Abstract

We report on the optical and magnetic properties of Tm2O3-doped calcium aluminosilicate glasses with dopant concentrations of up to 7 mol%. These materials provide a rare case in which high magnetic susceptibility, low Faraday rotation, Tm3+-related infrared photoluminescence and the ability to produce optical fibers are combined. From emission intensity and decay curves of the 3H43F4 and 3F43H6 transitions, we find cross-relaxation already for 0.5 mol% of Tm2O3 doping, indicating notable Tm2O3 clustering. This facilitates antiferromagnetic interaction and results in high magnetic susceptibility. Substitution of Al2O3 by Tm2O3 induces a more asymmetric local structural environment around Tm3+ species and enhances the diamagnetic contribution to Faraday rotation as opposed to the other rare-earth ions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magnetic and magneto-optical quenching in (Mn2+, Sr2+) metaphosphate glasses

A. Winterstein, H. Akamatsu, D. Möncke, K. Tanaka, M. A. Schmidt, and L. Wondraczek
Opt. Mater. Express 3(2) 184-193 (2013)

Temperature-dependent photoluminescence spectra of Er-Tm codoped calcium boroaluminate glasses

Fei Xu, Lingling Zheng, Mingzhu Li, Fang Lu, Zhongquan Ma, Zuimin Jiang, Pinghua Zhou, Jianwei Shi, and Yu Pu
Appl. Opt. 51(8) 1115-1121 (2012)

Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses

Yannick Guyot, Alysson Steimacher, Marcos P. Belançon, Antonio N. Medina, Mauro L. Baesso, Sandro M. Lima, Luis H. C. Andrade, Alain Brenier, Anne-Marie Jurdyc, and Georges Boulon
J. Opt. Soc. Am. B 28(10) 2510-2517 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Varshneya, Fundamentals of Inorganic Glasses (Elsevier, 1994).
  2. G. N. Greaves and S. Sen, “Inorganic glasses, glass-forming liquids and amorphizing solids,” Adv. Phys. 56(1), 1–166 (2007).
    [Crossref]
  3. C. I. Merzbacher and W. B. White, “The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy,” J. Non-Cryst. Solids 130(1), 18–34 (1991).
    [Crossref]
  4. H. Doweidar, “Density of CaO–Al2O3–SiO2 glasses with (CaO/Al2O3) ≥ 1; the hidden factors,” J. Non-Cryst. Solids 471, 344–348 (2017).
    [Crossref]
  5. J. F. Stebbins and Z. Xu, “NMR evidence for excess non-bridging oxygen in an aluminosilicate glass,” Nature 390(6655), 60–62 (1997).
    [Crossref]
  6. A. Pönitzsch, M. Nofz, L. Wondraczek, and J. Deubener, “Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range,” J. Non-Cryst. Solids 434, 1–12 (2016).
    [Crossref]
  7. M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
    [Crossref]
  8. T. Charpentier, K. Okhotnikov, A. N. Novikov, L. Hennet, H. E. Fischer, D. R. Neuville, and P. Florian, “Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies,” J. Phys. Chem. B 122(41), 9567–9583 (2018).
    [Crossref]
  9. S. Sukenaga, P. Florian, K. Kanehashi, H. Shibata, N. Saito, K. Nakashima, and D. Massiot, “Oxygen Speciation in Multicomponent Silicate Glasses Using Through Bond Double Resonance NMR Spectroscopy,” J. Phys. Chem. Lett. 8(10), 2274–2279 (2017).
    [Crossref]
  10. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34(30), 6848–6854 (1995).
    [Crossref]
  11. M. M. Broer, D. M. Krol, and D. J. DiGiovanni, “Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber,” Opt. Lett. 18(10), 799–801 (1993).
    [Crossref]
  12. C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91(7), 071102 (2007).
    [Crossref]
  13. J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, and A. Pearson, “Time resolved and site selective spectroscopy of thulium doped into germano- and alumino-silicate optical fibres and preforms,” J. Lumin. 50(5), 297–308 (1991).
    [Crossref]
  14. S. Ishii, K. Mizutani, H. Fukuoka, T. Ishikawa, B. Philippe, H. Iwai, T. Aoki, T. Itabe, A. Sato, and K. Asai, “Coherent 2 µm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device,” Appl. Opt. 49(10), 1809–1817 (2010).
    [Crossref]
  15. T. Ehrenreich, “1-kW, All-Glass Tm:fiber Laser,” presented at SPIE Photonics West 2010: LASE Fiber Lasers VII: Technology, Systems, and Applications, Conference 7580 Session 16: Late-Breaking News (January 28, 2010).
  16. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
    [Crossref]
  17. T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence of formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
    [Crossref]
  18. R. M. Macfarlane and M. J. Dejneka, “Spectral hole burning in thulium-doped glass ceramics,” Opt. Lett. 26(7), 429–431 (2001).
    [Crossref]
  19. J. She, S. Sawamura, and L. Wondraczek, “Scratch hardness of rare-earth substituted calcium aluminosilicate glasses,” J. Non-Cryst. Solids: X 1, 100010 (2019).
    [Crossref]
  20. J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
    [Crossref]
  21. X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
    [Crossref]
  22. J. R. O, “Doubly-valent rare-earth ions in halide crystals,” J. Phys. Chem. Solids 52(1), 101–174 (1991).
    [Crossref]
  23. M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd–Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2-based glass,” J. Appl. Phys. 89(9), 4944–4950 (2001).
    [Crossref]
  24. P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
    [Crossref]
  25. A. Quintas, O. Majérus, M. Lenoir, D. Caurant, K. Klementiev, and A. Webb, “Effect of alkali and alkaline-earth cations on the neodymium environment in a rare-earth rich aluminoborosilicate glass,” J. Non-Cryst. Solids 354(2-9), 98–104 (2008).
    [Crossref]
  26. M. Hatanaka and S. Yabushita, “Mechanisms of f–f hypersensitive transition intensities of lanthanide trihalide molecules: a spin–orbit configuration interaction study,” Theor. Chem. Acc. 133(8), 1517 (2014).
    [Crossref]
  27. Y. G. Choi and J. H. Song, “Spectroscopic properties of Tm3+ ions in chalcogenide Ge–As–S glass containing minute amount of Ga and CsBr,” Opt. Commun. 281(17), 4358–4362 (2008).
    [Crossref]
  28. X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
    [Crossref]
  29. B. M. Walsh and N. P. Barnes, “Comparison of Tm : ZBLAN and Tm : silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 µm,” Appl. Phys. B: Lasers Opt. 78(3-4), 325–333 (2004).
    [Crossref]
  30. Y. S. Han, D. J. Lee, and J. Heo, “1.48 µm emission properties and the cross-relaxation mechanism in chalcohalide glass doped with Tm3+,” J. Non-Cryst. Solids 321(3), 210–216 (2003).
    [Crossref]
  31. F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
    [Crossref]
  32. M. Bettinelli, F. S. Ermeneux, R. Moncorgé, and E. Cavalli, “Fluorescence dynamics of YVO4:Tm3+, YVO4:Tm3+,Tb3+ and YVO4:Tm3+,Ho3+ crystals,” J. Phys.: Condens. Matter 10(37), 8207–8215 (1998).
    [Crossref]
  33. G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C 2(41), 8678–8682 (2014).
    [Crossref]
  34. E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
    [Crossref]
  35. Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).
    [Crossref]
  36. A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. 50(12), 1463–1482 (1989).
    [Crossref]
  37. Ł Gondek, D. Kaczorowski, and A. Szytuła, “Low temperature studies on magnetic properties of Tm2O3,” Solid State Commun. 150(7-8), 368–370 (2010).
    [Crossref]
  38. S. Simon, R. Pop, V. Simon, and M. Coldea, “Structural and magnetic properties of lead-bismuthate oxide glasses containing S-state paramagnetic ions,” J. Non-Cryst. Solids 331(1-3), 1–10 (2003).
    [Crossref]
  39. P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, and E. Culea, “The structural role of manganese ions in some zinc phosphate glasses and glass ceramics,” J. Alloys Compd. 504(2), 479–483 (2010).
    [Crossref]
  40. Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
    [Crossref]
  41. K. Yamada, H. Shimoji, J. L. Luo, K. Ohta, T. Todaka, and M. Enokizono, “Magneto-Optical Study on Transparent Lanthanide Glasses in Pulsed High Fields up to 30 T,” Mater. Sci. Forum 792, 81–86 (2014).
    [Crossref]
  42. K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D: Appl. Phys. 31(19), 2622–2627 (1998).
    [Crossref]
  43. N. F. Borrelli, “Faraday Rotation in Glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
    [Crossref]
  44. K. M. Mukimov, B. Y. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi A 119(1), 307–315 (1990).
    [Crossref]
  45. S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, and A. W. Treptow, “Faraday Rotation of Rare-Earth (III) Phosphate Glasses,” Phys. Rev. 133(3A), A723–A727 (1964).
    [Crossref]
  46. C. B. Rubinstein, S. B. Berger, L. G. Van Uitert, and W. A. Bonner, “Faraday Rotation of Rare-Earth (III) Borate Glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
    [Crossref]
  47. J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32(3), 109 (1991).
  48. C. B. Rubinstein and S. B. Berger, “Faraday Rotation of Trivalent Ytterbium,” J. Appl. Phys. 36(12), 3951–3952 (1965).
    [Crossref]
  49. J. T. Kohli, “The Faraday Effect in Glasses Containing Rare Earths,” Key Eng. Mater. 94-95, 125–140 (1994).
    [Crossref]
  50. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976).
    [Crossref]
  51. H.J. Hoffmann, W.W. Jochs, and G. Przybilla, “The Verdet constant of optical glasses,” in Topical Conference on Basic Properties of Optical Materials, A. Feldman ed, (Natl. Bur. Stand., 1986), pp 266–269
  52. M.J. Weber, Handbook of Laser Science and Technolog, Optical materials, Vol. IV (CRC Press, Boca Raton, FL, 1986) Chap. 2.

2019 (1)

J. She, S. Sawamura, and L. Wondraczek, “Scratch hardness of rare-earth substituted calcium aluminosilicate glasses,” J. Non-Cryst. Solids: X 1, 100010 (2019).
[Crossref]

2018 (2)

M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
[Crossref]

T. Charpentier, K. Okhotnikov, A. N. Novikov, L. Hennet, H. E. Fischer, D. R. Neuville, and P. Florian, “Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies,” J. Phys. Chem. B 122(41), 9567–9583 (2018).
[Crossref]

2017 (3)

S. Sukenaga, P. Florian, K. Kanehashi, H. Shibata, N. Saito, K. Nakashima, and D. Massiot, “Oxygen Speciation in Multicomponent Silicate Glasses Using Through Bond Double Resonance NMR Spectroscopy,” J. Phys. Chem. Lett. 8(10), 2274–2279 (2017).
[Crossref]

H. Doweidar, “Density of CaO–Al2O3–SiO2 glasses with (CaO/Al2O3) ≥ 1; the hidden factors,” J. Non-Cryst. Solids 471, 344–348 (2017).
[Crossref]

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

2016 (1)

A. Pönitzsch, M. Nofz, L. Wondraczek, and J. Deubener, “Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range,” J. Non-Cryst. Solids 434, 1–12 (2016).
[Crossref]

2015 (1)

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

2014 (5)

M. Hatanaka and S. Yabushita, “Mechanisms of f–f hypersensitive transition intensities of lanthanide trihalide molecules: a spin–orbit configuration interaction study,” Theor. Chem. Acc. 133(8), 1517 (2014).
[Crossref]

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C 2(41), 8678–8682 (2014).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

K. Yamada, H. Shimoji, J. L. Luo, K. Ohta, T. Todaka, and M. Enokizono, “Magneto-Optical Study on Transparent Lanthanide Glasses in Pulsed High Fields up to 30 T,” Mater. Sci. Forum 792, 81–86 (2014).
[Crossref]

2013 (2)

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
[Crossref]

2010 (3)

S. Ishii, K. Mizutani, H. Fukuoka, T. Ishikawa, B. Philippe, H. Iwai, T. Aoki, T. Itabe, A. Sato, and K. Asai, “Coherent 2 µm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device,” Appl. Opt. 49(10), 1809–1817 (2010).
[Crossref]

Ł Gondek, D. Kaczorowski, and A. Szytuła, “Low temperature studies on magnetic properties of Tm2O3,” Solid State Commun. 150(7-8), 368–370 (2010).
[Crossref]

P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, and E. Culea, “The structural role of manganese ions in some zinc phosphate glasses and glass ceramics,” J. Alloys Compd. 504(2), 479–483 (2010).
[Crossref]

2009 (1)

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence of formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[Crossref]

2008 (2)

Y. G. Choi and J. H. Song, “Spectroscopic properties of Tm3+ ions in chalcogenide Ge–As–S glass containing minute amount of Ga and CsBr,” Opt. Commun. 281(17), 4358–4362 (2008).
[Crossref]

A. Quintas, O. Majérus, M. Lenoir, D. Caurant, K. Klementiev, and A. Webb, “Effect of alkali and alkaline-earth cations on the neodymium environment in a rare-earth rich aluminoborosilicate glass,” J. Non-Cryst. Solids 354(2-9), 98–104 (2008).
[Crossref]

2007 (2)

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91(7), 071102 (2007).
[Crossref]

G. N. Greaves and S. Sen, “Inorganic glasses, glass-forming liquids and amorphizing solids,” Adv. Phys. 56(1), 1–166 (2007).
[Crossref]

2004 (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm : ZBLAN and Tm : silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 µm,” Appl. Phys. B: Lasers Opt. 78(3-4), 325–333 (2004).
[Crossref]

2003 (2)

Y. S. Han, D. J. Lee, and J. Heo, “1.48 µm emission properties and the cross-relaxation mechanism in chalcohalide glass doped with Tm3+,” J. Non-Cryst. Solids 321(3), 210–216 (2003).
[Crossref]

S. Simon, R. Pop, V. Simon, and M. Coldea, “Structural and magnetic properties of lead-bismuthate oxide glasses containing S-state paramagnetic ions,” J. Non-Cryst. Solids 331(1-3), 1–10 (2003).
[Crossref]

2001 (3)

M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd–Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2-based glass,” J. Appl. Phys. 89(9), 4944–4950 (2001).
[Crossref]

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[Crossref]

R. M. Macfarlane and M. J. Dejneka, “Spectral hole burning in thulium-doped glass ceramics,” Opt. Lett. 26(7), 429–431 (2001).
[Crossref]

1998 (2)

M. Bettinelli, F. S. Ermeneux, R. Moncorgé, and E. Cavalli, “Fluorescence dynamics of YVO4:Tm3+, YVO4:Tm3+,Tb3+ and YVO4:Tm3+,Ho3+ crystals,” J. Phys.: Condens. Matter 10(37), 8207–8215 (1998).
[Crossref]

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D: Appl. Phys. 31(19), 2622–2627 (1998).
[Crossref]

1997 (1)

J. F. Stebbins and Z. Xu, “NMR evidence for excess non-bridging oxygen in an aluminosilicate glass,” Nature 390(6655), 60–62 (1997).
[Crossref]

1996 (1)

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).
[Crossref]

1995 (1)

1994 (1)

J. T. Kohli, “The Faraday Effect in Glasses Containing Rare Earths,” Key Eng. Mater. 94-95, 125–140 (1994).
[Crossref]

1993 (2)

M. M. Broer, D. M. Krol, and D. J. DiGiovanni, “Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber,” Opt. Lett. 18(10), 799–801 (1993).
[Crossref]

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[Crossref]

1991 (4)

J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, and A. Pearson, “Time resolved and site selective spectroscopy of thulium doped into germano- and alumino-silicate optical fibres and preforms,” J. Lumin. 50(5), 297–308 (1991).
[Crossref]

C. I. Merzbacher and W. B. White, “The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy,” J. Non-Cryst. Solids 130(1), 18–34 (1991).
[Crossref]

J. R. O, “Doubly-valent rare-earth ions in halide crystals,” J. Phys. Chem. Solids 52(1), 101–174 (1991).
[Crossref]

J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32(3), 109 (1991).

1990 (1)

K. M. Mukimov, B. Y. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi A 119(1), 307–315 (1990).
[Crossref]

1989 (1)

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. 50(12), 1463–1482 (1989).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976).
[Crossref]

1965 (1)

C. B. Rubinstein and S. B. Berger, “Faraday Rotation of Trivalent Ytterbium,” J. Appl. Phys. 36(12), 3951–3952 (1965).
[Crossref]

1964 (3)

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, and A. W. Treptow, “Faraday Rotation of Rare-Earth (III) Phosphate Glasses,” Phys. Rev. 133(3A), A723–A727 (1964).
[Crossref]

C. B. Rubinstein, S. B. Berger, L. G. Van Uitert, and W. A. Bonner, “Faraday Rotation of Rare-Earth (III) Borate Glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[Crossref]

N. F. Borrelli, “Faraday Rotation in Glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
[Crossref]

Alam, S. U.

Ando, M. F.

M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
[Crossref]

Aoki, T.

Asai, K.

Astrath, N. G. C.

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91(7), 071102 (2007).
[Crossref]

Auzel, F.

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[Crossref]

Baesso, M. L.

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91(7), 071102 (2007).
[Crossref]

Ballato, J.

Barnes, N. P.

B. M. Walsh and N. P. Barnes, “Comparison of Tm : ZBLAN and Tm : silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 µm,” Appl. Phys. B: Lasers Opt. 78(3-4), 325–333 (2004).
[Crossref]

Benzine, O.

M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
[Crossref]

Berger, S. B.

C. B. Rubinstein and S. B. Berger, “Faraday Rotation of Trivalent Ytterbium,” J. Appl. Phys. 36(12), 3951–3952 (1965).
[Crossref]

C. B. Rubinstein, S. B. Berger, L. G. Van Uitert, and W. A. Bonner, “Faraday Rotation of Rare-Earth (III) Borate Glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[Crossref]

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, and A. W. Treptow, “Faraday Rotation of Rare-Earth (III) Phosphate Glasses,” Phys. Rev. 133(3A), A723–A727 (1964).
[Crossref]

Bettinelli, M.

M. Bettinelli, F. S. Ermeneux, R. Moncorgé, and E. Cavalli, “Fluorescence dynamics of YVO4:Tm3+, YVO4:Tm3+,Tb3+ and YVO4:Tm3+,Ho3+ crystals,” J. Phys.: Condens. Matter 10(37), 8207–8215 (1998).
[Crossref]

Bonner, W. A.

C. B. Rubinstein, S. B. Berger, L. G. Van Uitert, and W. A. Bonner, “Faraday Rotation of Rare-Earth (III) Borate Glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[Crossref]

Borodi, G.

P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, and E. Culea, “The structural role of manganese ions in some zinc phosphate glasses and glass ceramics,” J. Alloys Compd. 504(2), 479–483 (2010).
[Crossref]

Borrelli, N. F.

N. F. Borrelli, “Faraday Rotation in Glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
[Crossref]

Brenier, A.

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. 50(12), 1463–1482 (1989).
[Crossref]

Brocklesby, W. S.

J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, and A. Pearson, “Time resolved and site selective spectroscopy of thulium doped into germano- and alumino-silicate optical fibres and preforms,” J. Lumin. 50(5), 297–308 (1991).
[Crossref]

Broer, M. M.

Caurant, D.

A. Quintas, O. Majérus, M. Lenoir, D. Caurant, K. Klementiev, and A. Webb, “Effect of alkali and alkaline-earth cations on the neodymium environment in a rare-earth rich aluminoborosilicate glass,” J. Non-Cryst. Solids 354(2-9), 98–104 (2008).
[Crossref]

Cavalli, E.

M. Bettinelli, F. S. Ermeneux, R. Moncorgé, and E. Cavalli, “Fluorescence dynamics of YVO4:Tm3+, YVO4:Tm3+,Tb3+ and YVO4:Tm3+,Ho3+ crystals,” J. Phys.: Condens. Matter 10(37), 8207–8215 (1998).
[Crossref]

Charpentier, T.

T. Charpentier, K. Okhotnikov, A. N. Novikov, L. Hennet, H. E. Fischer, D. R. Neuville, and P. Florian, “Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies,” J. Phys. Chem. B 122(41), 9567–9583 (2018).
[Crossref]

Chen, D.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

Cho, W. Y.

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).
[Crossref]

Choi, Y. G.

Y. G. Choi and J. H. Song, “Spectroscopic properties of Tm3+ ions in chalcogenide Ge–As–S glass containing minute amount of Ga and CsBr,” Opt. Commun. 281(17), 4358–4362 (2008).
[Crossref]

Coldea, M.

S. Simon, R. Pop, V. Simon, and M. Coldea, “Structural and magnetic properties of lead-bismuthate oxide glasses containing S-state paramagnetic ions,” J. Non-Cryst. Solids 331(1-3), 1–10 (2003).
[Crossref]

Culea, E.

P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, and E. Culea, “The structural role of manganese ions in some zinc phosphate glasses and glass ceramics,” J. Alloys Compd. 504(2), 479–483 (2010).
[Crossref]

Cusso, F.

J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, and A. Pearson, “Time resolved and site selective spectroscopy of thulium doped into germano- and alumino-silicate optical fibres and preforms,” J. Lumin. 50(5), 297–308 (1991).
[Crossref]

Daniel, J. M. O.

de Araujo, M. T.

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91(7), 071102 (2007).
[Crossref]

Dejneka, M. J.

Deubener, J.

A. Pönitzsch, M. Nofz, L. Wondraczek, and J. Deubener, “Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range,” J. Non-Cryst. Solids 434, 1–12 (2016).
[Crossref]

DiGiovanni, D. J.

Ding, S.

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

Doweidar, H.

H. Doweidar, “Density of CaO–Al2O3–SiO2 glasses with (CaO/Al2O3) ≥ 1; the hidden factors,” J. Non-Cryst. Solids 471, 344–348 (2017).
[Crossref]

Du, P.

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

Duffy, J. A.

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[Crossref]

Ehrenreich, T.

T. Ehrenreich, “1-kW, All-Glass Tm:fiber Laser,” presented at SPIE Photonics West 2010: LASE Fiber Lasers VII: Technology, Systems, and Applications, Conference 7580 Session 16: Late-Breaking News (January 28, 2010).

Elliott, S. R.

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence of formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[Crossref]

Enokizono, M.

K. Yamada, H. Shimoji, J. L. Luo, K. Ohta, T. Todaka, and M. Enokizono, “Magneto-Optical Study on Transparent Lanthanide Glasses in Pulsed High Fields up to 30 T,” Mater. Sci. Forum 792, 81–86 (2014).
[Crossref]

Ermeneux, F. S.

M. Bettinelli, F. S. Ermeneux, R. Moncorgé, and E. Cavalli, “Fluorescence dynamics of YVO4:Tm3+, YVO4:Tm3+,Tb3+ and YVO4:Tm3+,Ho3+ crystals,” J. Phys.: Condens. Matter 10(37), 8207–8215 (1998).
[Crossref]

Fischer, H. E.

T. Charpentier, K. Okhotnikov, A. N. Novikov, L. Hennet, H. E. Fischer, D. R. Neuville, and P. Florian, “Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies,” J. Phys. Chem. B 122(41), 9567–9583 (2018).
[Crossref]

Florian, P.

T. Charpentier, K. Okhotnikov, A. N. Novikov, L. Hennet, H. E. Fischer, D. R. Neuville, and P. Florian, “Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies,” J. Phys. Chem. B 122(41), 9567–9583 (2018).
[Crossref]

S. Sukenaga, P. Florian, K. Kanehashi, H. Shibata, N. Saito, K. Nakashima, and D. Massiot, “Oxygen Speciation in Multicomponent Silicate Glasses Using Through Bond Double Resonance NMR Spectroscopy,” J. Phys. Chem. Lett. 8(10), 2274–2279 (2017).
[Crossref]

Fujita, K.

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D: Appl. Phys. 31(19), 2622–2627 (1998).
[Crossref]

Fukuoka, H.

Gao, G.

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C 2(41), 8678–8682 (2014).
[Crossref]

Garden, J.-L.

M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
[Crossref]

Goldner, P.

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[Crossref]

Gondek, L

Ł Gondek, D. Kaczorowski, and A. Szytuła, “Low temperature studies on magnetic properties of Tm2O3,” Solid State Commun. 150(7-8), 368–370 (2010).
[Crossref]

Gouveia, E. A.

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91(7), 071102 (2007).
[Crossref]

Greaves, G. N.

G. N. Greaves and S. Sen, “Inorganic glasses, glass-forming liquids and amorphizing solids,” Adv. Phys. 56(1), 1–166 (2007).
[Crossref]

Grimm, S.

M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
[Crossref]

Ha, V. T. T.

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Han, Y. S.

Y. S. Han, D. J. Lee, and J. Heo, “1.48 µm emission properties and the cross-relaxation mechanism in chalcohalide glass doped with Tm3+,” J. Non-Cryst. Solids 321(3), 210–216 (2003).
[Crossref]

Hatanaka, M.

M. Hatanaka and S. Yabushita, “Mechanisms of f–f hypersensitive transition intensities of lanthanide trihalide molecules: a spin–orbit configuration interaction study,” Theor. Chem. Acc. 133(8), 1517 (2014).
[Crossref]

Heidt, A. M.

Hennet, L.

T. Charpentier, K. Okhotnikov, A. N. Novikov, L. Hennet, H. E. Fischer, D. R. Neuville, and P. Florian, “Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies,” J. Phys. Chem. B 122(41), 9567–9583 (2018).
[Crossref]

Heo, J.

Y. S. Han, D. J. Lee, and J. Heo, “1.48 µm emission properties and the cross-relaxation mechanism in chalcohalide glass doped with Tm3+,” J. Non-Cryst. Solids 321(3), 210–216 (2003).
[Crossref]

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).
[Crossref]

Hirao, K.

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D: Appl. Phys. 31(19), 2622–2627 (1998).
[Crossref]

Hoffmann, H.J.

H.J. Hoffmann, W.W. Jochs, and G. Przybilla, “The Verdet constant of optical glasses,” in Topical Conference on Basic Properties of Optical Materials, A. Feldman ed, (Natl. Bur. Stand., 1986), pp 266–269

Hu, L.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

Huang, F.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

Huy, B. T.

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Ishii, S.

Ishikawa, T.

Itabe, T.

Iwai, H.

Jacinto, C.

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91(7), 071102 (2007).
[Crossref]

Jing, X.

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

Jochs, W.W.

H.J. Hoffmann, W.W. Jochs, and G. Przybilla, “The Verdet constant of optical glasses,” in Topical Conference on Basic Properties of Optical Materials, A. Feldman ed, (Natl. Bur. Stand., 1986), pp 266–269

Jumate, N.

P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, and E. Culea, “The structural role of manganese ions in some zinc phosphate glasses and glass ceramics,” J. Alloys Compd. 504(2), 479–483 (2010).
[Crossref]

Jung, Y.

Kaczorowski, D.

Ł Gondek, D. Kaczorowski, and A. Szytuła, “Low temperature studies on magnetic properties of Tm2O3,” Solid State Commun. 150(7-8), 368–370 (2010).
[Crossref]

Kadono, K.

M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd–Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2-based glass,” J. Appl. Phys. 89(9), 4944–4950 (2001).
[Crossref]

Kanehashi, K.

S. Sukenaga, P. Florian, K. Kanehashi, H. Shibata, N. Saito, K. Nakashima, and D. Massiot, “Oxygen Speciation in Multicomponent Silicate Glasses Using Through Bond Double Resonance NMR Spectroscopy,” J. Phys. Chem. Lett. 8(10), 2274–2279 (2017).
[Crossref]

Kawamoto, Y.

M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd–Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2-based glass,” J. Appl. Phys. 89(9), 4944–4950 (2001).
[Crossref]

Khaidukov, N. M.

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Klementiev, K.

A. Quintas, O. Majérus, M. Lenoir, D. Caurant, K. Klementiev, and A. Webb, “Effect of alkali and alkaline-earth cations on the neodymium environment in a rare-earth rich aluminoborosilicate glass,” J. Non-Cryst. Solids 354(2-9), 98–104 (2008).
[Crossref]

Kohli, J. T.

J. T. Kohli, “The Faraday Effect in Glasses Containing Rare Earths,” Key Eng. Mater. 94-95, 125–140 (1994).
[Crossref]

J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32(3), 109 (1991).

Krol, D. M.

Kurkjian, C. R.

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, and A. W. Treptow, “Faraday Rotation of Rare-Earth (III) Phosphate Glasses,” Phys. Rev. 133(3A), A723–A727 (1964).
[Crossref]

Langenhorst, F.

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

Lee, D. J.

Y. S. Han, D. J. Lee, and J. Heo, “1.48 µm emission properties and the cross-relaxation mechanism in chalcohalide glass doped with Tm3+,” J. Non-Cryst. Solids 321(3), 210–216 (2003).
[Crossref]

Lee, T. H.

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence of formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[Crossref]

Lee, Y.-I.

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Lenoir, M.

A. Quintas, O. Majérus, M. Lenoir, D. Caurant, K. Klementiev, and A. Webb, “Effect of alkali and alkaline-earth cations on the neodymium environment in a rare-earth rich aluminoborosilicate glass,” J. Non-Cryst. Solids 354(2-9), 98–104 (2008).
[Crossref]

Li, K.

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

Li, M.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

Li, Z.

Lincoln, J. R.

J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, and A. Pearson, “Time resolved and site selective spectroscopy of thulium doped into germano- and alumino-silicate optical fibres and preforms,” J. Lumin. 50(5), 297–308 (1991).
[Crossref]

Liu, T.

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

Liu, X.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

Luo, J. L.

K. Yamada, H. Shimoji, J. L. Luo, K. Ohta, T. Todaka, and M. Enokizono, “Magneto-Optical Study on Transparent Lanthanide Glasses in Pulsed High Fields up to 30 T,” Mater. Sci. Forum 792, 81–86 (2014).
[Crossref]

Ma, Y.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

Macfarlane, R. M.

Majérus, O.

A. Quintas, O. Majérus, M. Lenoir, D. Caurant, K. Klementiev, and A. Webb, “Effect of alkali and alkaline-earth cations on the neodymium environment in a rare-earth rich aluminoborosilicate glass,” J. Non-Cryst. Solids 354(2-9), 98–104 (2008).
[Crossref]

Marcazzó, J.

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Massiot, D.

S. Sukenaga, P. Florian, K. Kanehashi, H. Shibata, N. Saito, K. Nakashima, and D. Massiot, “Oxygen Speciation in Multicomponent Silicate Glasses Using Through Bond Double Resonance NMR Spectroscopy,” J. Phys. Chem. Lett. 8(10), 2274–2279 (2017).
[Crossref]

Merzbacher, C. I.

C. I. Merzbacher and W. B. White, “The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy,” J. Non-Cryst. Solids 130(1), 18–34 (1991).
[Crossref]

Mizutani, K.

Moncorge, R.

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. 50(12), 1463–1482 (1989).
[Crossref]

Moncorgé, R.

M. Bettinelli, F. S. Ermeneux, R. Moncorgé, and E. Cavalli, “Fluorescence dynamics of YVO4:Tm3+, YVO4:Tm3+,Tb3+ and YVO4:Tm3+,Ho3+ crystals,” J. Phys.: Condens. Matter 10(37), 8207–8215 (1998).
[Crossref]

Mukimov, K. M.

K. M. Mukimov, B. Y. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi A 119(1), 307–315 (1990).
[Crossref]

Murai, S.

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

Nakashima, K.

S. Sukenaga, P. Florian, K. Kanehashi, H. Shibata, N. Saito, K. Nakashima, and D. Massiot, “Oxygen Speciation in Multicomponent Silicate Glasses Using Through Bond Double Resonance NMR Spectroscopy,” J. Phys. Chem. Lett. 8(10), 2274–2279 (2017).
[Crossref]

Nakatsuka, Y.

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

Neuville, D. R.

T. Charpentier, K. Okhotnikov, A. N. Novikov, L. Hennet, H. E. Fischer, D. R. Neuville, and P. Florian, “Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies,” J. Phys. Chem. B 122(41), 9567–9583 (2018).
[Crossref]

Nofz, M.

A. Pönitzsch, M. Nofz, L. Wondraczek, and J. Deubener, “Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range,” J. Non-Cryst. Solids 434, 1–12 (2016).
[Crossref]

Novikov, A. N.

T. Charpentier, K. Okhotnikov, A. N. Novikov, L. Hennet, H. E. Fischer, D. R. Neuville, and P. Florian, “Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies,” J. Phys. Chem. B 122(41), 9567–9583 (2018).
[Crossref]

O, J. R.

J. R. O, “Doubly-valent rare-earth ions in halide crystals,” J. Phys. Chem. Solids 52(1), 101–174 (1991).
[Crossref]

Ohta, K.

K. Yamada, H. Shimoji, J. L. Luo, K. Ohta, T. Todaka, and M. Enokizono, “Magneto-Optical Study on Transparent Lanthanide Glasses in Pulsed High Fields up to 30 T,” Mater. Sci. Forum 792, 81–86 (2014).
[Crossref]

Okhotnikov, K.

T. Charpentier, K. Okhotnikov, A. N. Novikov, L. Hennet, H. E. Fischer, D. R. Neuville, and P. Florian, “Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies,” J. Phys. Chem. B 122(41), 9567–9583 (2018).
[Crossref]

Pan, Z.

M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
[Crossref]

Pascuta, P.

P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, and E. Culea, “The structural role of manganese ions in some zinc phosphate glasses and glass ceramics,” J. Alloys Compd. 504(2), 479–483 (2010).
[Crossref]

Pearson, A.

J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, and A. Pearson, “Time resolved and site selective spectroscopy of thulium doped into germano- and alumino-silicate optical fibres and preforms,” J. Lumin. 50(5), 297–308 (1991).
[Crossref]

Pedrini, C.

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. 50(12), 1463–1482 (1989).
[Crossref]

Peng, M.

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C 2(41), 8678–8682 (2014).
[Crossref]

Philippe, B.

Pollok, K.

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

Pönitzsch, A.

A. Pönitzsch, M. Nofz, L. Wondraczek, and J. Deubener, “Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range,” J. Non-Cryst. Solids 434, 1–12 (2016).
[Crossref]

Pop, R.

S. Simon, R. Pop, V. Simon, and M. Coldea, “Structural and magnetic properties of lead-bismuthate oxide glasses containing S-state paramagnetic ions,” J. Non-Cryst. Solids 331(1-3), 1–10 (2003).
[Crossref]

Przybilla, G.

H.J. Hoffmann, W.W. Jochs, and G. Przybilla, “The Verdet constant of optical glasses,” in Topical Conference on Basic Properties of Optical Materials, A. Feldman ed, (Natl. Bur. Stand., 1986), pp 266–269

Quang, V. X.

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Quintas, A.

A. Quintas, O. Majérus, M. Lenoir, D. Caurant, K. Klementiev, and A. Webb, “Effect of alkali and alkaline-earth cations on the neodymium environment in a rare-earth rich aluminoborosilicate glass,” J. Non-Cryst. Solids 354(2-9), 98–104 (2008).
[Crossref]

Richardson, D. J.

Rubin, J.

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. 50(12), 1463–1482 (1989).
[Crossref]

Rubinstein, C. B.

C. B. Rubinstein and S. B. Berger, “Faraday Rotation of Trivalent Ytterbium,” J. Appl. Phys. 36(12), 3951–3952 (1965).
[Crossref]

C. B. Rubinstein, S. B. Berger, L. G. Van Uitert, and W. A. Bonner, “Faraday Rotation of Rare-Earth (III) Borate Glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[Crossref]

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, and A. W. Treptow, “Faraday Rotation of Rare-Earth (III) Phosphate Glasses,” Phys. Rev. 133(3A), A723–A727 (1964).
[Crossref]

Saito, N.

S. Sukenaga, P. Florian, K. Kanehashi, H. Shibata, N. Saito, K. Nakashima, and D. Massiot, “Oxygen Speciation in Multicomponent Silicate Glasses Using Through Bond Double Resonance NMR Spectroscopy,” J. Phys. Chem. Lett. 8(10), 2274–2279 (2017).
[Crossref]

Sato, A.

Sawamura, S.

J. She, S. Sawamura, and L. Wondraczek, “Scratch hardness of rare-earth substituted calcium aluminosilicate glasses,” J. Non-Cryst. Solids: X 1, 100010 (2019).
[Crossref]

Schmidt, M. A.

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

Schuster, K.

M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
[Crossref]

Sen, S.

G. N. Greaves and S. Sen, “Inorganic glasses, glass-forming liquids and amorphizing solids,” Adv. Phys. 56(1), 1–166 (2007).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976).
[Crossref]

She, J.

J. She, S. Sawamura, and L. Wondraczek, “Scratch hardness of rare-earth substituted calcium aluminosilicate glasses,” J. Non-Cryst. Solids: X 1, 100010 (2019).
[Crossref]

Shelby, J. E.

J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32(3), 109 (1991).

Shen, Y.

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C 2(41), 8678–8682 (2014).
[Crossref]

Shibata, H.

S. Sukenaga, P. Florian, K. Kanehashi, H. Shibata, N. Saito, K. Nakashima, and D. Massiot, “Oxygen Speciation in Multicomponent Silicate Glasses Using Through Bond Double Resonance NMR Spectroscopy,” J. Phys. Chem. Lett. 8(10), 2274–2279 (2017).
[Crossref]

Shimoji, H.

K. Yamada, H. Shimoji, J. L. Luo, K. Ohta, T. Todaka, and M. Enokizono, “Magneto-Optical Study on Transparent Lanthanide Glasses in Pulsed High Fields up to 30 T,” Mater. Sci. Forum 792, 81–86 (2014).
[Crossref]

Shin, Y. B.

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).
[Crossref]

Shojiya, M.

M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd–Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2-based glass,” J. Appl. Phys. 89(9), 4944–4950 (2001).
[Crossref]

Si, R.

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

Simdyankin, S. I.

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence of formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[Crossref]

Simon, S.

S. Simon, R. Pop, V. Simon, and M. Coldea, “Structural and magnetic properties of lead-bismuthate oxide glasses containing S-state paramagnetic ions,” J. Non-Cryst. Solids 331(1-3), 1–10 (2003).
[Crossref]

Simon, V.

S. Simon, R. Pop, V. Simon, and M. Coldea, “Structural and magnetic properties of lead-bismuthate oxide glasses containing S-state paramagnetic ions,” J. Non-Cryst. Solids 331(1-3), 1–10 (2003).
[Crossref]

Snitzer, E.

Soga, N.

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D: Appl. Phys. 31(19), 2622–2627 (1998).
[Crossref]

Sokolov, B. Y.

K. M. Mukimov, B. Y. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi A 119(1), 307–315 (1990).
[Crossref]

Song, E.

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

Song, J. H.

Y. G. Choi and J. H. Song, “Spectroscopic properties of Tm3+ ions in chalcogenide Ge–As–S glass containing minute amount of Ga and CsBr,” Opt. Commun. 281(17), 4358–4362 (2008).
[Crossref]

Stebbins, J. F.

J. F. Stebbins and Z. Xu, “NMR evidence for excess non-bridging oxygen in an aluminosilicate glass,” Nature 390(6655), 60–62 (1997).
[Crossref]

Su, L.

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence of formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[Crossref]

Sukenaga, S.

S. Sukenaga, P. Florian, K. Kanehashi, H. Shibata, N. Saito, K. Nakashima, and D. Massiot, “Oxygen Speciation in Multicomponent Silicate Glasses Using Through Bond Double Resonance NMR Spectroscopy,” J. Phys. Chem. Lett. 8(10), 2274–2279 (2017).
[Crossref]

Szytula, A.

Ł Gondek, D. Kaczorowski, and A. Szytuła, “Low temperature studies on magnetic properties of Tm2O3,” Solid State Commun. 150(7-8), 368–370 (2010).
[Crossref]

Tanaka, K.

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D: Appl. Phys. 31(19), 2622–2627 (1998).
[Crossref]

Tatehata, N.

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D: Appl. Phys. 31(19), 2622–2627 (1998).
[Crossref]

Thanh, N. T.

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Todaka, T.

K. Yamada, H. Shimoji, J. L. Luo, K. Ohta, T. Todaka, and M. Enokizono, “Magneto-Optical Study on Transparent Lanthanide Glasses in Pulsed High Fields up to 30 T,” Mater. Sci. Forum 792, 81–86 (2014).
[Crossref]

Townsend, J. E.

J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, and A. Pearson, “Time resolved and site selective spectroscopy of thulium doped into germano- and alumino-silicate optical fibres and preforms,” J. Lumin. 50(5), 297–308 (1991).
[Crossref]

Treptow, A. W.

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, and A. W. Treptow, “Faraday Rotation of Rare-Earth (III) Phosphate Glasses,” Phys. Rev. 133(3A), A723–A727 (1964).
[Crossref]

Tropper, A. C.

J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, and A. Pearson, “Time resolved and site selective spectroscopy of thulium doped into germano- and alumino-silicate optical fibres and preforms,” J. Lumin. 50(5), 297–308 (1991).
[Crossref]

Tuyen, V. P.

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Udo, P. T.

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91(7), 071102 (2007).
[Crossref]

Valiev, U. V.

K. M. Mukimov, B. Y. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi A 119(1), 307–315 (1990).
[Crossref]

Van Do, P.

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Van Tuyen, H.

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

Van Uitert, L. G.

C. B. Rubinstein, S. B. Berger, L. G. Van Uitert, and W. A. Bonner, “Faraday Rotation of Rare-Earth (III) Borate Glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[Crossref]

Varshneya, A. K.

A. K. Varshneya, Fundamentals of Inorganic Glasses (Elsevier, 1994).

Vermelho, M. V. D.

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91(7), 071102 (2007).
[Crossref]

Vida-Simiti, I.

P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, and E. Culea, “The structural role of manganese ions in some zinc phosphate glasses and glass ceramics,” J. Alloys Compd. 504(2), 479–483 (2010).
[Crossref]

Viorel, D.

P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, and E. Culea, “The structural role of manganese ions in some zinc phosphate glasses and glass ceramics,” J. Alloys Compd. 504(2), 479–483 (2010).
[Crossref]

Walsh, B. M.

B. M. Walsh and N. P. Barnes, “Comparison of Tm : ZBLAN and Tm : silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 µm,” Appl. Phys. B: Lasers Opt. 78(3-4), 325–333 (2004).
[Crossref]

Wang, X.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

Webb, A.

A. Quintas, O. Majérus, M. Lenoir, D. Caurant, K. Klementiev, and A. Webb, “Effect of alkali and alkaline-earth cations on the neodymium environment in a rare-earth rich aluminoborosilicate glass,” J. Non-Cryst. Solids 354(2-9), 98–104 (2008).
[Crossref]

Weber, M.J.

M.J. Weber, Handbook of Laser Science and Technolog, Optical materials, Vol. IV (CRC Press, Boca Raton, FL, 1986) Chap. 2.

Wei, J.

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C 2(41), 8678–8682 (2014).
[Crossref]

White, W. B.

C. I. Merzbacher and W. B. White, “The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy,” J. Non-Cryst. Solids 130(1), 18–34 (1991).
[Crossref]

Wieduwilt, T.

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

Wondraczek, K.

M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
[Crossref]

Wondraczek, L.

J. She, S. Sawamura, and L. Wondraczek, “Scratch hardness of rare-earth substituted calcium aluminosilicate glasses,” J. Non-Cryst. Solids: X 1, 100010 (2019).
[Crossref]

M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
[Crossref]

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

A. Pönitzsch, M. Nofz, L. Wondraczek, and J. Deubener, “Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range,” J. Non-Cryst. Solids 434, 1–12 (2016).
[Crossref]

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C 2(41), 8678–8682 (2014).
[Crossref]

Xu, Z.

J. F. Stebbins and Z. Xu, “NMR evidence for excess non-bridging oxygen in an aluminosilicate glass,” Nature 390(6655), 60–62 (1997).
[Crossref]

Yabushita, S.

M. Hatanaka and S. Yabushita, “Mechanisms of f–f hypersensitive transition intensities of lanthanide trihalide molecules: a spin–orbit configuration interaction study,” Theor. Chem. Acc. 133(8), 1517 (2014).
[Crossref]

Yamada, K.

K. Yamada, H. Shimoji, J. L. Luo, K. Ohta, T. Todaka, and M. Enokizono, “Magneto-Optical Study on Transparent Lanthanide Glasses in Pulsed High Fields up to 30 T,” Mater. Sci. Forum 792, 81–86 (2014).
[Crossref]

Ye, S.

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

Yu, C.

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

Zhang, J.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

Zhang, Q.

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976).
[Crossref]

Adv. Phys. (1)

G. N. Greaves and S. Sen, “Inorganic glasses, glass-forming liquids and amorphizing solids,” Adv. Phys. 56(1), 1–166 (2007).
[Crossref]

Adv. Sci. (2)

E. Song, S. Ye, T. Liu, P. Du, R. Si, X. Jing, S. Ding, M. Peng, Q. Zhang, and L. Wondraczek, “Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions,” Adv. Sci. 2(7), 1500089 (2015).
[Crossref]

Y. Nakatsuka, K. Pollok, T. Wieduwilt, F. Langenhorst, M. A. Schmidt, K. Fujita, S. Murai, K. Tanaka, and L. Wondraczek, “Giant Faraday Rotation through Ultrasmall Fe0n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films,” Adv. Sci. 4(4), 1600299 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm : ZBLAN and Tm : silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 µm,” Appl. Phys. B: Lasers Opt. 78(3-4), 325–333 (2004).
[Crossref]

Appl. Phys. Lett. (1)

C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+∕Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91(7), 071102 (2007).
[Crossref]

Geochim. Cosmochim. Acta (1)

J. A. Duffy, “A review of optical basicity and its applications to oxidic systems,” Geochim. Cosmochim. Acta 57(16), 3961–3970 (1993).
[Crossref]

J. Alloys Compd. (1)

P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, and E. Culea, “The structural role of manganese ions in some zinc phosphate glasses and glass ceramics,” J. Alloys Compd. 504(2), 479–483 (2010).
[Crossref]

J. Appl. Phys. (3)

C. B. Rubinstein and S. B. Berger, “Faraday Rotation of Trivalent Ytterbium,” J. Appl. Phys. 36(12), 3951–3952 (1965).
[Crossref]

C. B. Rubinstein, S. B. Berger, L. G. Van Uitert, and W. A. Bonner, “Faraday Rotation of Rare-Earth (III) Borate Glasses,” J. Appl. Phys. 35(8), 2338–2340 (1964).
[Crossref]

M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd–Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2-based glass,” J. Appl. Phys. 89(9), 4944–4950 (2001).
[Crossref]

J. Chem. Phys. (1)

N. F. Borrelli, “Faraday Rotation in Glasses,” J. Chem. Phys. 41(11), 3289–3293 (1964).
[Crossref]

J. Lumin. (3)

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “∼2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

X. Wang, K. Li, C. Yu, D. Chen, and L. Hu, “Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses,” J. Lumin. 147, 341–345 (2014).
[Crossref]

J. R. Lincoln, W. S. Brocklesby, F. Cusso, J. E. Townsend, A. C. Tropper, and A. Pearson, “Time resolved and site selective spectroscopy of thulium doped into germano- and alumino-silicate optical fibres and preforms,” J. Lumin. 50(5), 297–308 (1991).
[Crossref]

J. Mater. Chem. C (1)

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C 2(41), 8678–8682 (2014).
[Crossref]

J. Non-Cryst. Solids (7)

S. Simon, R. Pop, V. Simon, and M. Coldea, “Structural and magnetic properties of lead-bismuthate oxide glasses containing S-state paramagnetic ions,” J. Non-Cryst. Solids 331(1-3), 1–10 (2003).
[Crossref]

C. I. Merzbacher and W. B. White, “The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy,” J. Non-Cryst. Solids 130(1), 18–34 (1991).
[Crossref]

H. Doweidar, “Density of CaO–Al2O3–SiO2 glasses with (CaO/Al2O3) ≥ 1; the hidden factors,” J. Non-Cryst. Solids 471, 344–348 (2017).
[Crossref]

A. Pönitzsch, M. Nofz, L. Wondraczek, and J. Deubener, “Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range,” J. Non-Cryst. Solids 434, 1–12 (2016).
[Crossref]

A. Quintas, O. Majérus, M. Lenoir, D. Caurant, K. Klementiev, and A. Webb, “Effect of alkali and alkaline-earth cations on the neodymium environment in a rare-earth rich aluminoborosilicate glass,” J. Non-Cryst. Solids 354(2-9), 98–104 (2008).
[Crossref]

Y. S. Han, D. J. Lee, and J. Heo, “1.48 µm emission properties and the cross-relaxation mechanism in chalcohalide glass doped with Tm3+,” J. Non-Cryst. Solids 321(3), 210–216 (2003).
[Crossref]

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).
[Crossref]

J. Non-Cryst. Solids: X (1)

J. She, S. Sawamura, and L. Wondraczek, “Scratch hardness of rare-earth substituted calcium aluminosilicate glasses,” J. Non-Cryst. Solids: X 1, 100010 (2019).
[Crossref]

J. Phys. (1)

A. Brenier, J. Rubin, R. Moncorge, and C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+→ Ho3+ energy transfers in LiYF4,” J. Phys. 50(12), 1463–1482 (1989).
[Crossref]

J. Phys. Chem. B (1)

T. Charpentier, K. Okhotnikov, A. N. Novikov, L. Hennet, H. E. Fischer, D. R. Neuville, and P. Florian, “Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies,” J. Phys. Chem. B 122(41), 9567–9583 (2018).
[Crossref]

J. Phys. Chem. Lett. (1)

S. Sukenaga, P. Florian, K. Kanehashi, H. Shibata, N. Saito, K. Nakashima, and D. Massiot, “Oxygen Speciation in Multicomponent Silicate Glasses Using Through Bond Double Resonance NMR Spectroscopy,” J. Phys. Chem. Lett. 8(10), 2274–2279 (2017).
[Crossref]

J. Phys. Chem. Solids (1)

J. R. O, “Doubly-valent rare-earth ions in halide crystals,” J. Phys. Chem. Solids 52(1), 101–174 (1991).
[Crossref]

J. Phys. D: Appl. Phys. (1)

K. Tanaka, N. Tatehata, K. Fujita, K. Hirao, and N. Soga, “The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+,” J. Phys. D: Appl. Phys. 31(19), 2622–2627 (1998).
[Crossref]

J. Phys.: Condens. Matter (1)

M. Bettinelli, F. S. Ermeneux, R. Moncorgé, and E. Cavalli, “Fluorescence dynamics of YVO4:Tm3+, YVO4:Tm3+,Tb3+ and YVO4:Tm3+,Ho3+ crystals,” J. Phys.: Condens. Matter 10(37), 8207–8215 (1998).
[Crossref]

Key Eng. Mater. (1)

J. T. Kohli, “The Faraday Effect in Glasses Containing Rare Earths,” Key Eng. Mater. 94-95, 125–140 (1994).
[Crossref]

Mater. Sci. Forum (1)

K. Yamada, H. Shimoji, J. L. Luo, K. Ohta, T. Todaka, and M. Enokizono, “Magneto-Optical Study on Transparent Lanthanide Glasses in Pulsed High Fields up to 30 T,” Mater. Sci. Forum 792, 81–86 (2014).
[Crossref]

Nature (1)

J. F. Stebbins and Z. Xu, “NMR evidence for excess non-bridging oxygen in an aluminosilicate glass,” Nature 390(6655), 60–62 (1997).
[Crossref]

Opt. Commun. (1)

Y. G. Choi and J. H. Song, “Spectroscopic properties of Tm3+ ions in chalcogenide Ge–As–S glass containing minute amount of Ga and CsBr,” Opt. Commun. 281(17), 4358–4362 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (2)

P. Van Do, V. P. Tuyen, V. X. Quang, N. T. Thanh, V. T. T. Ha, H. Van Tuyen, N. M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B. T. Huy, “Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal,” Opt. Mater. 35(9), 1636–1641 (2013).
[Crossref]

F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Opt. Mater. 16(1-2), 93–103 (2001).
[Crossref]

Phys. Chem. Glasses (1)

J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32(3), 109 (1991).

Phys. Rev. (1)

S. B. Berger, C. B. Rubinstein, C. R. Kurkjian, and A. W. Treptow, “Faraday Rotation of Rare-Earth (III) Phosphate Glasses,” Phys. Rev. 133(3A), A723–A727 (1964).
[Crossref]

Phys. Rev. B (1)

T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence of formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009).
[Crossref]

Phys. Status Solidi A (1)

K. M. Mukimov, B. Y. Sokolov, and U. V. Valiev, “The Faraday Effect of Rare-Earth Ions in Garnets,” Phys. Status Solidi A 119(1), 307–315 (1990).
[Crossref]

Sci. Rep. (1)

M. F. Ando, O. Benzine, Z. Pan, J.-L. Garden, K. Wondraczek, S. Grimm, K. Schuster, and L. Wondraczek, “Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses,” Sci. Rep. 8(1), 5394 (2018).
[Crossref]

Solid State Commun. (1)

Ł Gondek, D. Kaczorowski, and A. Szytuła, “Low temperature studies on magnetic properties of Tm2O3,” Solid State Commun. 150(7-8), 368–370 (2010).
[Crossref]

Theor. Chem. Acc. (1)

M. Hatanaka and S. Yabushita, “Mechanisms of f–f hypersensitive transition intensities of lanthanide trihalide molecules: a spin–orbit configuration interaction study,” Theor. Chem. Acc. 133(8), 1517 (2014).
[Crossref]

Other (4)

A. K. Varshneya, Fundamentals of Inorganic Glasses (Elsevier, 1994).

T. Ehrenreich, “1-kW, All-Glass Tm:fiber Laser,” presented at SPIE Photonics West 2010: LASE Fiber Lasers VII: Technology, Systems, and Applications, Conference 7580 Session 16: Late-Breaking News (January 28, 2010).

H.J. Hoffmann, W.W. Jochs, and G. Przybilla, “The Verdet constant of optical glasses,” in Topical Conference on Basic Properties of Optical Materials, A. Feldman ed, (Natl. Bur. Stand., 1986), pp 266–269

M.J. Weber, Handbook of Laser Science and Technolog, Optical materials, Vol. IV (CRC Press, Boca Raton, FL, 1986) Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Absorption spectra of CAST glasses, (b) Concentration dependence of the 3H6-3F4 absorption coefficient and (c) schematic energy level diagram of Tm3+. Under 808 nm excitation (red arrow), two main emissions (1475 nm and 1880nm emissions) and cross relaxation (bold solid arrow) occur. (d) Judd-Ofelt intensity parameter $\varOmega$2 obtained from absorption data (Table 2) and absorption intensity ratio of the hypersensitive transition 3H63F4 to the magnetic dipole transition 3H63H5. The datapoint for the sample containing 1 mol% of Tm2O3 is taken as an outlier (shown in parentheses).
Fig. 2.
Fig. 2. (a) Photoluminescence spectra of CAST glasses and (b-c) normalized decay curves of Tm3+ for (b) 3H4, (c) 3F4 states. In (b), dashed and solid lines denote a fast and a slow decay component, respectively. The emission intensity ratio of (3H43F4)/(3F43H6) is given in the inset of (b); the statistical inter-ionic distance as a function of the volume concentration of Tm3+ is provided in the inset of (c).
Fig. 3.
Fig. 3. Magnetic susceptibility (a) and reciprocal magnetic susceptibility (b) as functions of temperature for various Tm2O3 contents. Values of the theoretical magnetization were obtained from the ideal effective magnetic moment of the free ion. (c) Weiss temperature and effective magnetic moments as a functions of Tm2O3 concentration in CAST glasses.
Fig. 4.
Fig. 4. (a) Variation of Verdet constant with wavelength, (b) data fit for CAST8 according to Eq. 2, and (c) wavelength dependences of the magneto-optical figure of merit for CAST14.

Tables (2)

Tables Icon

Table 1. Physical properties of CAST glasses. Density data ρ are from Ref. [19].

Tables Icon

Table 2. Judd–Ofelt intensity parameters Ωt (×10−20 cm2, t = 2, 4, 6), absorption cross-section σabs (×10−21 cm2), emission cross-section σem (×10−21 cm2), radiative lifetime (τrad ms), measured lifetime (τmeas ms), and product of σemτrad (×10−20 cm2ms) for 3F43H6 of Tm3+ in various glasses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ χ 0 = C M T θ w ,
V = π λ { a + b λ 2 λ 0 2 } ,