Abstract

We experimentally studied axial stress distribution in recently developed optical all-solid fibers with nanostructured cores. In this type of fiber, the core is composed of thousands of low and high refractive index glass rods with individual diameters of a few hundred nanometers. A distribution of nanorods determines the effective distribution of the refractive index in the core. A structure of nanorods may introduce unrevealed axial stress distribution after fiber drawing, which may induce change of the expected refractive index value. We studied stress in a custom made nanostructured silica fiber with parabolic refractive index distribution in the core and compared it with the reference SMF-28 fiber. For nanostructured fibers we proved that the axial stress is purely thermal with negligible contribution of mechanical stress. This results in the presence of tensile stress in the fiber core, which is in contrary to a standard telecom fiber, where a compressive stress in the core exists. We showed that measured axial stress has negligible impact on refractive index distribution of nanostructured fibers, thus it does not affect its performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Residual stress relaxation in the core of optical fiber by CO2 laser irradiation

B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han
Opt. Lett. 26(21) 1657-1659 (2001)

Inscription of Bragg gratings in nanostructured graded index single-mode fibers

Tomasz Osuch, Alicja Anuszkiewicz, Konrad Markowski, Adam Filipkowski, Dariusz Pysz, Rafal Kasztelanic, Ryszard Stepien, Mariusz Klimczak, and Ryszard Buczynski
Opt. Express 27(10) 13721-13733 (2019)

Observation and analysis of residual stress development resulting from OH impurity in optical fibers

B. H. Kim, Y. Park, D. Y. Kim, U. C. Paek, and W.-T. Han
Opt. Lett. 27(10) 806-808 (2002)

References

  • View by:
  • |
  • |
  • |

  1. P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20(11), 449–450 (1984).
    [Crossref]
  2. P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7(3), 555–559 (1989).
    [Crossref]
  3. M. K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, L. Khan, and D. J. Webb, “Measurements of stress-optic coefficient in polymer optical fibers,” Opt. Lett. 35(12), 2013–2015 (2010).
    [Crossref]
  4. D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
    [Crossref]
  5. M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
    [Crossref]
  6. W. Hermann, M. Hutjens, and D. U. Wiechert, “Stress in optical waveguides. 3: Stress induced index change,” Appl. Opt. 28(11), 1980–1983 (1989).
    [Crossref]
  7. Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” in Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (IEEE, 2011), pp. 1–3.
  8. P. Wang, M. H. Jenkins, and T. K. Gaylord, “Arc-discharge effects on residual stress and refractive index in single-mode optical fibers,” Appl. Opt. 55(9), 2451–2456 (2016).
    [Crossref]
  9. A. Anuszkiewicz, T. Martynkien, P. Mergo, M. Makara, and W. Urbanczyk, “Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence,” Opt. Express 21(10), 12657–12667 (2013).
    [Crossref]
  10. D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
    [Crossref]
  11. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 2: Fibers,” Appl. Opt. 26(7), 1175–1182 (1987).
    [Crossref]
  12. A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
    [Crossref]
  13. Corning SMF-28® technical note: http://www.corning.com/media/worldwide/coc/documents/Fiber/PI1463_07-14_English.pdf
  14. A. D. Yablon, “Multi-Wavelength Optical Fiber Refractive Index Profiling by Spatially Resolved Fourier Transform Spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
    [Crossref]
  15. A. Sihvola, Electromagnetic Mixing Formulas and Applications Institution of Electrical Engineers, London, UK (1999).
  16. P. K. Bahman, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
    [Crossref]
  17. Heraeus data sheet: “High purity fused silica tubes for optical fiber production tubes,” https://www.heraeus.com/media/media/hcv/documents/products_and_solutions_11/High_purity_fused_silica_tubes_EN.pdf
  18. Heraeus data sheet: “Base materials,” https://www.heraeus.com/media/media/hca/doc_hca/products_and_solutions_8/BaseMaterials_Image_EN.pdf
  19. M. R. Hutsel, PhD thesis: https://smartech.gatech.edu/bitstream/handle/1853/42926/hutsel_michael_r_201112_phd.pdf
  20. M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and Apparatus for Accurate Cross-Sectional Stress Profiling of Optical Fibers,” IEEE Trans. Instrum. Meas. 60(3), 971–979 (2011).
    [Crossref]
  21. IFA-100 application note: http://www.amstechnologies.com/fileadmin/amsmedia/downloads/5103_refractiveindexmeasurementonopticalfiber.pdf
  22. Cargill matching gel data sheet: https://cargille.com/wp-content/uploads/2018/07/Fused-Silica-Matching-Liquid-Code-06350.pdf
  23. Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242(4-6), 431–436 (2004).
    [Crossref]
  24. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers,” Appl. Opt. 38(7), 1086–1095 (1999).
    [Crossref]
  25. C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265(1), 29–32 (2006).
    [Crossref]
  26. G. Violakis, N. Aggarwal, and H. G. Limberger, “Stress changes in H2-loaded SMF optical fibers induced by cw-Ar + 244 nm irradiation,” Opt. Mater. Express 2(11), 1490–1495 (2012).
    [Crossref]
  27. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref]
  28. Schott technical information: https://www.us.schott.com/d/advanced_optics/1275dc1e-ef01-45d1-a88a-79deec322443/1.2/schott_tie-27_stress_in_optical_glass_us.pdf

2019 (1)

D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

2018 (1)

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

2017 (1)

2016 (2)

P. Wang, M. H. Jenkins, and T. K. Gaylord, “Arc-discharge effects on residual stress and refractive index in single-mode optical fibers,” Appl. Opt. 55(9), 2451–2456 (2016).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and Apparatus for Accurate Cross-Sectional Stress Profiling of Optical Fibers,” IEEE Trans. Instrum. Meas. 60(3), 971–979 (2011).
[Crossref]

2010 (2)

2006 (1)

C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265(1), 29–32 (2006).
[Crossref]

2004 (1)

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242(4-6), 431–436 (2004).
[Crossref]

1999 (1)

1989 (2)

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7(3), 555–559 (1989).
[Crossref]

W. Hermann, M. Hutjens, and D. U. Wiechert, “Stress in optical waveguides. 3: Stress induced index change,” Appl. Opt. 28(11), 1980–1983 (1989).
[Crossref]

1988 (1)

P. K. Bahman, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

1987 (1)

1984 (2)

J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
[Crossref]

P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20(11), 449–450 (1984).
[Crossref]

Aggarwal, N.

Anuszkiewicz, A.

D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

A. Anuszkiewicz, T. Martynkien, P. Mergo, M. Makara, and W. Urbanczyk, “Sensing and transmission characteristics of a rocking filter fabricated in a side-hole fiber with zero group birefringence,” Opt. Express 21(10), 12657–12667 (2013).
[Crossref]

Bachmann, P. K.

Bahman, P. K.

P. K. Bahman, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

Ballato, J.

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Bouten, P. C. P.

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7(3), 555–559 (1989).
[Crossref]

Breiby, D. W.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Buczynski, R.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

Burov, E.

Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” in Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (IEEE, 2011), pp. 1–3.

Buset, O. T.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Chu, P. L.

P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20(11), 449–450 (1984).
[Crossref]

Coucheron, D. A.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Dachevski, A. I.

C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265(1), 29–32 (2006).
[Crossref]

de Montmorillon, L-A.

Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” in Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (IEEE, 2011), pp. 1–3.

Dobrakowski, D.

D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

Feced, R.

Filipkowski, A.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

Fleming, J. W.

Fokine, M.

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Gabet, R.

Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” in Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (IEEE, 2011), pp. 1–3.

Gaylord, T. K.

P. Wang, M. H. Jenkins, and T. K. Gaylord, “Arc-discharge effects on residual stress and refractive index in single-mode optical fibers,” Appl. Opt. 55(9), 2451–2456 (2016).
[Crossref]

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and Apparatus for Accurate Cross-Sectional Stress Profiling of Optical Fibers,” IEEE Trans. Instrum. Meas. 60(3), 971–979 (2011).
[Crossref]

C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265(1), 29–32 (2006).
[Crossref]

Gibson, U. J.

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Han, S.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242(4-6), 431–436 (2004).
[Crossref]

Handerek, V. A.

Hawkins, T.

M. Fokine, A. Theodosiou, S. Song, T. Hawkins, J. Ballato, K. Kalli, and U. J. Gibson, “Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers,” Opt. Mater. Express 7(5), 1589–1597 (2017).
[Crossref]

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Healy, N.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Hermann, W.

Hutjens, M.

Hutsel, M. R.

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and Apparatus for Accurate Cross-Sectional Stress Profiling of Optical Fibers,” IEEE Trans. Instrum. Meas. 60(3), 971–979 (2011).
[Crossref]

M. R. Hutsel, PhD thesis: https://smartech.gatech.edu/bitstream/handle/1853/42926/hutsel_michael_r_201112_phd.pdf

Ingle, R. R.

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and Apparatus for Accurate Cross-Sectional Stress Profiling of Optical Fibers,” IEEE Trans. Instrum. Meas. 60(3), 971–979 (2011).
[Crossref]

Jaouën, Y.

Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” in Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (IEEE, 2011), pp. 1–3.

Jenkins, M. H.

Jochem, C. M. G.

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7(3), 555–559 (1989).
[Crossref]

Jones, M.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Kalli, K.

Kanellopoulos, S. E.

Kasztelanic, R.

D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

Khan, L.

Kim, B.-H.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242(4-6), 431–436 (2004).
[Crossref]

Kim, C.-S.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242(4-6), 431–436 (2004).
[Crossref]

Kim, D. Y.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242(4-6), 431–436 (2004).
[Crossref]

Klimczak, M.

D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

Limberger, H. G.

Lisowska, J.

D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

Makara, M.

Martynkien, T.

Meeuwsen, T. P. M.

P. K. Bahman, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

Mergo, P.

Montarou, C. C.

C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265(1), 29–32 (2006).
[Crossref]

Moreau, G.

Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” in Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (IEEE, 2011), pp. 1–3.

Paek, U.-C.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242(4-6), 431–436 (2004).
[Crossref]

Park, Y.

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242(4-6), 431–436 (2004).
[Crossref]

Patil, N.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Peacock, A. C.

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Pysz, D.

D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

Raine, K. W.

Rampur, A.

D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

Sihvola, A.

A. Sihvola, Electromagnetic Mixing Formulas and Applications Institution of Electrical Engineers, London, UK (1999).

Sikali Mamdem, Y.

Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” in Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (IEEE, 2011), pp. 1–3.

Siwicki, B.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

Song, S.

Statkiewicz-Barabach, G.

Stefaniuk, T.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

Stepniewski, G.

D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

Szczurowski, M. K.

Taillade, F.

Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” in Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (IEEE, 2011), pp. 1–3.

Theodosiou, A.

Urbanczyk, W.

Violakis, G.

Wang, P.

Webb, D. J.

Wehr, H.

Weichert, D. U.

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7(3), 555–559 (1989).
[Crossref]

Whitbread, T.

P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20(11), 449–450 (1984).
[Crossref]

Wiechert, D. U.

Yablon, A. D.

Appl. Opt. (5)

Electron. Lett. (1)

P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20(11), 449–450 (1984).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and Apparatus for Accurate Cross-Sectional Stress Profiling of Optical Fibers,” IEEE Trans. Instrum. Meas. 60(3), 971–979 (2011).
[Crossref]

J. Lightwave Technol. (2)

P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7(3), 555–559 (1989).
[Crossref]

A. D. Yablon, “Multi-Wavelength Optical Fiber Refractive Index Profiling by Spatially Resolved Fourier Transform Spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
[Crossref]

J. Mater. Sci. (1)

P. K. Bahman, D. U. Wiechert, and T. P. M. Meeuwsen, “Thermal expansion coefficients of doped and undoped silica prepared by means of PCVD,” J. Mater. Sci. 23(7), 2584–2588 (1988).
[Crossref]

J. Opt. (1)

D. Dobrakowski, A. Rampur, G. Stepniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

Nat. Commun. (1)

D. A. Coucheron, M. Fokine, N. Patil, D. W. Breiby, O. T. Buset, N. Healy, A. C. Peacock, T. Hawkins, M. Jones, J. Ballato, and U. J. Gibson, “Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres,” Nat. Commun. 7(1), 13265 (2016).
[Crossref]

Opt. Commun. (2)

Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242(4-6), 431–436 (2004).
[Crossref]

C. C. Montarou, T. K. Gaylord, and A. I. Dachevski, “Residual stress profiles in optical fibers determined by the two-waveplate-compensator method,” Opt. Commun. 265(1), 29–32 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (2)

Sci. Rep. (1)

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

Other (9)

Corning SMF-28® technical note: http://www.corning.com/media/worldwide/coc/documents/Fiber/PI1463_07-14_English.pdf

A. Sihvola, Electromagnetic Mixing Formulas and Applications Institution of Electrical Engineers, London, UK (1999).

Heraeus data sheet: “High purity fused silica tubes for optical fiber production tubes,” https://www.heraeus.com/media/media/hcv/documents/products_and_solutions_11/High_purity_fused_silica_tubes_EN.pdf

Heraeus data sheet: “Base materials,” https://www.heraeus.com/media/media/hca/doc_hca/products_and_solutions_8/BaseMaterials_Image_EN.pdf

M. R. Hutsel, PhD thesis: https://smartech.gatech.edu/bitstream/handle/1853/42926/hutsel_michael_r_201112_phd.pdf

Y. Sikali Mamdem, E. Burov, L-A. de Montmorillon, F. Taillade, Y. Jaouën, G. Moreau, and R. Gabet, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” in Proceedings of IEEE 37th European Conference and Exhibition on Optical Communication (IEEE, 2011), pp. 1–3.

Schott technical information: https://www.us.schott.com/d/advanced_optics/1275dc1e-ef01-45d1-a88a-79deec322443/1.2/schott_tie-27_stress_in_optical_glass_us.pdf

IFA-100 application note: http://www.amstechnologies.com/fileadmin/amsmedia/downloads/5103_refractiveindexmeasurementonopticalfiber.pdf

Cargill matching gel data sheet: https://cargille.com/wp-content/uploads/2018/07/Fused-Silica-Matching-Liquid-Code-06350.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Design pattern (a) and SEM image (b) of structural preform. SEM images of a core of optical fiber #3 (c) and zoomed core area (d).
Fig. 2.
Fig. 2. Axial stress distribution in SMF-28 with indicated core (uniform grey) and cladding (striped grey) areas. Inset shows smoothed compressive stress in the core for estimation of maximum averaged stress value.
Fig. 3.
Fig. 3. Axial stress distribution in nGRIN fibers from #1 to #6 with indicated core (uniform grey) and cladding (striped grey) areas. Insets show smoothed tensile stress in the core for estimation of maximum averaged stress value (Table 3).
Fig. 4.
Fig. 4. 2D axial stress map measured for (a) SMF-28 and (b) nGRIN fiber #3.
Fig. 5.
Fig. 5. Refractive index distribution measured at a wavelength of 633 nm in the fiber #3: (a) total profile with indicated immersion, cladding and core area, (b) zoomed core area with parabolic theoretical approximation (red curve) and (c) 2D map of RI contrast in the central part of the fiber (14×14 µm2).

Tables (3)

Tables Icon

Table 1. Geometrical parameters and drawing conditions of nGRIN fibers.

Tables Icon

Table 2. Maximum axial stress values in the core and cladding of SMF-28.

Tables Icon

Table 3. Axial stress values in the cladding (maximum) and in the core (average) of all investigated fibers.

Metrics