of femtosecond pulsed laser ablation of copper for oblique angle of incidence through two-temperature model,” Mater. Res. Express 5(1), 016518 (2018).
[Crossref]

Dausinger, F.

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Deep-hole drilling in Fe by ultrashort laser pulses: molecular dynamics simulation study,” in XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, (2005), Vol. 5777, pp. 846–849.

Ding, P. J.

P. J. Ding, B. T. Hu, and Y. H. Li, “Numerical simulation of copper ablation by ultrashort laser pulses,” arXiv: Plasma Physics 1107.3710, (2011).

Dold, C. A.

C. A. Dold, “Picosecond laser processing of diamond cutting edges,” ETH Zurich (2013).

Dong, Y. W.

X. J. Li, Y. W. Dong, C. P. Yin, Q. Zhao, and Y. C. You, “Geometric parameters evolution experiment of hole during femtosecond laser helical drilling,” Chinese J. Lasers (2018).

Eaton, S.

A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo, V. Bharadwaj, R. Ramponi, and S. Eaton, “Ablation of Copper Metal Films by Femtosecond Laser Multipulse Irradiation,” Appl. Sci. 8(10), 1826 (2018).
[Crossref]

Eliezer, S.

D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, “Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum,” Phys. Rev. E 65(1), 016409 (2001).
[Crossref]

Fisher, D.

D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, “Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum,” Phys. Rev. E 65(1), 016409 (2001).
[Crossref]

Fraenkel, M.

D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, “Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum,” Phys. Rev. E 65(1), 016409 (2001).
[Crossref]

Garcia, M. E.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D: Appl. Phys. 50(19), 193001 (2017).
[Crossref]

Garcia, W. O.

L. L. Dasallas and W. O. Garcia, “Numerical simulation of femtosecond pulsed laser ablation of copper for oblique angle of incidence through two-temperature model,” Mater. Res. Express 5(1), 016518 (2018).
[Crossref]

Henis, Z.

D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, “Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum,” Phys. Rev. E 65(1), 016409 (2001).
[Crossref]

Hu, B. T.

P. J. Ding, B. T. Hu, and Y. H. Li, “Numerical simulation of copper ablation by ultrashort laser pulses,” arXiv: Plasma Physics 1107.3710, (2011).

Hu, M.

J. Zhang, Y. Chen, M. Hu, and X. Chen, “An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum,” J. Appl. Phys. 117(6), 063104 (2015).
[Crossref]

Huang, J.

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52(13–14), 3091–3100 (2009).
[Crossref]

Imamova, S. E.

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Deep-hole drilling in Fe by ultrashort laser pulses: molecular dynamics simulation study,” in XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, (2005), Vol. 5777, pp. 846–849.

Ivanov, D. S.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D: Appl. Phys. 50(19), 193001 (2017).
[Crossref]

Jiang, L.

L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transfer 50(17–18), 3461–3470 (2007).
[Crossref]

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chen, and H. L. Tsai, “Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system,” in Laser-based Micro-and Nanopackaging and Assembly IV, (2010), Vol. 7585, p. 75850I.

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66(2), 776–781 (1974).

Li, X. J.

X. J. Li, Y. W. Dong, C. P. Yin, Q. Zhao, and Y. C. You, “Geometric parameters evolution experiment of hole during femtosecond laser helical drilling,” Chinese J. Lasers (2018).

Li, Y. H.

P. J. Ding, B. T. Hu, and Y. H. Li, “Numerical simulation of copper ablation by ultrashort laser pulses,” arXiv: Plasma Physics 1107.3710, (2011).

Li, Z.

X. Qi-lin, Z. Li, and T. Xiao-geng, “Ultrafast thermomechanical responses of a copper film under femtosecond laser trains: a molecular dynamics study,” Proc. R. Soc. London, Ser. A 471(2184), 20150614 (2015).
[Crossref]

Lin, C. H.

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chen, and H. L. Tsai, “Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system,” in Laser-based Micro-and Nanopackaging and Assembly IV, (2010), Vol. 7585, p. 75850I.

Moshe, E.

D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, “Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum,” Phys. Rev. E 65(1), 016409 (2001).
[Crossref]

Nedialkov, N. N.

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Deep-hole drilling in Fe by ultrashort laser pulses: molecular dynamics simulation study,” in XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, (2005), Vol. 5777, pp. 846–849.

Perelman, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66(2), 776–781 (1974).

Qi-lin, X.

X. Qi-lin, Z. Li, and T. Xiao-geng, “Ultrafast thermomechanical responses of a copper film under femtosecond laser trains: a molecular dynamics study,” Proc. R. Soc. London, Ser. A 471(2184), 20150614 (2015).
[Crossref]

Ramponi, R.

A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo, V. Bharadwaj, R. Ramponi, and S. Eaton, “Ablation of Copper Metal Films by Femtosecond Laser Multipulse Irradiation,” Appl. Sci. 8(10), 1826 (2018).
[Crossref]

Rao, Z. H.

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chen, and H. L. Tsai, “Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system,” in Laser-based Micro-and Nanopackaging and Assembly IV, (2010), Vol. 7585, p. 75850I.

Ren, Y.

S. Y. Wang, Y. Ren, K. P. Chang, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Ablation of Copper by a Single Ultrashort Laser Pulse,” J. Laser Micro/Nanoeng. 9(2), 88–92 (2014).
[Crossref]

S. Y. Wang, Y. Ren, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Micromachining of copper by femtosecond laser pulses,” Appl. Surf. Sci. 265, 302–308 (2013).
[Crossref]

J. K. Chen, Y. Ren, and Y. Zhang, “Heat transfer in metal films irradiated by combined nanosecond laser pulse and femtosecond pulse train,” Front. Heat Mass Transfer 3(2), 023001 (2012).
[Crossref]

Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
[Crossref]

Rethfeld, B.

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D: Appl. Phys. 50(19), 193001 (2017).
[Crossref]

Shin, Y. C.

B. Wu and Y. C. Shin, “A simple model for high fluence ultra-short pulsed laser metal ablation,” Appl. Surf. Sci. 253(8), 4079–4084 (2007).
[Crossref]

Sotillo, B.

A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo, V. Bharadwaj, R. Ramponi, and S. Eaton, “Ablation of Copper Metal Films by Femtosecond Laser Multipulse Irradiation,” Appl. Sci. 8(10), 1826 (2018).
[Crossref]

Tian, X. G.

Q. L. Xiong and X. G. Tian, “Effect of multi-pulses train on the thermomechanical response of a metal thin film,” J. Therm. Stresses 39(1), 1–10 (2016).
[Crossref]

Tsai, H. L.

L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transfer 50(17–18), 3461–3470 (2007).
[Crossref]

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chen, and H. L. Tsai, “Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system,” in Laser-based Micro-and Nanopackaging and Assembly IV, (2010), Vol. 7585, p. 75850I.

Tsai, W. J.

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chen, and H. L. Tsai, “Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system,” in Laser-based Micro-and Nanopackaging and Assembly IV, (2010), Vol. 7585, p. 75850I.

Tzou, D. Y.

S. Y. Wang, Y. Ren, K. P. Chang, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Ablation of Copper by a Single Ultrashort Laser Pulse,” J. Laser Micro/Nanoeng. 9(2), 88–92 (2014).
[Crossref]

S. Y. Wang, Y. Ren, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Micromachining of copper by femtosecond laser pulses,” Appl. Surf. Sci. 265, 302–308 (2013).
[Crossref]

Y. Zhang, D. Y. Tzou, and J. K. Chen, “Micro-and nanoscale heat transfer in femtosecond laser processing of metals,” arXiv: Computational Physics 1511.03566, (2015).

Wang, S. Y.

C. W. Cheng, S. Y. Wang, K. P. Chang, and J. K. Chen, “Femtosecond laser ablation of copper at high laser fluence: Modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

S. Y. Wang, Y. Ren, K. P. Chang, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Ablation of Copper by a Single Ultrashort Laser Pulse,” J. Laser Micro/Nanoeng. 9(2), 88–92 (2014).
[Crossref]

S. Y. Wang, Y. Ren, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Micromachining of copper by femtosecond laser pulses,” Appl. Surf. Sci. 265, 302–308 (2013).
[Crossref]

Wu, B.

B. Wu and Y. C. Shin, “A simple model for high fluence ultra-short pulsed laser metal ablation,” Appl. Surf. Sci. 253(8), 4079–4084 (2007).
[Crossref]

Wu, P. H.

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chen, and H. L. Tsai, “Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system,” in Laser-based Micro-and Nanopackaging and Assembly IV, (2010), Vol. 7585, p. 75850I.

Xiao-geng, T.

X. Qi-lin, Z. Li, and T. Xiao-geng, “Ultrafast thermomechanical responses of a copper film under femtosecond laser trains: a molecular dynamics study,” Proc. R. Soc. London, Ser. A 471(2184), 20150614 (2015).
[Crossref]

Xiong, Q. L.

Q. L. Xiong and X. G. Tian, “Effect of multi-pulses train on the thermomechanical response of a metal thin film,” J. Therm. Stresses 39(1), 1–10 (2016).
[Crossref]

Yin, C. P.

X. J. Li, Y. W. Dong, C. P. Yin, Q. Zhao, and Y. C. You, “Geometric parameters evolution experiment of hole during femtosecond laser helical drilling,” Chinese J. Lasers (2018).

You, Y. C.

X. J. Li, Y. W. Dong, C. P. Yin, Q. Zhao, and Y. C. You, “Geometric parameters evolution experiment of hole during femtosecond laser helical drilling,” Chinese J. Lasers (2018).

Zhang, J.

J. Zhang, Y. Chen, M. Hu, and X. Chen, “An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum,” J. Appl. Phys. 117(6), 063104 (2015).
[Crossref]

Zhang, Y.

J. K. Chen, Y. Ren, and Y. Zhang, “Heat transfer in metal films irradiated by combined nanosecond laser pulse and femtosecond pulse train,” Front. Heat Mass Transfer 3(2), 023001 (2012).
[Crossref]

Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
[Crossref]

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52(13–14), 3091–3100 (2009).
[Crossref]

Y. Zhang, D. Y. Tzou, and J. K. Chen, “Micro-and nanoscale heat transfer in femtosecond laser processing of metals,” arXiv: Computational Physics 1511.03566, (2015).

Zhao, Q.

X. J. Li, Y. W. Dong, C. P. Yin, Q. Zhao, and Y. C. You, “Geometric parameters evolution experiment of hole during femtosecond laser helical drilling,” Chinese J. Lasers (2018).

Appl. Sci. (1)

A. Abdelmalek, Z. Bedrane, E. H. Amara, B. Sotillo, V. Bharadwaj, R. Ramponi, and S. Eaton, “Ablation of Copper Metal Films by Femtosecond Laser Multipulse Irradiation,” Appl. Sci. 8(10), 1826 (2018).
[Crossref]

Appl. Surf. Sci. (3)

B. Wu and Y. C. Shin, “A simple model for high fluence ultra-short pulsed laser metal ablation,” Appl. Surf. Sci. 253(8), 4079–4084 (2007).
[Crossref]

C. W. Cheng, S. Y. Wang, K. P. Chang, and J. K. Chen, “Femtosecond laser ablation of copper at high laser fluence: Modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

S. Y. Wang, Y. Ren, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Micromachining of copper by femtosecond laser pulses,” Appl. Surf. Sci. 265, 302–308 (2013).
[Crossref]

Front. Heat Mass Transfer (1)

J. K. Chen, Y. Ren, and Y. Zhang, “Heat transfer in metal films irradiated by combined nanosecond laser pulse and femtosecond pulse train,” Front. Heat Mass Transfer 3(2), 023001 (2012).
[Crossref]

Int. J. Heat Mass Transfer (2)

L. Jiang and H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films,” Int. J. Heat Mass Transfer 50(17–18), 3461–3470 (2007).
[Crossref]

J. Huang, Y. Zhang, and J. K. Chen, “Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses,” Int. J. Heat Mass Transfer 52(13–14), 3091–3100 (2009).
[Crossref]

J. Appl. Phys. (2)

Y. Ren, J. K. Chen, and Y. Zhang, “Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers,” J. Appl. Phys. 110(11), 113102 (2011).
[Crossref]

J. Zhang, Y. Chen, M. Hu, and X. Chen, “An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum,” J. Appl. Phys. 117(6), 063104 (2015).
[Crossref]

J. Laser Micro/Nanoeng. (1)

S. Y. Wang, Y. Ren, K. P. Chang, C. W. Cheng, J. K. Chen, and D. Y. Tzou, “Ablation of Copper by a Single Ultrashort Laser Pulse,” J. Laser Micro/Nanoeng. 9(2), 88–92 (2014).
[Crossref]

J. Phys. D: Appl. Phys. (1)

B. Rethfeld, D. S. Ivanov, M. E. Garcia, and S. I. Anisimov, “Modelling ultrafast laser ablation,” J. Phys. D: Appl. Phys. 50(19), 193001 (2017).
[Crossref]

J. Therm. Stresses (1)

Q. L. Xiong and X. G. Tian, “Effect of multi-pulses train on the thermomechanical response of a metal thin film,” J. Therm. Stresses 39(1), 1–10 (2016).
[Crossref]

Mater. Res. Express (1)

L. L. Dasallas and W. O. Garcia, “Numerical simulation of femtosecond pulsed laser ablation of copper for oblique angle of incidence through two-temperature model,” Mater. Res. Express 5(1), 016518 (2018).
[Crossref]

Phys. Rev. E (1)

D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, and S. Eliezer, “Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum,” Phys. Rev. E 65(1), 016409 (2001).
[Crossref]

Proc. R. Soc. London, Ser. A (1)

X. Qi-lin, Z. Li, and T. Xiao-geng, “Ultrafast thermomechanical responses of a copper film under femtosecond laser trains: a molecular dynamics study,” Proc. R. Soc. London, Ser. A 471(2184), 20150614 (2015).
[Crossref]

Zh. Eksp. Teor. Fiz (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66(2), 776–781 (1974).

Other (6)

Y. Zhang, D. Y. Tzou, and J. K. Chen, “Micro-and nanoscale heat transfer in femtosecond laser processing of metals,” arXiv: Computational Physics 1511.03566, (2015).

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chen, and H. L. Tsai, “Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system,” in Laser-based Micro-and Nanopackaging and Assembly IV, (2010), Vol. 7585, p. 75850I.

P. J. Ding, B. T. Hu, and Y. H. Li, “Numerical simulation of copper ablation by ultrashort laser pulses,” arXiv: Plasma Physics 1107.3710, (2011).

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Deep-hole drilling in Fe by ultrashort laser pulses: molecular dynamics simulation study,” in XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, (2005), Vol. 5777, pp. 846–849.

C. A. Dold, “Picosecond laser processing of diamond cutting edges,” ETH Zurich (2013).

X. J. Li, Y. W. Dong, C. P. Yin, Q. Zhao, and Y. C. You, “Geometric parameters evolution experiment of hole during femtosecond laser helical drilling,” Chinese J. Lasers (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Interaction between the laser beam and material.
Fig. 2.
Fig. 2. Simulation model and boundary conditions.
Fig. 3.
Fig. 3. Pulse distribution.
Fig. 4.
Fig. 4. Laser ablation depth as a function of the pulse fluence.
Fig. 5.
Fig. 5. Comparison of ablation depth simulated with the axisymmetric model and published results
Fig. 6.
Fig. 6. Maximum electron temperature at different pulse intervals. Pulse width is 250fs, laser wave length is 800nm, single pulse energy is 10µJ (laser fluence is 6.37 $J/c{m^2}$)
Fig. 7.
Fig. 7. Maximum lattice temperature at different pulse intervals. Pulse width is 250fs, laser wave length is 800nm, single pulse energy is 10µJ (laser fluence is 6.37 $J/c{m^2}$)
Fig. 8.
Fig. 8. Ablation depths at different pulse intervals. Pulse width is 250fs, laser wave length is 800nm, single pulse energy is 10µJ (laser fluence is 6.37 $J/c{m^2}$)
Fig. 9.
Fig. 9. Relative ablation depth increment at different focus downward velocities.

Tables (1)

Tables Icon

Table 1. Parameters in the computation model

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

C e T e t = [ k e T e ] G ( T e T l ) + Q
C l T l t = [ k l T l ] + G ( T e T l )
C e ( T e ) = { C e 0 T e T e T F π 2 2 C e 0 T e 3 + C e ( T e ) 3 T F π 2 < T e 3 T F π 2 N k B + C e ( T e ) 3 3 T F π 2 < T e T F 3 N k B 2 T e > T F
N = N A V
C e ( T e ) = C e 0 T F π 2 + 3 N k B / 3 N k B 2 2 C e 0 T F / C e 0 T F π 2 π 2 T F T F / T F π 2 π 2 ( T e T F / T F π 2 ) π 2 )
k e ( T e , T l ) = χ υ e ( υ e 2 + 0.16 ) 1.25 ( υ e 2 + 0.44 ) ( υ e 2 + 0.092 ) 0.5 ( υ e 2 + η υ l )
G ( T e , T l ) = G R T [ A e B l ( T e + T l ) + 1 ]
C l ( T l ) = { 313.7 + 0.324 T l 2.687 × 10 4 × T l 2 + 1.257 × 10 7 T l 3 T l T m 510.1 T l > T m
k l ( T e , T l ) = k e ( T e , T l ) / k e ( T e , T l ) 99 99
ω ( z , t ) = ω 0 1 + ( z v t z R ) 2
S ( r , z , t ) = 1 R ( T e , T l ) ( δ + δ b ) 2 E p π ω 2 ( z , t ) exp ( z z s δ + δ b 2 r 2 ω 2 ( z , t ) ) ( z z s )
ε = ε ξ p 2 ξ ( ξ + i γ ) = ε ξ p 2 ξ 2 + γ 2 + i ξ p 2 γ ξ ( ξ 2 + γ 2 ) = α 1 + i α 2
τ e = 1 A e T e 2 + 1.41 υ e p
υ e p = Ξ 2 8 π ε F k F ρ 0 v s m o p t m e { 0 q b e ϕ l e ϕ e ( e ϕ l 1 ) ( e ϕ e 1 ) q 4 d q + ς 0 q b e ϕ l e ϕ e ( e ϕ l 1 ) ( e ϕ e 1 ) q 3 d q + q b e φ l + e φ e ( e φ l 1 ) ( e φ e 1 ) × ( 2 k F ) 4 q b 4 4 4 ς q b 2 k F 2 e φ l e φ e ( e φ l 1 ) ( e φ e 1 ) }
R ( T e , T l ) = ( n r 1 ) 2 + n i ( n r + 1 ) 2 + n i
T ( t ) = { 1 t p 4 ln 2 π exp [ 4 ln 2 ( t 2 t p t p ) 2 ] ( 0 t 4 t p ) 0 ( 4 t p < t < 1 f )
Q ( r , z , t ) = S ( r , z , t ) T ( t )
T s e p = T c ( ρ 0 ρ c ) 2 / 2 3 3

Metrics