Abstract

Trivalent rare earth ions have rich and unique energy levels arising from 4f inner shell configurations, which can be widely used in lasers, display, and bioimaging, etc. As the f-f transition of the rare earth ions is parity-forbidden, it is necessary to dope the active ions in the host with an appropriate coordination structure to relax the forbidden. In this work, a first principles calculation based on the density functional theory was applied to investigate the local structure symmetries of Nd3+ ions in Nd3+,Y3+:SrF2 crystal. The computational results show that the clusters of [mNd3+-nY3+] (m + n = 2, 3, 4, 5 and 6) would be formed when Y3+ is codoped in Nd3+:SrF2 crystal. The formation energy of the [mNd3+-nY3+] cluster decreases when the value of m + n increases, or the value of n increases with m + n fixed, then the lattice structure becomes more stable. Furthermore, the first coordination shell of Nd3+ was cubic when the n ≤ 1, and it would transform to be the lower symmetric square antiprism structure with n ≥ 2. The forbidden of the electric dipole transition was thus relaxed due to breaking of the symmetry. The experimental results show the absorption cross section of Nd3+ was increased from 0.45 ×10−20 cm2 to 5.2×10−20 cm2, and the emission intensity was also enhanced by about 20 times through codoping Y3+ ions, which agreed well with the calculated results. It suggests that the tailoring of the local lattice distortion of the active ions may open interesting possibilities in the design of rare earth doped materials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modulated photoluminescence parameters of neodymium in Sr0.95Y0.05F2.05 laser crystal

Fengkai Ma, Dapeng Jiang, Fei Tang, Qinghui Wu, Siyuan Pang, Yan Liu, and Liangbi Su
Opt. Mater. Express 7(9) 3231-3237 (2017)

Spectroscopy and gain measurements of Nd3+ in SrF2 and other fluorite-structure hosts

Stephen A. Payne, John A. Caird, L. L. Chase, L. K. Smith, N. D. Nielsen, and William F. Krupke
J. Opt. Soc. Am. B 8(4) 726-740 (1991)

Z-scan measurement of the nonlinear refractive index of Nd3+, Y3+-codoped CaF2 and SrF2 crystals

Yue Guo, Shunbin Lu, Liangbi Su, Chujun Zhao, Han Zhang, and Shuangchun Wen
Appl. Opt. 54(4) 953-958 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
    [Crossref]
  2. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
    [Crossref]
  3. A. A. Kaminskii, “Modern developments in the physics of crystalline laser materials,” Phys. Status Solidi A 200(2), 215–296 (2003).
    [Crossref]
  4. P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
    [Crossref]
  5. W. T. Chen, H. S. Sheu, R. S. Liu, and J. P. Attfield, “Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors,” J. Am. Chem. Soc. 134(19), 8022–8025 (2012).
    [Crossref]
  6. Z. G. Xia, C. G. Ma, M. S. Molokeev, Q. L. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
    [Crossref]
  7. Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
    [Crossref]
  8. G. G. Li, Y. Tian, Y. Zhao, and J. Lin, “Recent progress in luminescence tuning of Ce3+ and Eu2+−activated phosphors for pc-WLEDs,” Chem. Soc. Rev. 44(23), 8688–8713 (2015).
    [Crossref]
  9. L. B. Su, J. Xu, H. J. Li, W. Q. Yang, Z. W. Zhao, J. L. Si, Y. J. Dong, and G. Q. Zhou, “Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal,” Opt. Lett. 30(9), 1003–1005 (2005).
    [Crossref]
  10. A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevičius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett. 34(13), 2075–2077 (2009).
    [Crossref]
  11. Z. P. Qin, G. Q. Xie, J. Ma, W. Y. Ge, P. Yuan, L. J. Qian, L. B. Su, D. P. Jiang, F. K. Ma, Q. Zhang, Y. X. Cao, and J. Xu, “Generation of 103fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal,” Opt. Lett. 39(7), 1737–1739 (2014).
    [Crossref]
  12. H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
    [Crossref]
  13. P. W. Metz, D. T. Marzahl, G. Huber, and C. Kränkel, “Performance and wavelength tuning of green emitting terbium lasers,” Opt. Express 25(5), 5716–5724 (2017).
    [Crossref]
  14. X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm,Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
    [Crossref]
  15. W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
    [Crossref]
  16. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetitio-rate, high-average-power, diode pumped 2.94-µm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
    [Crossref]
  17. J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
    [Crossref]
  18. J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25(10), 6425–6438 (1982).
    [Crossref]
  19. P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
    [Crossref]
  20. Y. K. Voronko, A. A. Kaminskii, and V. V. Osiko, “Analysis of the optical spectra of CaF2:Nd3+ (type 1) crystals,” Sov. Phys. JETP 22(2), 295–300 (1966).
  21. Y. K. Voronko, V. V. Osiko, and I. A. Shcherbakov, “Investigation of the interaction of Nd3+ ions in CaF2, SrF2 and BaF2 crystals (type 1),” Sov. Phys. JETP 28(5), 838–844 (1969).
  22. D. R. Tallant and J. C. Wright, “Selective laser excitation of charge compensated sites in CaF2:Er3+,” J. Chem. Phys. 63(5), 2074–2085 (1975).
    [Crossref]
  23. Y. V. Orlovskii, T. T. Basiev, V. V. Osiko, H. Gross, and J. Heber, “Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2,” J. Lumin. 82(3), 251–258 (1999).
    [Crossref]
  24. A. A. Kaminskii, V. V. Osico, A. M. Prochorov, and Y. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2-YF3,” Phys. Lett. 22(4), 419–421 (1966).
    [Crossref]
  25. A. A. Kaminskii, “The Nature of “Aging” of CaF2-YF3-Nd3+ crystals (Type 1) under stimulated emission conditions,” Phys. Status Solidi B 20(1), K51–K54 (1967).
    [Crossref]
  26. J. L. Doualan, L. B. Su, G. Brasse, A. Benayad, V. Ménard, Y. Y. Zhan, A. Braud, P. Camy, J. Xu, and R. Moncorgé, “Improvement of infrared laser properties of Nd:CaF2 crystals via codoping with Y3+ and Lu3+ buffer ions,” J. Opt. Soc. Am. B 30(11), 3018–3021 (2013).
    [Crossref]
  27. C. R. A. Catlow and M. J. Norgett, “Shell model calculations of the energies of formation of point defects in alkaline earth fluorides,” J. Phys. C: Solid State Phys. 6(8), 1325–1339 (1973).
    [Crossref]
  28. C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direction observations of the dopant environment in fluorite using EXAFS,” Nature 312(5995), 601–604 (1984).
    [Crossref]
  29. E. L. Kitts, M. Ikeya, and J. H. Crawford, “Reorientation kinetics of dipolar complexes in Gadolinium-doped alkaline-earth fluorides,” Phys. Rev. B 8(12), 5840–5846 (1973).
    [Crossref]
  30. A. K. Cheetham, B. E. F. Fender, and M. J. Cooper, “Defect structure of calcium fluoride containing excess anions I. Bragg scattering,” J. Phys. C: Solid State Phys. 4(18), 3107–3121 (1971).
    [Crossref]
  31. R. Iffländer, “Solid-state lasers for materials processing,” Springer-Verlag, pp. 311–318 (2001).
  32. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558–561 (1993).
    [Crossref]
  33. G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium,” Phys. Rev. B 49(20), 14251–14269 (1994).
    [Crossref]
  34. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
    [Crossref]
  35. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
    [Crossref]
  36. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref]
  37. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
    [Crossref]
  38. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50(24), 17953–17979 (1994).
    [Crossref]
  39. C. Persson, Y. J. Zhao, S. Lany, and A. Zunger, “n-type doping of CuInSe2 and CuGaSe2,” Phys. Rev. B 72(3), 035211 (2005).
    [Crossref]
  40. G. Makov and M. C. Payne, “Periodic boundary conditions in ab initio calculations,” Phys. Rev. B 51(7), 4014–4022 (1995).
    [Crossref]
  41. S. Lany and A. Zunger, “Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs,” Phys. Rev. B 78(23), 235104 (2008).
    [Crossref]
  42. A. Jockisch, U. Schroder, F. W. De Wette, and W. Kress, “Relaxation and dynamics of the (111) surfaces of the fluorides CaF2 and SrF2,” J. Phys.: Condens. Matter 5(31), 5401–5410 (1993).
    [Crossref]
  43. C. Andeen, D. Schuele, and J. Fontanella, “Pressure and temperature derivatives of the low-frequency dielectric constants of the alkaline-earth fluorides,” Phys. Rev. B 6(2), 591–595 (1972).
    [Crossref]
  44. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
    [Crossref]
  45. C. R. A. Catlow, “The defect properties of anion-excess alkaline-earth fluorides:II intermediate and high dopant concentrations,” J. Phys. C: Solid State Phys. 9(10), 1859–1869 (1976).
    [Crossref]
  46. F. Ma, D. Jiang, F. Tang, Q. Wu, S. Pang, Y. Liu, and L. Su, “Modulated photoluminescence parameters of neodymium in Sr0.95Y0.05F2.05 laser crystal,” Opt. Mater. Express 7(9), 3231–3237 (2017).
    [Crossref]
  47. O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, and V. V. Osiko, “Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride,” Opt. Mater. 34(5), 799–802 (2012).
    [Crossref]
  48. F. K. Ma, D. P. Jiang, L. B. Su, J. Y. Wang, W. Cai, J. Liu, J. G. Zheng, W. G. Zheng, J. Xu, and Y. Liu, “Spectral properties and highly efficient continuous-wave laser operation in Nd-doped Sr1-xYxF2+x crystals,” Opt. Lett. 41(3), 501–503 (2016).
    [Crossref]
  49. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
    [Crossref]
  50. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  51. E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33(4), 1275–1276 (1960).
    [Crossref]

2017 (4)

2016 (4)

F. K. Ma, D. P. Jiang, L. B. Su, J. Y. Wang, W. Cai, J. Liu, J. G. Zheng, W. G. Zheng, J. Xu, and Y. Liu, “Spectral properties and highly efficient continuous-wave laser operation in Nd-doped Sr1-xYxF2+x crystals,” Opt. Lett. 41(3), 501–503 (2016).
[Crossref]

W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref]

J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
[Crossref]

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

2015 (2)

G. G. Li, Y. Tian, Y. Zhao, and J. Lin, “Recent progress in luminescence tuning of Ce3+ and Eu2+−activated phosphors for pc-WLEDs,” Chem. Soc. Rev. 44(23), 8688–8713 (2015).
[Crossref]

Z. G. Xia, C. G. Ma, M. S. Molokeev, Q. L. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (2)

W. T. Chen, H. S. Sheu, R. S. Liu, and J. P. Attfield, “Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors,” J. Am. Chem. Soc. 134(19), 8022–8025 (2012).
[Crossref]

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, and V. V. Osiko, “Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride,” Opt. Mater. 34(5), 799–802 (2012).
[Crossref]

2010 (1)

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

2009 (1)

2008 (1)

S. Lany and A. Zunger, “Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs,” Phys. Rev. B 78(23), 235104 (2008).
[Crossref]

2007 (1)

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
[Crossref]

2005 (2)

2003 (1)

A. A. Kaminskii, “Modern developments in the physics of crystalline laser materials,” Phys. Status Solidi A 200(2), 215–296 (2003).
[Crossref]

2001 (1)

1999 (2)

Y. V. Orlovskii, T. T. Basiev, V. V. Osiko, H. Gross, and J. Heber, “Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2,” J. Lumin. 82(3), 251–258 (1999).
[Crossref]

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

1998 (1)

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

1996 (3)

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

1995 (1)

G. Makov and M. C. Payne, “Periodic boundary conditions in ab initio calculations,” Phys. Rev. B 51(7), 4014–4022 (1995).
[Crossref]

1994 (2)

G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium,” Phys. Rev. B 49(20), 14251–14269 (1994).
[Crossref]

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50(24), 17953–17979 (1994).
[Crossref]

1993 (2)

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558–561 (1993).
[Crossref]

A. Jockisch, U. Schroder, F. W. De Wette, and W. Kress, “Relaxation and dynamics of the (111) surfaces of the fluorides CaF2 and SrF2,” J. Phys.: Condens. Matter 5(31), 5401–5410 (1993).
[Crossref]

1984 (2)

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direction observations of the dopant environment in fluorite using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

1982 (2)

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25(10), 6425–6438 (1982).
[Crossref]

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

1976 (1)

C. R. A. Catlow, “The defect properties of anion-excess alkaline-earth fluorides:II intermediate and high dopant concentrations,” J. Phys. C: Solid State Phys. 9(10), 1859–1869 (1976).
[Crossref]

1975 (1)

D. R. Tallant and J. C. Wright, “Selective laser excitation of charge compensated sites in CaF2:Er3+,” J. Chem. Phys. 63(5), 2074–2085 (1975).
[Crossref]

1973 (2)

C. R. A. Catlow and M. J. Norgett, “Shell model calculations of the energies of formation of point defects in alkaline earth fluorides,” J. Phys. C: Solid State Phys. 6(8), 1325–1339 (1973).
[Crossref]

E. L. Kitts, M. Ikeya, and J. H. Crawford, “Reorientation kinetics of dipolar complexes in Gadolinium-doped alkaline-earth fluorides,” Phys. Rev. B 8(12), 5840–5846 (1973).
[Crossref]

1972 (1)

C. Andeen, D. Schuele, and J. Fontanella, “Pressure and temperature derivatives of the low-frequency dielectric constants of the alkaline-earth fluorides,” Phys. Rev. B 6(2), 591–595 (1972).
[Crossref]

1971 (1)

A. K. Cheetham, B. E. F. Fender, and M. J. Cooper, “Defect structure of calcium fluoride containing excess anions I. Bragg scattering,” J. Phys. C: Solid State Phys. 4(18), 3107–3121 (1971).
[Crossref]

1969 (1)

Y. K. Voronko, V. V. Osiko, and I. A. Shcherbakov, “Investigation of the interaction of Nd3+ ions in CaF2, SrF2 and BaF2 crystals (type 1),” Sov. Phys. JETP 28(5), 838–844 (1969).

1967 (1)

A. A. Kaminskii, “The Nature of “Aging” of CaF2-YF3-Nd3+ crystals (Type 1) under stimulated emission conditions,” Phys. Status Solidi B 20(1), K51–K54 (1967).
[Crossref]

1966 (2)

Y. K. Voronko, A. A. Kaminskii, and V. V. Osiko, “Analysis of the optical spectra of CaF2:Nd3+ (type 1) crystals,” Sov. Phys. JETP 22(2), 295–300 (1966).

A. A. Kaminskii, V. V. Osico, A. M. Prochorov, and Y. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2-YF3,” Phys. Lett. 22(4), 419–421 (1966).
[Crossref]

1965 (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

1960 (2)

E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33(4), 1275–1276 (1960).
[Crossref]

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Aiello, L. C.

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

Alimov, O. K.

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, and V. V. Osiko, “Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride,” Opt. Mater. 34(5), 799–802 (2012).
[Crossref]

Ališauskas, S.

Andeen, C.

C. Andeen, D. Schuele, and J. Fontanella, “Pressure and temperature derivatives of the low-frequency dielectric constants of the alkaline-earth fluorides,” Phys. Rev. B 6(2), 591–595 (1972).
[Crossref]

Andriukaitis, G.

Attfield, J. P.

W. T. Chen, H. S. Sheu, R. S. Liu, and J. P. Attfield, “Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors,” J. Am. Chem. Soc. 134(19), 8022–8025 (2012).
[Crossref]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Balasubramanian, M.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Baltuška, A.

Basiev, T. T.

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, and V. V. Osiko, “Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride,” Opt. Mater. 34(5), 799–802 (2012).
[Crossref]

Y. V. Orlovskii, T. T. Basiev, V. V. Osiko, H. Gross, and J. Heber, “Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2,” J. Lumin. 82(3), 251–258 (1999).
[Crossref]

Benayad, A.

Bendall, P. J.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

Bian, J.

Blöchl, P. E.

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50(24), 17953–17979 (1994).
[Crossref]

Botton, G. A.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

Brasse, G.

Braud, A.

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Burrows, A.

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

Cai, W.

Cai, Z. P.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

Camy, P.

Cao, Y. X.

Catlow, C. R. A.

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direction observations of the dopant environment in fluorite using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25(10), 6425–6438 (1982).
[Crossref]

C. R. A. Catlow, “The defect properties of anion-excess alkaline-earth fluorides:II intermediate and high dopant concentrations,” J. Phys. C: Solid State Phys. 9(10), 1859–1869 (1976).
[Crossref]

C. R. A. Catlow and M. J. Norgett, “Shell model calculations of the energies of formation of point defects in alkaline earth fluorides,” J. Phys. C: Solid State Phys. 6(8), 1325–1339 (1973).
[Crossref]

Chadwick, A. V.

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direction observations of the dopant environment in fluorite using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

Cheetham, A. K.

A. K. Cheetham, B. E. F. Fender, and M. J. Cooper, “Defect structure of calcium fluoride containing excess anions I. Bragg scattering,” J. Phys. C: Solid State Phys. 4(18), 3107–3121 (1971).
[Crossref]

Chen, W. T.

W. T. Chen, H. S. Sheu, R. S. Liu, and J. P. Attfield, “Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors,” J. Am. Chem. Soc. 134(19), 8022–8025 (2012).
[Crossref]

Church, G.

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

Cooper, M. J.

A. K. Cheetham, B. E. F. Fender, and M. J. Cooper, “Defect structure of calcium fluoride containing excess anions I. Bragg scattering,” J. Phys. C: Solid State Phys. 4(18), 3107–3121 (1971).
[Crossref]

Corish, J.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25(10), 6425–6438 (1982).
[Crossref]

Crawford, J. H.

E. L. Kitts, M. Ikeya, and J. H. Crawford, “Reorientation kinetics of dipolar complexes in Gadolinium-doped alkaline-earth fluorides,” Phys. Rev. B 8(12), 5840–5846 (1973).
[Crossref]

Danielius, R.

De Wette, F. W.

A. Jockisch, U. Schroder, F. W. De Wette, and W. Kress, “Relaxation and dynamics of the (111) surfaces of the fluorides CaF2 and SrF2,” J. Phys.: Condens. Matter 5(31), 5401–5410 (1993).
[Crossref]

Dong, Y. J.

Doroshenko, M. E.

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, and V. V. Osiko, “Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride,” Opt. Mater. 34(5), 799–802 (2012).
[Crossref]

Doualan, J. L.

Dudarev, S. L.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

Ernst, H.

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Ertmer, W.

Fan, X. W.

W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref]

Fedorov, P. P.

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, and V. V. Osiko, “Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride,” Opt. Mater. 34(5), 799–802 (2012).
[Crossref]

Fender, B. E. F.

A. K. Cheetham, B. E. F. Fender, and M. J. Cooper, “Defect structure of calcium fluoride containing excess anions I. Bragg scattering,” J. Phys. C: Solid State Phys. 4(18), 3107–3121 (1971).
[Crossref]

Fermann, M. E.

Fontanella, J.

C. Andeen, D. Schuele, and J. Fontanella, “Pressure and temperature derivatives of the low-frequency dielectric constants of the alkaline-earth fluorides,” Phys. Rev. B 6(2), 591–595 (1972).
[Crossref]

Friedman, E.

E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33(4), 1275–1276 (1960).
[Crossref]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

Ge, W. Y.

Giniunas, L.

Goldstein, D. B.

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

Greaves, G. N.

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direction observations of the dopant environment in fluorite using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

Gross, H.

Y. V. Orlovskii, T. T. Basiev, V. V. Osiko, H. Gross, and J. Heber, “Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2,” J. Lumin. 82(3), 251–258 (1999).
[Crossref]

Gu, L.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Guo, X.

Hafner, J.

G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium,” Phys. Rev. B 49(20), 14251–14269 (1994).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558–561 (1993).
[Crossref]

Heber, J.

Y. V. Orlovskii, T. T. Basiev, V. V. Osiko, H. Gross, and J. Heber, “Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2,” J. Lumin. 82(3), 251–258 (1999).
[Crossref]

Hennessy, J. L.

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

Huber, G.

Humphreys, C. J.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

Iffländer, R.

R. Iffländer, “Solid-state lasers for materials processing,” Springer-Verlag, pp. 311–318 (2001).

Ikeya, M.

E. L. Kitts, M. Ikeya, and J. H. Crawford, “Reorientation kinetics of dipolar complexes in Gadolinium-doped alkaline-earth fluorides,” Phys. Rev. B 8(12), 5840–5846 (1973).
[Crossref]

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

Jacobs, P. W. M.

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25(10), 6425–6438 (1982).
[Crossref]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Jiang, D.

Jiang, D. P.

Jockisch, A.

A. Jockisch, U. Schroder, F. W. De Wette, and W. Kress, “Relaxation and dynamics of the (111) surfaces of the fluorides CaF2 and SrF2,” J. Phys.: Condens. Matter 5(31), 5401–5410 (1993).
[Crossref]

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

Ju, Q. W.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
[Crossref]

A. A. Kaminskii, “Modern developments in the physics of crystalline laser materials,” Phys. Status Solidi A 200(2), 215–296 (2003).
[Crossref]

A. A. Kaminskii, “The Nature of “Aging” of CaF2-YF3-Nd3+ crystals (Type 1) under stimulated emission conditions,” Phys. Status Solidi B 20(1), K51–K54 (1967).
[Crossref]

A. A. Kaminskii, V. V. Osico, A. M. Prochorov, and Y. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2-YF3,” Phys. Lett. 22(4), 419–421 (1966).
[Crossref]

Y. K. Voronko, A. A. Kaminskii, and V. V. Osiko, “Analysis of the optical spectra of CaF2:Nd3+ (type 1) crystals,” Sov. Phys. JETP 22(2), 295–300 (1966).

Kammen, D. M.

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

Kitts, E. L.

E. L. Kitts, M. Ikeya, and J. H. Crawford, “Reorientation kinetics of dipolar complexes in Gadolinium-doped alkaline-earth fluorides,” Phys. Rev. B 8(12), 5840–5846 (1973).
[Crossref]

Konyushkin, V. A.

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, and V. V. Osiko, “Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride,” Opt. Mater. 34(5), 799–802 (2012).
[Crossref]

Kränkel, C.

Kress, W.

A. Jockisch, U. Schroder, F. W. De Wette, and W. Kress, “Relaxation and dynamics of the (111) surfaces of the fluorides CaF2 and SrF2,” J. Phys.: Condens. Matter 5(31), 5401–5410 (1993).
[Crossref]

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium,” Phys. Rev. B 49(20), 14251–14269 (1994).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558–561 (1993).
[Crossref]

Lai, W. J.

Lany, S.

S. Lany and A. Zunger, “Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs,” Phys. Rev. B 78(23), 235104 (2008).
[Crossref]

C. Persson, Y. J. Zhao, S. Lany, and A. Zunger, “n-type doping of CuInSe2 and CuGaSe2,” Phys. Rev. B 72(3), 035211 (2005).
[Crossref]

Li, G. G.

G. G. Li, Y. Tian, Y. Zhao, and J. Lin, “Recent progress in luminescence tuning of Ce3+ and Eu2+−activated phosphors for pc-WLEDs,” Chem. Soc. Rev. 44(23), 8688–8713 (2015).
[Crossref]

Li, H.

Li, H. J.

Li, R.

Li, T.

Lin, J.

G. G. Li, Y. Tian, Y. Zhao, and J. Lin, “Recent progress in luminescence tuning of Ce3+ and Eu2+−activated phosphors for pc-WLEDs,” Chem. Soc. Rev. 44(23), 8688–8713 (2015).
[Crossref]

Liu, G. K.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Liu, J.

W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref]

F. K. Ma, D. P. Jiang, L. B. Su, J. Y. Wang, W. Cai, J. Liu, J. G. Zheng, W. G. Zheng, J. Xu, and Y. Liu, “Spectral properties and highly efficient continuous-wave laser operation in Nd-doped Sr1-xYxF2+x crystals,” Opt. Lett. 41(3), 501–503 (2016).
[Crossref]

Liu, J. J.

W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref]

Liu, J. X.

J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
[Crossref]

Liu, Q. L.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Z. G. Xia, C. G. Ma, M. S. Molokeev, Q. L. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref]

Liu, R. S.

W. T. Chen, H. S. Sheu, R. S. Liu, and J. P. Attfield, “Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors,” J. Am. Chem. Soc. 134(19), 8022–8025 (2012).
[Crossref]

Liu, X.

Liu, Y.

Low, W.

E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33(4), 1275–1276 (1960).
[Crossref]

Luan, C.

Lubatschowski, H.

Luo, S. Y.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

Ma, C. G.

Z. G. Xia, C. G. Ma, M. S. Molokeev, Q. L. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref]

Ma, F.

Ma, F. K.

Ma, J.

Ma, W. W.

W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Makov, G.

G. Makov and M. C. Payne, “Periodic boundary conditions in ab initio calculations,” Phys. Rev. B 51(7), 4014–4022 (1995).
[Crossref]

Marcinkevicius, A.

Marzahl, D. T.

Mei, Z. G.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Ménard, V.

Metz, P. W.

Miller, D. J.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Molokeev, M. S.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Z. G. Xia, C. G. Ma, M. S. Molokeev, Q. L. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref]

Moncorgé, R.

Moroney, L. M.

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direction observations of the dopant environment in fluorite using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

Nakladov, A. N.

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, and V. V. Osiko, “Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride,” Opt. Mater. 34(5), 799–802 (2012).
[Crossref]

Norgett, M. J.

C. R. A. Catlow and M. J. Norgett, “Shell model calculations of the energies of formation of point defects in alkaline earth fluorides,” J. Phys. C: Solid State Phys. 6(8), 1325–1339 (1973).
[Crossref]

Norvig, P.

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

Ong, S. H.

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25(10), 6425–6438 (1982).
[Crossref]

Orlovskii, Y. V.

Y. V. Orlovskii, T. T. Basiev, V. V. Osiko, H. Gross, and J. Heber, “Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2,” J. Lumin. 82(3), 251–258 (1999).
[Crossref]

Osico, V. V.

A. A. Kaminskii, V. V. Osico, A. M. Prochorov, and Y. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2-YF3,” Phys. Lett. 22(4), 419–421 (1966).
[Crossref]

Osiko, V. V.

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, and V. V. Osiko, “Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride,” Opt. Mater. 34(5), 799–802 (2012).
[Crossref]

Y. V. Orlovskii, T. T. Basiev, V. V. Osiko, H. Gross, and J. Heber, “Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2,” J. Lumin. 82(3), 251–258 (1999).
[Crossref]

Y. K. Voronko, V. V. Osiko, and I. A. Shcherbakov, “Investigation of the interaction of Nd3+ ions in CaF2, SrF2 and BaF2 crystals (type 1),” Sov. Phys. JETP 28(5), 838–844 (1969).

Y. K. Voronko, A. A. Kaminskii, and V. V. Osiko, “Analysis of the optical spectra of CaF2:Nd3+ (type 1) crystals,” Sov. Phys. JETP 22(2), 295–300 (1966).

Pang, S.

Payne, M. C.

G. Makov and M. C. Payne, “Periodic boundary conditions in ab initio calculations,” Phys. Rev. B 51(7), 4014–4022 (1995).
[Crossref]

Peng, L. C.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Persson, C.

C. Persson, Y. J. Zhao, S. Lany, and A. Zunger, “n-type doping of CuInSe2 and CuGaSe2,” Phys. Rev. B 72(3), 035211 (2005).
[Crossref]

Phua, P. B.

Poeppelmeier, K. R.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Z. G. Xia, C. G. Ma, M. S. Molokeev, Q. L. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref]

Prochorov, A. M.

A. A. Kaminskii, V. V. Osico, A. M. Prochorov, and Y. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2-YF3,” Phys. Lett. 22(4), 419–421 (1966).
[Crossref]

Pugžlys, A.

Qian, L. J.

Qian, X. B.

W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref]

Qin, Z. P.

Relman, D. A.

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

Rickert, K.

Z. G. Xia, C. G. Ma, M. S. Molokeev, Q. L. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref]

Sachs, J.

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

Savrasov, S. Y.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

Schroder, U.

A. Jockisch, U. Schroder, F. W. De Wette, and W. Kress, “Relaxation and dynamics of the (111) surfaces of the fluorides CaF2 and SrF2,” J. Phys.: Condens. Matter 5(31), 5401–5410 (1993).
[Crossref]

Schuele, D.

C. Andeen, D. Schuele, and J. Fontanella, “Pressure and temperature derivatives of the low-frequency dielectric constants of the alkaline-earth fluorides,” Phys. Rev. B 6(2), 591–595 (1972).
[Crossref]

Shcherbakov, I. A.

Y. K. Voronko, V. V. Osiko, and I. A. Shcherbakov, “Investigation of the interaction of Nd3+ ions in CaF2, SrF2 and BaF2 crystals (type 1),” Sov. Phys. JETP 28(5), 838–844 (1969).

Sheu, H. S.

W. T. Chen, H. S. Sheu, R. S. Liu, and J. P. Attfield, “Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors,” J. Am. Chem. Soc. 134(19), 8022–8025 (2012).
[Crossref]

Si, J. L.

Su, L.

Su, L. B.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref]

J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
[Crossref]

F. K. Ma, D. P. Jiang, L. B. Su, J. Y. Wang, W. Cai, J. Liu, J. G. Zheng, W. G. Zheng, J. Xu, and Y. Liu, “Spectral properties and highly efficient continuous-wave laser operation in Nd-doped Sr1-xYxF2+x crystals,” Opt. Lett. 41(3), 501–503 (2016).
[Crossref]

Z. P. Qin, G. Q. Xie, J. Ma, W. Y. Ge, P. Yuan, L. J. Qian, L. B. Su, D. P. Jiang, F. K. Ma, Q. Zhang, Y. X. Cao, and J. Xu, “Generation of 103fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal,” Opt. Lett. 39(7), 1737–1739 (2014).
[Crossref]

J. L. Doualan, L. B. Su, G. Brasse, A. Benayad, V. Ménard, Y. Y. Zhan, A. Braud, P. Camy, J. Xu, and R. Moncorgé, “Improvement of infrared laser properties of Nd:CaF2 crystals via codoping with Y3+ and Lu3+ buffer ions,” J. Opt. Soc. Am. B 30(11), 3018–3021 (2013).
[Crossref]

L. B. Su, J. Xu, H. J. Li, W. Q. Yang, Z. W. Zhao, J. L. Si, Y. J. Dong, and G. Q. Zhou, “Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal,” Opt. Lett. 30(9), 1003–1005 (2005).
[Crossref]

Sutton, A. P.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

Tallant, D. R.

D. R. Tallant and J. C. Wright, “Selective laser excitation of charge compensated sites in CaF2:Er3+,” J. Chem. Phys. 63(5), 2074–2085 (1975).
[Crossref]

Tang, F.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

F. Ma, D. Jiang, F. Tang, Q. Wu, S. Pang, Y. Liu, and L. Su, “Modulated photoluminescence parameters of neodymium in Sr0.95Y0.05F2.05 laser crystal,” Opt. Mater. Express 7(9), 3231–3237 (2017).
[Crossref]

Tian, W. L.

J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
[Crossref]

Tian, Y.

G. G. Li, Y. Tian, Y. Zhao, and J. Lin, “Recent progress in luminescence tuning of Ce3+ and Eu2+−activated phosphors for pc-WLEDs,” Chem. Soc. Rev. 44(23), 8688–8713 (2015).
[Crossref]

Voronko, Y. K.

Y. K. Voronko, V. V. Osiko, and I. A. Shcherbakov, “Investigation of the interaction of Nd3+ ions in CaF2, SrF2 and BaF2 crystals (type 1),” Sov. Phys. JETP 28(5), 838–844 (1969).

A. A. Kaminskii, V. V. Osico, A. M. Prochorov, and Y. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2-YF3,” Phys. Lett. 22(4), 419–421 (1966).
[Crossref]

Y. K. Voronko, A. A. Kaminskii, and V. V. Osiko, “Analysis of the optical spectra of CaF2:Nd3+ (type 1) crystals,” Sov. Phys. JETP 22(2), 295–300 (1966).

Wang, J. Y.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref]

F. K. Ma, D. P. Jiang, L. B. Su, J. Y. Wang, W. Cai, J. Liu, J. G. Zheng, W. G. Zheng, J. Xu, and Y. Liu, “Spectral properties and highly efficient continuous-wave laser operation in Nd-doped Sr1-xYxF2+x crystals,” Opt. Lett. 41(3), 501–503 (2016).
[Crossref]

Wang, Z. H.

J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
[Crossref]

Wei, L.

J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
[Crossref]

Wei, Z. Y.

J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
[Crossref]

Weinberger, D. R.

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

Welling, H.

Wen, J. G.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Will, G. F.

Wright, J. C.

D. R. Tallant and J. C. Wright, “Selective laser excitation of charge compensated sites in CaF2:Er3+,” J. Chem. Phys. 63(5), 2074–2085 (1975).
[Crossref]

Wu, Q.

Xia, Z. G.

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

Z. G. Xia, C. G. Ma, M. S. Molokeev, Q. L. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref]

Xie, G. Q.

Xu, B.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

Xu, J.

X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm,Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref]

J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
[Crossref]

F. K. Ma, D. P. Jiang, L. B. Su, J. Y. Wang, W. Cai, J. Liu, J. G. Zheng, W. G. Zheng, J. Xu, and Y. Liu, “Spectral properties and highly efficient continuous-wave laser operation in Nd-doped Sr1-xYxF2+x crystals,” Opt. Lett. 41(3), 501–503 (2016).
[Crossref]

Z. P. Qin, G. Q. Xie, J. Ma, W. Y. Ge, P. Yuan, L. J. Qian, L. B. Su, D. P. Jiang, F. K. Ma, Q. Zhang, Y. X. Cao, and J. Xu, “Generation of 103fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal,” Opt. Lett. 39(7), 1737–1739 (2014).
[Crossref]

J. L. Doualan, L. B. Su, G. Brasse, A. Benayad, V. Ménard, Y. Y. Zhan, A. Braud, P. Camy, J. Xu, and R. Moncorgé, “Improvement of infrared laser properties of Nd:CaF2 crystals via codoping with Y3+ and Lu3+ buffer ions,” J. Opt. Soc. Am. B 30(11), 3018–3021 (2013).
[Crossref]

A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevičius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett. 34(13), 2075–2077 (2009).
[Crossref]

L. B. Su, J. Xu, H. J. Li, W. Q. Yang, Z. W. Zhao, J. L. Si, Y. J. Dong, and G. Q. Zhou, “Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal,” Opt. Lett. 30(9), 1003–1005 (2005).
[Crossref]

Yan, X. G.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

Yang, K.

Yang, W. Q.

Yu, H.

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

Yuan, P.

Zhan, Y. Y.

Zhang, Q.

Zhao, B.

Zhao, S.

Zhao, Y.

G. G. Li, Y. Tian, Y. Zhao, and J. Lin, “Recent progress in luminescence tuning of Ce3+ and Eu2+−activated phosphors for pc-WLEDs,” Chem. Soc. Rev. 44(23), 8688–8713 (2015).
[Crossref]

Zhao, Y. J.

C. Persson, Y. J. Zhao, S. Lany, and A. Zunger, “n-type doping of CuInSe2 and CuGaSe2,” Phys. Rev. B 72(3), 035211 (2005).
[Crossref]

Zhao, Z. W.

Zheng, J. G.

Zheng, L.

Zheng, W. G.

Zhou, G. Q.

Zhu, J. F.

J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
[Crossref]

Ziolek, C.

Zunger, A.

S. Lany and A. Zunger, “Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs,” Phys. Rev. B 78(23), 235104 (2008).
[Crossref]

C. Persson, Y. J. Zhao, S. Lany, and A. Zunger, “n-type doping of CuInSe2 and CuGaSe2,” Phys. Rev. B 72(3), 035211 (2005).
[Crossref]

Chem. Soc. Rev. (1)

G. G. Li, Y. Tian, Y. Zhao, and J. Lin, “Recent progress in luminescence tuning of Ce3+ and Eu2+−activated phosphors for pc-WLEDs,” Chem. Soc. Rev. 44(23), 8688–8713 (2015).
[Crossref]

Comput. Mater. Sci. (1)

G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 15–50 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

J. Am. Chem. Soc. (3)

W. T. Chen, H. S. Sheu, R. S. Liu, and J. P. Attfield, “Cation-size-mismatch tuning of photoluminescence in oxynitride phosphors,” J. Am. Chem. Soc. 134(19), 8022–8025 (2012).
[Crossref]

Z. G. Xia, C. G. Ma, M. S. Molokeev, Q. L. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref]

Z. G. Xia, G. K. Liu, J. G. Wen, Z. G. Mei, M. Balasubramanian, M. S. Molokeev, L. C. Peng, L. Gu, D. J. Miller, Q. L. Liu, and K. R. Poeppelmeier, “Tuning of photoluminescence by cation nanosegregation in the (CaMg)x(NaSc)1-xSi2O6 solid solution,” J. Am. Chem. Soc. 138(4), 1158–1161 (2016).
[Crossref]

J. Chem. Phys. (3)

D. R. Tallant and J. C. Wright, “Selective laser excitation of charge compensated sites in CaF2:Er3+,” J. Chem. Phys. 63(5), 2074–2085 (1975).
[Crossref]

E. Friedman and W. Low, “Effect of thermal treatment of paramagnetic resonance spectra of rare earth impurities in calcium fluoride,” J. Chem. Phys. 33(4), 1275–1276 (1960).
[Crossref]

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

J. Lumin. (1)

Y. V. Orlovskii, T. T. Basiev, V. V. Osiko, H. Gross, and J. Heber, “Fluorescence line narrowing (FLN) and site-selective fluorescence decay of Nd3+ centers in CaF2,” J. Lumin. 82(3), 251–258 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. C: Solid State Phys. (3)

C. R. A. Catlow and M. J. Norgett, “Shell model calculations of the energies of formation of point defects in alkaline earth fluorides,” J. Phys. C: Solid State Phys. 6(8), 1325–1339 (1973).
[Crossref]

A. K. Cheetham, B. E. F. Fender, and M. J. Cooper, “Defect structure of calcium fluoride containing excess anions I. Bragg scattering,” J. Phys. C: Solid State Phys. 4(18), 3107–3121 (1971).
[Crossref]

C. R. A. Catlow, “The defect properties of anion-excess alkaline-earth fluorides:II intermediate and high dopant concentrations,” J. Phys. C: Solid State Phys. 9(10), 1859–1869 (1976).
[Crossref]

J. Phys.: Condens. Matter (1)

A. Jockisch, U. Schroder, F. W. De Wette, and W. Kress, “Relaxation and dynamics of the (111) surfaces of the fluorides CaF2 and SrF2,” J. Phys.: Condens. Matter 5(31), 5401–5410 (1993).
[Crossref]

J. Solid State Chem. (1)

P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. Solid State Chem. 51(2), 159–169 (1984).
[Crossref]

Laser Photonics Rev. (1)

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
[Crossref]

Laser Phys. Lett. (1)

J. F. Zhu, L. Wei, W. L. Tian, J. X. Liu, Z. H. Wang, L. B. Su, J. Xu, and Z. Y. Wei, “Generation of sub-100fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM,” Laser Phys. Lett. 13(5), 055804 (2016).
[Crossref]

Mater. Lett. (1)

H. Yu, D. P. Jiang, F. Tang, L. B. Su, S. Y. Luo, X. G. Yan, B. Xu, Z. P. Cai, J. Y. Wang, Q. W. Ju, and J. Xu, “Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions,” Mater. Lett. 206, 140–142 (2017).
[Crossref]

Nature (3)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

P. Norvig, D. A. Relman, D. B. Goldstein, D. M. Kammen, D. R. Weinberger, L. C. Aiello, G. Church, J. L. Hennessy, J. Sachs, and A. Burrows, “2020 Visions,” Nature 463(7277), 26–32 (2010).
[Crossref]

C. R. A. Catlow, A. V. Chadwick, G. N. Greaves, and L. M. Moroney, “Direction observations of the dopant environment in fluorite using EXAFS,” Nature 312(5995), 601–604 (1984).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm,Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
[Crossref]

L. B. Su, J. Xu, H. J. Li, W. Q. Yang, Z. W. Zhao, J. L. Si, Y. J. Dong, and G. Q. Zhou, “Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal,” Opt. Lett. 30(9), 1003–1005 (2005).
[Crossref]

A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevičius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett. 34(13), 2075–2077 (2009).
[Crossref]

Z. P. Qin, G. Q. Xie, J. Ma, W. Y. Ge, P. Yuan, L. J. Qian, L. B. Su, D. P. Jiang, F. K. Ma, Q. Zhang, Y. X. Cao, and J. Xu, “Generation of 103fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal,” Opt. Lett. 39(7), 1737–1739 (2014).
[Crossref]

F. K. Ma, D. P. Jiang, L. B. Su, J. Y. Wang, W. Cai, J. Liu, J. G. Zheng, W. G. Zheng, J. Xu, and Y. Liu, “Spectral properties and highly efficient continuous-wave laser operation in Nd-doped Sr1-xYxF2+x crystals,” Opt. Lett. 41(3), 501–503 (2016).
[Crossref]

C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetitio-rate, high-average-power, diode pumped 2.94-µm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
[Crossref]

Opt. Mater. (1)

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, A. N. Nakladov, and V. V. Osiko, “Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride,” Opt. Mater. 34(5), 799–802 (2012).
[Crossref]

Opt. Mater. Express (1)

Phys. Lett. (1)

A. A. Kaminskii, V. V. Osico, A. M. Prochorov, and Y. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2-YF3,” Phys. Lett. 22(4), 419–421 (1966).
[Crossref]

Phys. Rev. B (12)

E. L. Kitts, M. Ikeya, and J. H. Crawford, “Reorientation kinetics of dipolar complexes in Gadolinium-doped alkaline-earth fluorides,” Phys. Rev. B 8(12), 5840–5846 (1973).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 11169–11186 (1996).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), 558–561 (1993).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium,” Phys. Rev. B 49(20), 14251–14269 (1994).
[Crossref]

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion-excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25(10), 6425–6438 (1982).
[Crossref]

C. Andeen, D. Schuele, and J. Fontanella, “Pressure and temperature derivatives of the low-frequency dielectric constants of the alkaline-earth fluorides,” Phys. Rev. B 6(2), 591–595 (1972).
[Crossref]

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study,” Phys. Rev. B 57(3), 1505–1509 (1998).
[Crossref]

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50(24), 17953–17979 (1994).
[Crossref]

C. Persson, Y. J. Zhao, S. Lany, and A. Zunger, “n-type doping of CuInSe2 and CuGaSe2,” Phys. Rev. B 72(3), 035211 (2005).
[Crossref]

G. Makov and M. C. Payne, “Periodic boundary conditions in ab initio calculations,” Phys. Rev. B 51(7), 4014–4022 (1995).
[Crossref]

S. Lany and A. Zunger, “Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs,” Phys. Rev. B 78(23), 235104 (2008).
[Crossref]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref]

Phys. Status Solidi A (1)

A. A. Kaminskii, “Modern developments in the physics of crystalline laser materials,” Phys. Status Solidi A 200(2), 215–296 (2003).
[Crossref]

Phys. Status Solidi B (1)

A. A. Kaminskii, “The Nature of “Aging” of CaF2-YF3-Nd3+ crystals (Type 1) under stimulated emission conditions,” Phys. Status Solidi B 20(1), K51–K54 (1967).
[Crossref]

Sci. Rep. (1)

W. W. Ma, X. B. Qian, J. Y. Wang, J. J. Liu, X. W. Fan, J. Liu, L. B. Su, and J. Xu, “Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals,” Sci. Rep. 6(1), 36635 (2016).
[Crossref]

Sov. Phys. JETP (2)

Y. K. Voronko, A. A. Kaminskii, and V. V. Osiko, “Analysis of the optical spectra of CaF2:Nd3+ (type 1) crystals,” Sov. Phys. JETP 22(2), 295–300 (1966).

Y. K. Voronko, V. V. Osiko, and I. A. Shcherbakov, “Investigation of the interaction of Nd3+ ions in CaF2, SrF2 and BaF2 crystals (type 1),” Sov. Phys. JETP 28(5), 838–844 (1969).

Other (1)

R. Iffländer, “Solid-state lasers for materials processing,” Springer-Verlag, pp. 311–318 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1. Thermodynamic stable Nd3+ centers in SrF2 crystals: (a) first group monomer centers, (b) second group clusters with cubic sublattice local environment and (c) third group clusters and the local is square antiprism. The bracket suffixed with different numbers means the same centers with different configurations.
Fig. 2.
Fig. 2. Thermodynamic stable Y3+ centers in SrF2 crystals: (a) first group monomer centers, (b) second group cubic sublattice clusters and (c) third group square antiprism clusters. The bracket suffixed with different numbers means the same centers with different configurations.
Fig. 3.
Fig. 3. Thermodynamic stable [Nd3+-Y3+] centers in SrF2 crystal: (a) second group cubic sublattice clusters, (b) third group square antiprism clusters. The bracket suffixed with different numbers means the same centers with different configurations.
Fig. 4.
Fig. 4. (a) Formation energy of Nd3+ and/or Y3+ clusters versus the number of Y3+ ions within a cluster. Hollow symbol with the same solid shape represents the same clusters with different configurations. (b) Number of dopant cations dependent formation energy of Nd3+ or Y3+ centers. (c) Local distortion of Nd3+ in [Nd3+−Y3+] polyhedron, the arrow with directions to Nd3+ and F means shortened and elongated bond length, respectively, when compared with the pure Nd3+ centers.
Fig. 5.
Fig. 5. Projected DOS on local coordination structure of the cluster. The p state of fluorine in [1Y3+−1Fi] and [1Nd3+−1Fi] centers with interstitial Fi at the nearest site (a) and (c), and the next nearest site (b) and (d), respectively. The insert represents p, d and f states of the corresponding rare-earth ions.
Fig. 6.
Fig. 6. Strategy of local structure manipulation. With no loss of crystal structure integrity, the cubic first coordination shell of active Nd3+ (blue core shell) would be manipulated to be distorted lower symmetric square antiprism sublattice when more than one Y3+ ion (green core shell) was introduced.
Fig. 7.
Fig. 7. Nominal molar concentration of Nd3+ dependent peak absorption cross section (a) and normalized PL intensity at 1057 nm (b) of y at.% Nd3+:SrF2 and y at.% Nd3+,5 at.% Y3+:SrF2. (c) Y3+ concentration dependent peak absorption cross section of 0.5 at.% Nd3+, x at.% Y3+:SrF2. (d) PL spectra of 0.5 at.% Nd3+, x at.% Y3+:SrF2, the intensity of sample A was multiplied by 1.5 for clear view. The insert is Y3+ concentration dependent normalized emission intensity at 1057 nm. Instrumental: SBW = 8 cm−1. The samples in same dimensions were measured under the same conditions, and the emission intensity could therefore be compared with each other.
Fig. 8.
Fig. 8. Low temperature TRES on clustering process. 3D image of the TRES of 4F3/24I11/2 transition of A (a), C (b), and F (c) samples. The insert represents the viewing along z-axis.
Fig. 9.
Fig. 9. Projected DOS of p state of interstitial Fi in the square antiprism lattice of (a) Y3+ clusters and (b) Nd3+ centers.
Fig. 10.
Fig. 10. Projected DOS of d state of Sr atom nearest to [1Nd3+−1Fi] center with Fi at the nearest site.
Fig. 11.
Fig. 11. XRD patterns of the crystal.
Fig. 12.
Fig. 12. Nominal Nd3+ concentration dependent product of peak absorption cross section (σabs) and FWHM (λabs) of 4I9/24F5/2 + 2H9/2 transition.
Fig. 13.
Fig. 13. Absorption cross section of the crystal, all peaks were attributed to the absorption of Nd3+ ions, the strongest band is around 800 nm corresponding to 4I9/24F5/2 + 2H9/2.
Fig. 14.
Fig. 14. Logarithmic decaying curves of the sample, for A, B, C and D crystals the lifetime consists of a long and short component, while for E and F the decaying could be well fitted by single exponential expression.
Fig. 15.
Fig. 15. Nominal Y3+ concentration dependent FWHM of 4F3/24I11/2 transition.
Fig. 16.
Fig. 16. Nominal Y3+ concentration dependent absolute quantum yields of 0.5 at.% Nd3+, x at.% Y3+:SrF2 crystal.
Fig. 17.
Fig. 17. Nominal Y3+ concentration dependent fluorescence and radiative lifetime of 0.5 at.% Nd3+, x at.% Y3+:SrF2.
Fig. 18.
Fig. 18. Nominal Y3+ concentration dependent peak emission cross section of 0.5 at.% Nd3+, x at.% Y3+:SrF2 crystal.
Fig. 19.
Fig. 19. 2D-TRES was ten sliced, integrated and normalized spectra of A (a), C (b), and F (c) crystal.

Tables (2)

Tables Icon

Table 1. Simulated formation energy of Nd3+ or Y3+ centers in SrF2 crystals. The bracket suffixed with different numbers means the same centers with different configurations, “ / ” denotes that the center was not stable.

Tables Icon

Table 2. Simulated formation energy of [Nd3+-Y3+] clusters in SrF2 crystal. The bracket suffixed with different numbers means the same centers with different configurations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ E = ( E t o t + E 0 ) m E 1 n E 2 w E 3 [ m + n + w ( m + n w ) 2 ] E c o r r
E c o r r = ( 1 + g ) q 2 α 2 ε L

Metrics