Abstract

A Nd:YAG (λ = 355 nm) nanosecond laser is used to anneal a 45-nm-thick amorphous-Si (a-Si) thin film on a glass substrate. Via scanning with a laser beam having a Gaussian shape at a repetition rate of 14 kHz, the surface of the a-Si film is crystallized, and laser-induced periodic surface structures (LIPSSs) are formed within the fluence range of 30–35 mJ/cm2. The formation energy of surface ripples is significantly lower than the typical fluence of a few 100 mJ/cm2. Confocal Raman spectroscopy and atomic force microscopy reveal that the a-Si film is only crystallized near the top surface and that the surface ripples are aligned to the perpendicular direction of laser polarization, in accordance with the LIPSS model. For a laser fluence of >35 mJ/cm2, the surface texture loses its periodicity but forms randomly distributed Si grains with a surface roughness of >40 nm. The laser processing on an a-Si film achieved by scanning up to 20 × 20 mm2 shows uniform periodic surface textures, which can be employed in the display or photovoltaic applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey
Opt. Express 18(18) 19379-19385 (2010)

Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse

Jukun Liu, Xin Jia, Weishu Wu, Ke Cheng, Donghai Feng, Shian Zhang, Zhenrong Sun, and Tianqing Jia
Opt. Express 26(5) 6302-6315 (2018)

Gold-film coating assisted femtosecond laser fabrication of large-area, uniform periodic surface structures

Pin Feng, Lan Jiang, Xin Li, Wenlong Rong, Kaihu Zhang, and Qiang Cao
Appl. Opt. 54(6) 1314-1319 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S.-L. Chuang and J. A. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69(9), 1132–1144 (1981).
    [Crossref]
  2. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
    [Crossref]
  3. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  4. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref]
  5. J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures; a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
    [Crossref]
  6. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
    [Crossref]
  7. Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, and T. Saiki, “Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization,” Appl. Phys. Lett. 105(3), 031907 (2014).
    [Crossref]
  8. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
    [Crossref]
  9. P. Gregorcic, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
    [Crossref]
  10. M. Ardron, N. Weston, and D. Hand, “A practical technique for the generation of highly uniform LIPSS,” Appl. Surf. Sci. 313, 123–131 (2014).
    [Crossref]
  11. J. Cui, A. Nogales, T. A. Ezquerra, and E. Rebollar, “Influence of substrate and film thickness on polymer LIPSS formatio,” Appl. Surf. Sci. 394, 125–131 (2017).
    [Crossref]
  12. S. He, J. J. Nivas, K. K. Anoop, A. Vecchinoe, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
    [Crossref]
  13. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
    [Crossref]
  14. L. Jiang, W. Han, X. Li, Q. Wang, F. Meng, and Y. Lu, “Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon,” Opt. Lett. 39(11), 3114–3117 (2014).
    [Crossref]
  15. W. Han, L. Jiang, X. Li, L. X. Pengjun Liu, and Y. Lu, “Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
    [Crossref]
  16. W. Han, F. Liu, Y. Yuan, X. Li, Q. Wang, S. Wang, and L. Jiang, “Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure,” Nanotechnology 29(30), 305301 (2018).
    [Crossref]
  17. F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
    [Crossref]
  18. S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
    [Crossref]
  19. D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
    [Crossref]
  20. T. J.-Y. Derrein, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond lase double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
    [Crossref]
  21. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett. 36(2), 229–231 (2011).
    [Crossref]
  22. E. Blesso, Y. Vidhya, and N. J. Vasa, “Nanosecond laser treatment of a-Si thin films for enhanced light trapping and minority carrier lifetime in photovoltaic cells,” J. Laser Micro Nanoen. 12, 222–229 (2017).
  23. D. Differt, B. Soleymanzadeh, F. Lükermann, C. Strüber, W. Pfeiffer, and H. Stiebig, “Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing,” Sol. Energy Mater. Sol. Cells 135, 72–77 (2015).
    [Crossref]
  24. L. Hong, R. Xincai Wang, H. Wang, H. Zheng, and H. Yu, “Crystallization and surface texturing of amorphous-Si induced by UV laser for photovoltaic application,” J. Appl. Phys. 111(4), 043106 (2012).
    [Crossref]
  25. Hongliang Wang, Panjawat Kongsuwan, Gen Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced surface texturing and crystallization of a-Si:H thin film,” Proc. 2010 Int. Manufacturing Sci. and Eng. Conf. 34271, (2010).
  26. X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film,” Opt. Express 18(18), 19379–19385 (2010).
    [Crossref]
  27. H. J. Kim and J. S. Im, “New excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si films for thin film transistors,” Appl. Phys. Lett. 68(11), 1513–1515 (1996).
    [Crossref]
  28. T. Noguchi, “Prospective crystallization of amorphous Si films for new Si TFTs,” Phys. Status Solidi C 5(10), 3259–3263 (2008).
    [Crossref]
  29. M. He, R. Ishihara, W. Metselaar, and K. Beenakker, “<100>-textured self-assembled square-shaped polycrystalline silicon grains by multiple shot excimer laser crystallization,” J. Appl. Phys. 100(8), 083103 (2006).
    [Crossref]
  30. P. C. van der Wilt, “Excimer-laser annealing: Microstructure evolution and a novel characterization technique,” Dig. SID 45(1), 149–152 (2014).
    [Crossref]
  31. C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, and J. Im, “LTPS backplane technologies for AMLCDs and AMOLEDs,” Dig. SID 42(1), 862–865 (2011).
    [Crossref]
  32. T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
    [Crossref]
  33. B. Soleymanzadeh, W. Beyer, F. Luekermann, P. Prunici, W. Pfeiffer, and H. Stiebig, “Femtosecond laser materials processing of a-Si:H below the ablation threshold,” Proc. MRS Spring Meeting, USA (2014).
  34. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  35. M. J. Kang, M. Kim, E. S. Hwang, J. Noh, S. T. Shin, and B.-H. Cheong, “Crystallization of amorphous-Si using nanosecond laser interference method,” J. Soc. Inf. Disp. 27(1), 34–40 (2019).
    [Crossref]

2019 (1)

M. J. Kang, M. Kim, E. S. Hwang, J. Noh, S. T. Shin, and B.-H. Cheong, “Crystallization of amorphous-Si using nanosecond laser interference method,” J. Soc. Inf. Disp. 27(1), 34–40 (2019).
[Crossref]

2018 (3)

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

W. Han, F. Liu, Y. Yuan, X. Li, Q. Wang, S. Wang, and L. Jiang, “Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure,” Nanotechnology 29(30), 305301 (2018).
[Crossref]

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

2017 (3)

E. Blesso, Y. Vidhya, and N. J. Vasa, “Nanosecond laser treatment of a-Si thin films for enhanced light trapping and minority carrier lifetime in photovoltaic cells,” J. Laser Micro Nanoen. 12, 222–229 (2017).

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures; a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

J. Cui, A. Nogales, T. A. Ezquerra, and E. Rebollar, “Influence of substrate and film thickness on polymer LIPSS formatio,” Appl. Surf. Sci. 394, 125–131 (2017).
[Crossref]

2016 (3)

P. Gregorcic, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
[Crossref]

2015 (2)

D. Differt, B. Soleymanzadeh, F. Lükermann, C. Strüber, W. Pfeiffer, and H. Stiebig, “Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing,” Sol. Energy Mater. Sol. Cells 135, 72–77 (2015).
[Crossref]

S. He, J. J. Nivas, K. K. Anoop, A. Vecchinoe, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

2014 (4)

M. Ardron, N. Weston, and D. Hand, “A practical technique for the generation of highly uniform LIPSS,” Appl. Surf. Sci. 313, 123–131 (2014).
[Crossref]

L. Jiang, W. Han, X. Li, Q. Wang, F. Meng, and Y. Lu, “Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon,” Opt. Lett. 39(11), 3114–3117 (2014).
[Crossref]

Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, and T. Saiki, “Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization,” Appl. Phys. Lett. 105(3), 031907 (2014).
[Crossref]

P. C. van der Wilt, “Excimer-laser annealing: Microstructure evolution and a novel characterization technique,” Dig. SID 45(1), 149–152 (2014).
[Crossref]

2013 (2)

2012 (1)

L. Hong, R. Xincai Wang, H. Wang, H. Zheng, and H. Yu, “Crystallization and surface texturing of amorphous-Si induced by UV laser for photovoltaic application,” J. Appl. Phys. 111(4), 043106 (2012).
[Crossref]

2011 (3)

2010 (3)

2009 (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

2008 (1)

T. Noguchi, “Prospective crystallization of amorphous Si films for new Si TFTs,” Phys. Status Solidi C 5(10), 3259–3263 (2008).
[Crossref]

2006 (1)

M. He, R. Ishihara, W. Metselaar, and K. Beenakker, “<100>-textured self-assembled square-shaped polycrystalline silicon grains by multiple shot excimer laser crystallization,” J. Appl. Phys. 100(8), 083103 (2006).
[Crossref]

1996 (1)

H. J. Kim and J. S. Im, “New excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si films for thin film transistors,” Appl. Phys. Lett. 68(11), 1513–1515 (1996).
[Crossref]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1982 (1)

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

1981 (1)

S.-L. Chuang and J. A. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69(9), 1132–1144 (1981).
[Crossref]

Altucci, C.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Amoruso, S.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
[Crossref]

S. He, J. J. Nivas, K. K. Anoop, A. Vecchinoe, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Anoop, K. K.

S. He, J. J. Nivas, K. K. Anoop, A. Vecchinoe, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Ardron, M.

M. Ardron, N. Weston, and D. Hand, “A practical technique for the generation of highly uniform LIPSS,” Appl. Surf. Sci. 313, 123–131 (2014).
[Crossref]

Beenakker, K.

M. He, R. Ishihara, W. Metselaar, and K. Beenakker, “<100>-textured self-assembled square-shaped polycrystalline silicon grains by multiple shot excimer laser crystallization,” J. Appl. Phys. 100(8), 083103 (2006).
[Crossref]

Beyer, W.

B. Soleymanzadeh, W. Beyer, F. Luekermann, P. Prunici, W. Pfeiffer, and H. Stiebig, “Femtosecond laser materials processing of a-Si:H below the ablation threshold,” Proc. MRS Spring Meeting, USA (2014).

Blesso, E.

E. Blesso, Y. Vidhya, and N. J. Vasa, “Nanosecond laser treatment of a-Si thin films for enhanced light trapping and minority carrier lifetime in photovoltaic cells,” J. Laser Micro Nanoen. 12, 222–229 (2017).

Bonse, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures; a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

T. J.-Y. Derrein, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond lase double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

Bounhalli, M.

Bruzzese, R.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

S. He, J. J. Nivas, K. K. Anoop, A. Vecchinoe, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Cheong, B.-H.

M. J. Kang, M. Kim, E. S. Hwang, J. Noh, S. T. Shin, and B.-H. Cheong, “Crystallization of amorphous-Si using nanosecond laser interference method,” J. Soc. Inf. Disp. 27(1), 34–40 (2019).
[Crossref]

Choi, J. B.

C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, and J. Im, “LTPS backplane technologies for AMLCDs and AMOLEDs,” Dig. SID 42(1), 862–865 (2011).
[Crossref]

Choi, Y. H.

C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, and J. Im, “LTPS backplane technologies for AMLCDs and AMOLEDs,” Dig. SID 42(1), 862–865 (2011).
[Crossref]

Chuang, S.-L.

S.-L. Chuang and J. A. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69(9), 1132–1144 (1981).
[Crossref]

Colombier, J. P.

Cui, J.

J. Cui, A. Nogales, T. A. Ezquerra, and E. Rebollar, “Influence of substrate and film thickness on polymer LIPSS formatio,” Appl. Surf. Sci. 394, 125–131 (2017).
[Crossref]

Derrein, T. J.-Y.

Differt, D.

D. Differt, B. Soleymanzadeh, F. Lükermann, C. Strüber, W. Pfeiffer, and H. Stiebig, “Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing,” Sol. Energy Mater. Sol. Cells 135, 72–77 (2015).
[Crossref]

Dörr, D.

Epple, M.

Ezquerra, T. A.

J. Cui, A. Nogales, T. A. Ezquerra, and E. Rebollar, “Influence of substrate and film thickness on polymer LIPSS formatio,” Appl. Surf. Sci. 394, 125–131 (2017).
[Crossref]

Fauchet, P. M.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Faure, N.

Fittipaldi, R.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Garcia-Lechuga, M.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Garcia-Leis, A.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Garrelie, F.

Gesuele, F.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Goto, T.

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

Gotoh, J.

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

Gregorcic, P.

P. Gregorcic, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

Guosheng, Z.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Han, W.

Hand, D.

M. Ardron, N. Weston, and D. Hand, “A practical technique for the generation of highly uniform LIPSS,” Appl. Surf. Sci. 313, 123–131 (2014).
[Crossref]

Hatanake, M.

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

He, M.

M. He, R. Ishihara, W. Metselaar, and K. Beenakker, “<100>-textured self-assembled square-shaped polycrystalline silicon grains by multiple shot excimer laser crystallization,” J. Appl. Phys. 100(8), 083103 (2006).
[Crossref]

He, S.

S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
[Crossref]

S. He, J. J. Nivas, K. K. Anoop, A. Vecchinoe, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Hernandez-Rueda, J.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Höhm, S.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures; a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

T. J.-Y. Derrein, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond lase double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref]

Hong, L.

L. Hong, R. Xincai Wang, H. Wang, H. Zheng, and H. Yu, “Crystallization and surface texturing of amorphous-Si induced by UV laser for photovoltaic application,” J. Appl. Phys. 111(4), 043106 (2012).
[Crossref]

Hu, M.

S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
[Crossref]

S. He, J. J. Nivas, K. K. Anoop, A. Vecchinoe, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Hwang, E. S.

M. J. Kang, M. Kim, E. S. Hwang, J. Noh, S. T. Shin, and B.-H. Cheong, “Crystallization of amorphous-Si using nanosecond laser interference method,” J. Soc. Inf. Disp. 27(1), 34–40 (2019).
[Crossref]

Ikenoue, H.

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

Im, J.

C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, and J. Im, “LTPS backplane technologies for AMLCDs and AMOLEDs,” Dig. SID 42(1), 862–865 (2011).
[Crossref]

Im, J. S.

H. J. Kim and J. S. Im, “New excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si films for thin film transistors,” Appl. Phys. Lett. 68(11), 1513–1515 (1996).
[Crossref]

Imaizumi, F.

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

Ishihara, R.

M. He, R. Ishihara, W. Metselaar, and K. Beenakker, “<100>-textured self-assembled square-shaped polycrystalline silicon grains by multiple shot excimer laser crystallization,” J. Appl. Phys. 100(8), 083103 (2006).
[Crossref]

Itina, T. E.

Jiang, L.

Jung, J. G.

C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, and J. Im, “LTPS backplane technologies for AMLCDs and AMOLEDs,” Dig. SID 42(1), 862–865 (2011).
[Crossref]

Kang, M. J.

M. J. Kang, M. Kim, E. S. Hwang, J. Noh, S. T. Shin, and B.-H. Cheong, “Crystallization of amorphous-Si using nanosecond laser interference method,” J. Soc. Inf. Disp. 27(1), 34–40 (2019).
[Crossref]

Katsumata, Y.

Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, and T. Saiki, “Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization,” Appl. Phys. Lett. 105(3), 031907 (2014).
[Crossref]

Kim, C. W.

C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, and J. Im, “LTPS backplane technologies for AMLCDs and AMOLEDs,” Dig. SID 42(1), 862–865 (2011).
[Crossref]

Kim, D. h.

C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, and J. Im, “LTPS backplane technologies for AMLCDs and AMOLEDs,” Dig. SID 42(1), 862–865 (2011).
[Crossref]

Kim, H. D.

C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, and J. Im, “LTPS backplane technologies for AMLCDs and AMOLEDs,” Dig. SID 42(1), 862–865 (2011).
[Crossref]

Kim, H. J.

H. J. Kim and J. S. Im, “New excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si films for thin film transistors,” Appl. Phys. Lett. 68(11), 1513–1515 (1996).
[Crossref]

Kim, M.

M. J. Kang, M. Kim, E. S. Hwang, J. Noh, S. T. Shin, and B.-H. Cheong, “Crystallization of amorphous-Si using nanosecond laser interference method,” J. Soc. Inf. Disp. 27(1), 34–40 (2019).
[Crossref]

Kirner, S. V.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures; a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

Kong, J. A.

S.-L. Chuang and J. A. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69(9), 1132–1144 (1981).
[Crossref]

Kongsuwan, Panjawat

Hongliang Wang, Panjawat Kongsuwan, Gen Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced surface texturing and crystallization of a-Si:H thin film,” Proc. 2010 Int. Manufacturing Sci. and Eng. Conf. 34271, (2010).

Krüger, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures; a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

T. J.-Y. Derrein, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond lase double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

Lawrence Yao, Y.

Hongliang Wang, Panjawat Kongsuwan, Gen Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced surface texturing and crystallization of a-Si:H thin film,” Proc. 2010 Int. Manufacturing Sci. and Eng. Conf. 34271, (2010).

Le Harzic, R.

Li, X.

Liu, F.

W. Han, F. Liu, Y. Yuan, X. Li, Q. Wang, S. Wang, and L. Jiang, “Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure,” Nanotechnology 29(30), 305301 (2018).
[Crossref]

Lu, Y.

Luekermann, F.

B. Soleymanzadeh, W. Beyer, F. Luekermann, P. Prunici, W. Pfeiffer, and H. Stiebig, “Femtosecond laser materials processing of a-Si:H below the ablation threshold,” Proc. MRS Spring Meeting, USA (2014).

Lükermann, F.

D. Differt, B. Soleymanzadeh, F. Lükermann, C. Strüber, W. Pfeiffer, and H. Stiebig, “Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing,” Sol. Energy Mater. Sol. Cells 135, 72–77 (2015).
[Crossref]

Maddalena, P.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Meng, F.

Metselaar, W.

M. He, R. Ishihara, W. Metselaar, and K. Beenakker, “<100>-textured self-assembled square-shaped polycrystalline silicon grains by multiple shot excimer laser crystallization,” J. Appl. Phys. 100(8), 083103 (2006).
[Crossref]

Mizumura, M.

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

Morimoto, Y.

Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, and T. Saiki, “Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization,” Appl. Phys. Lett. 105(3), 031907 (2014).
[Crossref]

Morita, T.

Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, and T. Saiki, “Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization,” Appl. Phys. Lett. 105(3), 031907 (2014).
[Crossref]

Neumeier, M.

Nivas, J. J.

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

S. He, J. J. Nivas, A. Vecchione, M. Hu, and S. Amoruso, “On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses,” Opt. Express 24(4), 3238–3247 (2016).
[Crossref]

S. He, J. J. Nivas, K. K. Anoop, A. Vecchinoe, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Nogales, A.

J. Cui, A. Nogales, T. A. Ezquerra, and E. Rebollar, “Influence of substrate and film thickness on polymer LIPSS formatio,” Appl. Surf. Sci. 394, 125–131 (2017).
[Crossref]

Noguchi, T.

T. Noguchi, “Prospective crystallization of amorphous Si films for new Si TFTs,” Phys. Status Solidi C 5(10), 3259–3263 (2008).
[Crossref]

Noh, J.

M. J. Kang, M. Kim, E. S. Hwang, J. Noh, S. T. Shin, and B.-H. Cheong, “Crystallization of amorphous-Si using nanosecond laser interference method,” J. Soc. Inf. Disp. 27(1), 34–40 (2019).
[Crossref]

Parriaux, O.

Pengjun Liu, L. X.

Pey, K. L.

Pfeiffer, W.

D. Differt, B. Soleymanzadeh, F. Lükermann, C. Strüber, W. Pfeiffer, and H. Stiebig, “Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing,” Sol. Energy Mater. Sol. Cells 135, 72–77 (2015).
[Crossref]

B. Soleymanzadeh, W. Beyer, F. Luekermann, P. Prunici, W. Pfeiffer, and H. Stiebig, “Femtosecond laser materials processing of a-Si:H below the ablation threshold,” Proc. MRS Spring Meeting, USA (2014).

Pigeon, F.

Podgornik, B.

P. Gregorcic, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Prunici, P.

B. Soleymanzadeh, W. Beyer, F. Luekermann, P. Prunici, W. Pfeiffer, and H. Stiebig, “Femtosecond laser materials processing of a-Si:H below the ablation threshold,” Proc. MRS Spring Meeting, USA (2014).

Puerto, D.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Rebollar, E.

J. Cui, A. Nogales, T. A. Ezquerra, and E. Rebollar, “Influence of substrate and film thickness on polymer LIPSS formatio,” Appl. Surf. Sci. 394, 125–131 (2017).
[Crossref]

Reif, J.

P. Gregorcic, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

Reynaud, S.

Rosenfeld, A.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures; a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

T. J.-Y. Derrein, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond lase double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref]

Saiki, T.

Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, and T. Saiki, “Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization,” Appl. Phys. Lett. 105(3), 031907 (2014).
[Crossref]

Saito, K.

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

Sanchez-Cortes, S.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Satoh, Gen

Hongliang Wang, Panjawat Kongsuwan, Gen Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced surface texturing and crystallization of a-Si:H thin film,” Proc. 2010 Int. Manufacturing Sci. and Eng. Conf. 34271, (2010).

Sauer, D.

Sedlacek, M.

P. Gregorcic, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

Shin, S. T.

M. J. Kang, M. Kim, E. S. Hwang, J. Noh, S. T. Shin, and B.-H. Cheong, “Crystallization of amorphous-Si using nanosecond laser interference method,” J. Soc. Inf. Disp. 27(1), 34–40 (2019).
[Crossref]

Shintani, T.

Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, and T. Saiki, “Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization,” Appl. Phys. Lett. 105(3), 031907 (2014).
[Crossref]

Siegel, J.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Siegman, A. E.

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Soleymanzadeh, B.

D. Differt, B. Soleymanzadeh, F. Lükermann, C. Strüber, W. Pfeiffer, and H. Stiebig, “Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing,” Sol. Energy Mater. Sol. Cells 135, 72–77 (2015).
[Crossref]

B. Soleymanzadeh, W. Beyer, F. Luekermann, P. Prunici, W. Pfeiffer, and H. Stiebig, “Femtosecond laser materials processing of a-Si:H below the ablation threshold,” Proc. MRS Spring Meeting, USA (2014).

Solis, J.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Stiebig, H.

D. Differt, B. Soleymanzadeh, F. Lükermann, C. Strüber, W. Pfeiffer, and H. Stiebig, “Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing,” Sol. Energy Mater. Sol. Cells 135, 72–77 (2015).
[Crossref]

B. Soleymanzadeh, W. Beyer, F. Luekermann, P. Prunici, W. Pfeiffer, and H. Stiebig, “Femtosecond laser materials processing of a-Si:H below the ablation threshold,” Proc. MRS Spring Meeting, USA (2014).

Stracke, F.

Strüber, C.

D. Differt, B. Soleymanzadeh, F. Lükermann, C. Strüber, W. Pfeiffer, and H. Stiebig, “Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing,” Sol. Energy Mater. Sol. Cells 135, 72–77 (2015).
[Crossref]

Sugawa, S.

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

Takimoto, M.

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

Tan, C. W.

Tonchev, S.

van der Wilt, P. C.

P. C. van der Wilt, “Excimer-laser annealing: Microstructure evolution and a novel characterization technique,” Dig. SID 45(1), 149–152 (2014).
[Crossref]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Vasa, N. J.

E. Blesso, Y. Vidhya, and N. J. Vasa, “Nanosecond laser treatment of a-Si thin films for enhanced light trapping and minority carrier lifetime in photovoltaic cells,” J. Laser Micro Nanoen. 12, 222–229 (2017).

Vecchinoe, A.

S. He, J. J. Nivas, K. K. Anoop, A. Vecchinoe, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Vecchione, A.

Vidhya, Y.

E. Blesso, Y. Vidhya, and N. J. Vasa, “Nanosecond laser treatment of a-Si thin films for enhanced light trapping and minority carrier lifetime in photovoltaic cells,” J. Laser Micro Nanoen. 12, 222–229 (2017).

Wang, F.

Wang, H.

L. Hong, R. Xincai Wang, H. Wang, H. Zheng, and H. Yu, “Crystallization and surface texturing of amorphous-Si induced by UV laser for photovoltaic application,” J. Appl. Phys. 111(4), 043106 (2012).
[Crossref]

Wang, Hongliang

Hongliang Wang, Panjawat Kongsuwan, Gen Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced surface texturing and crystallization of a-Si:H thin film,” Proc. 2010 Int. Manufacturing Sci. and Eng. Conf. 34271, (2010).

Wang, Q.

W. Han, F. Liu, Y. Yuan, X. Li, Q. Wang, S. Wang, and L. Jiang, “Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure,” Nanotechnology 29(30), 305301 (2018).
[Crossref]

L. Jiang, W. Han, X. Li, Q. Wang, F. Meng, and Y. Lu, “Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon,” Opt. Lett. 39(11), 3114–3117 (2014).
[Crossref]

Wang, S.

W. Han, F. Liu, Y. Yuan, X. Li, Q. Wang, S. Wang, and L. Jiang, “Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure,” Nanotechnology 29(30), 305301 (2018).
[Crossref]

Wang, X. C.

Weston, N.

M. Ardron, N. Weston, and D. Hand, “A practical technique for the generation of highly uniform LIPSS,” Appl. Surf. Sci. 313, 123–131 (2014).
[Crossref]

Xincai Wang, R.

L. Hong, R. Xincai Wang, H. Wang, H. Zheng, and H. Yu, “Crystallization and surface texturing of amorphous-Si induced by UV laser for photovoltaic application,” J. Appl. Phys. 111(4), 043106 (2012).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Yi, C.

C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, and J. Im, “LTPS backplane technologies for AMLCDs and AMOLEDs,” Dig. SID 42(1), 862–865 (2011).
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Yu, H.

L. Hong, R. Xincai Wang, H. Wang, H. Zheng, and H. Yu, “Crystallization and surface texturing of amorphous-Si induced by UV laser for photovoltaic application,” J. Appl. Phys. 111(4), 043106 (2012).
[Crossref]

Yu, H. Y.

Yuan, Y.

W. Han, F. Liu, Y. Yuan, X. Li, Q. Wang, S. Wang, and L. Jiang, “Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure,” Nanotechnology 29(30), 305301 (2018).
[Crossref]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4), A600–A619 (2010).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Zheng, H.

L. Hong, R. Xincai Wang, H. Wang, H. Zheng, and H. Yu, “Crystallization and surface texturing of amorphous-Si induced by UV laser for photovoltaic application,” J. Appl. Phys. 111(4), 043106 (2012).
[Crossref]

Zheng, H. Y.

Zimmermann, H.

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref]

Appl. Phys. Lett. (2)

Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, and T. Saiki, “Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization,” Appl. Phys. Lett. 105(3), 031907 (2014).
[Crossref]

H. J. Kim and J. S. Im, “New excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si films for thin film transistors,” Appl. Phys. Lett. 68(11), 1513–1515 (1996).
[Crossref]

Appl. Surf. Sci. (4)

P. Gregorcic, M. Sedlacek, B. Podgornik, and J. Reif, “Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,” Appl. Surf. Sci. 387, 698–706 (2016).
[Crossref]

M. Ardron, N. Weston, and D. Hand, “A practical technique for the generation of highly uniform LIPSS,” Appl. Surf. Sci. 313, 123–131 (2014).
[Crossref]

J. Cui, A. Nogales, T. A. Ezquerra, and E. Rebollar, “Influence of substrate and film thickness on polymer LIPSS formatio,” Appl. Surf. Sci. 394, 125–131 (2017).
[Crossref]

S. He, J. J. Nivas, K. K. Anoop, A. Vecchinoe, M. Hu, R. Bruzzese, and S. Amoruso, “Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves,” Appl. Surf. Sci. 353, 1214–1222 (2015).
[Crossref]

Dig. SID (2)

P. C. van der Wilt, “Excimer-laser annealing: Microstructure evolution and a novel characterization technique,” Dig. SID 45(1), 149–152 (2014).
[Crossref]

C. W. Kim, J. G. Jung, J. B. Choi, D. h. Kim, C. Yi, H. D. Kim, Y. H. Choi, and J. Im, “LTPS backplane technologies for AMLCDs and AMOLEDs,” Dig. SID 42(1), 862–865 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures; a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

IEEE Trans. Electron Devices (1)

T. Goto, K. Saito, F. Imaizumi, M. Hatanake, M. Takimoto, M. Mizumura, J. Gotoh, H. Ikenoue, and S. Sugawa, “LTPS thin-film transistors fabricated using new selective laser annealing system,” IEEE Trans. Electron Devices 65(8), 3250–3256 (2018).
[Crossref]

J. Appl. Phys. (3)

M. He, R. Ishihara, W. Metselaar, and K. Beenakker, “<100>-textured self-assembled square-shaped polycrystalline silicon grains by multiple shot excimer laser crystallization,” J. Appl. Phys. 100(8), 083103 (2006).
[Crossref]

L. Hong, R. Xincai Wang, H. Wang, H. Zheng, and H. Yu, “Crystallization and surface texturing of amorphous-Si induced by UV laser for photovoltaic application,” J. Appl. Phys. 111(4), 043106 (2012).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Laser Micro Nanoen. (1)

E. Blesso, Y. Vidhya, and N. J. Vasa, “Nanosecond laser treatment of a-Si thin films for enhanced light trapping and minority carrier lifetime in photovoltaic cells,” J. Laser Micro Nanoen. 12, 222–229 (2017).

J. Soc. Inf. Disp. (1)

M. J. Kang, M. Kim, E. S. Hwang, J. Noh, S. T. Shin, and B.-H. Cheong, “Crystallization of amorphous-Si using nanosecond laser interference method,” J. Soc. Inf. Disp. 27(1), 34–40 (2019).
[Crossref]

Nanotechnology (2)

W. Han, F. Liu, Y. Yuan, X. Li, Q. Wang, S. Wang, and L. Jiang, “Femtosecond laser induced concentric semi-circular periodic surface structures on silicon based on the quasi-plasmonic annular nanostructure,” Nanotechnology 29(30), 305301 (2018).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (2)

Z. Guosheng, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Phys. Status Solidi C (1)

T. Noguchi, “Prospective crystallization of amorphous Si films for new Si TFTs,” Phys. Status Solidi C 5(10), 3259–3263 (2008).
[Crossref]

Proc. IEEE (1)

S.-L. Chuang and J. A. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69(9), 1132–1144 (1981).
[Crossref]

Sci. Rep. (1)

F. Gesuele, J. J. Nivas, R. Fittipaldi, C. Altucci, R. Bruzzese, P. Maddalena, and S. Amoruso, “Analysis of nascent silicon phase-change gratings induced by femtosecond laser irradiation in vacuum,” Sci. Rep. 8(1), 12498 (2018).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

D. Differt, B. Soleymanzadeh, F. Lükermann, C. Strüber, W. Pfeiffer, and H. Stiebig, “Enhanced light absorption in nanotextured amorphous thin-film silicon caused by femtosecond-laser materials processing,” Sol. Energy Mater. Sol. Cells 135, 72–77 (2015).
[Crossref]

Other (3)

Hongliang Wang, Panjawat Kongsuwan, Gen Satoh, and Y. Lawrence Yao, “Femtosecond laser-induced surface texturing and crystallization of a-Si:H thin film,” Proc. 2010 Int. Manufacturing Sci. and Eng. Conf. 34271, (2010).

B. Soleymanzadeh, W. Beyer, F. Luekermann, P. Prunici, W. Pfeiffer, and H. Stiebig, “Femtosecond laser materials processing of a-Si:H below the ablation threshold,” Proc. MRS Spring Meeting, USA (2014).

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the laser-scanning system for nanosecond laser annealing. (b) Gaussian spatial profile of a single laser beam (λ = 355 nm) and cross-sectional profiles of the laser beam (solid lines) and Gaussian fit curves (dotted lines) at horizontal and vertical directions. The arrow indicates the polarization direction. (c) Schematic of two-dimensional laser scanning path.
Fig. 2.
Fig. 2. Nomarski microscope images of a single pulse applied to an a-Si thin film with laser energies, Eo (max.fluence, Io) of 76 µJ (32 mJ/cm2) (a), 83 µJ (34 mJ/cm2) (b), 89 µJ (37 mJ/cm2) (c), and 94 µJ (39 mJ/cm2) (d). (See the Table 1 for more explanations of laser energy.) (e) Enlarged microscope image of rectangular in (d) and horizontal and vertical cross-sectional surface profiles.
Fig. 3.
Fig. 3. Photographic images of Si thin film, scanned over a 20 mm x 20 mm by laser spot beam with laser energies, Eo (maximum fluence, Io) of 76 µJ (32 mJ/cm2) (a), 83 µJ (34 mJ/cm2) (b), 89 µJ (37 mJ/cm2) (c), and 94 µJ (39 mJ/cm2) (d). The images were obtained at oblique angle of 45° under ambient white light. (e)–(h) Photographs of the same area of (a)–(d), taken backward illumination of the white light at the same oblique angle. The arrow indicates the polarization direction.
Fig. 4.
Fig. 4. Raman spectra of the a-Si surface irradiated with various laser powers. The laser energies for S1-S4 are used as listed in Table 1.
Fig. 5.
Fig. 5. AFM images of the annealed Si surfaces with laser energies, Eo (max. fluence, Io) of 76 µJ (32 mJ/cm2) (a), 83 µJ (34 mJ/cm2) (b), 89 µJ (37 mJ/cm2) (c), and 94 µJ (39 mJ/cm2) (d). The arrow indicates the polarization direction.
Fig. 6.
Fig. 6. 2D Fourier transformed images corresponding to Figs. 5(a)-(d) and (e) horizontal cross-sectional plot.

Tables (1)

Tables Icon

Table 1. Values of laser power, a pulse energy, average fluence, and maximum fluence for laser annealing experiments.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I o exp [ 1 2 ( ( x σ x ) 2 + ( y σ y ) 2 ) ] ,
Λ ( sin θ o + sin θ i ) = m λ

Metrics