Abstract

Trapped rainbow effects have been realized in many systems while they are all characterized by electric-field enhancement. The trapped rainbow with strong magnetic-field enhancement has yet to be studied. Here, we achieve the trapped magnetic rainbow effect in a novel metal-air-YIG (yttrium-iron-garnet)-metal (MAYM) waveguide applied with a continuously decreasing magnetic field. The proposed system supports a one-way propagation feature, leading to the suppressed reflection. We systemically analyze the dispersion and the modal properties, showing the transition from the SMP (surface magnetoplasmon)-like mode to magnetostatic-like mode and the change of the group velocity when decreasing the external magnetic field along the propagation direction of the wave. We obtain the trapped magnetic rainbow effects as well as magnetic hotspots both in frequency- and time-domain simulations. The trapped rainbow effect with strong magnetic field enhancement paves a promising way for many applications including magnetic sensing to magnetic non-linearity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
One-way regular electromagnetic mode immune to backscattering

Xiaohua Deng, Lujun Hong, Xiaodong Zheng, and Linfang Shen
Appl. Opt. 54(14) 4608-4612 (2015)

Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies

Linfang Shen, Yun You, Zhuoyuan Wang, and Xiaohua Deng
Opt. Express 23(2) 950-962 (2015)

Complete trapping of electromagnetic radiation using surface magnetoplasmons

Linfang Shen, Zhuoyuan Wang, Xiaohua Deng, Jin-Jei Wu, and Tzong-Jer Yang
Opt. Lett. 40(8) 1853-1856 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Damon and J. R. Eshbach, “Magnetostatic Modes of a Ferromagnetic Slab,” J. Appl. Phys. 31(5), S104–S105 (1960).
    [Crossref]
  2. P. Young, “Effect of boundary conditions on the propagation of surface magnetostatic waves in a transversely magnetised thin y.i.g. slab,” Electron. Lett. 5(18), 429 (1969).
    [Crossref]
  3. T. J. Gerson, “Surface electromagnetic modes of a ferrite slab,” IEEE Trans. Microwave Theory Tech. 22(8), 757–763 (1974).
    [Crossref]
  4. S. R. Seshadri, “Surface Magnetostatic Modes of a Ferrite Slab,” Proc. IEEE 58(3), 506–507 (1970).
    [Crossref]
  5. H. J. Khozondar, Z. I. Sahhar, and M. M. Shabat, “Electromagnetic surface waves of a ferrite slab bounded by metamaterials,” AEU-Int. J. Electron. 64(11), 1063–1067 (2010).
    [Crossref]
  6. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825 (2008).
    [Crossref]
  7. A. D. Fisher, “Optical signal processing with magnetostatic waves,” Circuits, Syst. & Signal Process 4(1-2), 265–284 (1985).
    [Crossref]
  8. J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16(19), 14390–14396 (2008).
    [Crossref]
  9. A. I. Chernov, M. A. Kozhaev, I. V. Savochkin, D. V. Dodonov, P. M. Vetoshko, and A. K. Zvezdin, “Optical excitation of spin waves in epitaxial iron garnet films: mssw vs bvmsw,” Opt. Lett. 42(2), 279–282 (2017).
    [Crossref]
  10. K. Okubo, V. Priye, and M. Tsutsumi, “A new magnetostatic wave delay line using yig film,” IEEE Trans. Magn. 33(3), 2338–2341 (1997).
    [Crossref]
  11. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  12. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O. Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
    [Crossref]
  13. Y. Cui, K. H. Fung, J. Xu, H. Ma, and Y. Jin, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref]
  14. M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [Crossref]
  15. Z. X. Xu, J. Shi, R. J. Davis, X. X. Yin, and D. F. Sievenpiper, “Rainbow Trapping with Long Oscillation Lifetimes in Gradient Magnetoinductive Metasurfaces,” Phys. Rev. Appl. 12(2), 024043 (2019).
    [Crossref]
  16. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [Crossref]
  17. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
    [Crossref]
  18. B. Li, Y. He, and S. He, “Investigation of light trapping effect in hyperbolic metamaterial slow-light waveguides,” Appl. Phys. Express 8(8), 082601 (2015).
    [Crossref]
  19. C. Ouyang, D. Han, F. Zhao, X. Hu, X. Liu, and J. Zi, “Wideband trapping of light by edge states in honeycomb photonic crystals,” J. Phys.: Condens. Matter 24(49), 492203 (2012).
    [Crossref]
  20. Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
    [Crossref]
  21. J. He, Y. Jin, Z. Hong, and S. He, “Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding,” Opt. Express 16(15), 11077–11082 (2008).
    [Crossref]
  22. L. F. Shen, Z. Y. Wang, X. H. Deng, J. J. Wu, and T. J. Yang, “Complete trapping of electromagnetic radiation using surface magnetoplasmons,” Opt. Lett. 40(8), 1853–1856 (2015).
    [Crossref]
  23. L. F. Shen, X. D. Zheng, and X. H. Deng, “Stopping terahertz radiation without backscattering over a broad band,” Opt. Express 23(9), 11790 (2015).
    [Crossref]
  24. Q. Shen, L. J. Hong, X. H. Deng, and L. F. Shen, “Completely stopping microwaves with extremely enhanced magnetic fields,” Sci. Rep. 8(1), 15811 (2018).
    [Crossref]
  25. Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
    [Crossref]
  26. F. Fan, S. Chen, and S. J. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–11 (2017).
    [Crossref]
  27. F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
    [Crossref]
  28. K. X. Liu and S. L. He, “Truly trapped rainbow by utilizing nonreciprocal waveguides,” Sci. Rep. 6(1), 30206 (2016).
    [Crossref]
  29. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
    [Crossref]
  30. X. Yao and A. Belyanin, “Giant Optical Nonlinearity of Graphene in a Strong Magnetic Field,” Phys. Rev. Lett. 108(25), 255503 (2012).
    [Crossref]
  31. J. Chen, T. Zha, T. Zhang, C. Tang, Y. Yu, Y. Liu, and L. Zhang, “Enhanced Magnetic Fields at Optical Frequency by Diffraction Coupling of Magnetic Resonances in Lifted Metamaterials,” J. Lightwave Technol. 35(1), 71–74 (2017).
    [Crossref]
  32. X. Deng, L. Hong, X. Zheng, and L. Shen, “One-way regular electromagnetic mode immune to backscattering,” Appl. Opt. 54(14), 4608–4612 (2015).
    [Crossref]
  33. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

2019 (2)

Z. X. Xu, J. Shi, R. J. Davis, X. X. Yin, and D. F. Sievenpiper, “Rainbow Trapping with Long Oscillation Lifetimes in Gradient Magnetoinductive Metasurfaces,” Phys. Rev. Appl. 12(2), 024043 (2019).
[Crossref]

Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
[Crossref]

2018 (1)

Q. Shen, L. J. Hong, X. H. Deng, and L. F. Shen, “Completely stopping microwaves with extremely enhanced magnetic fields,” Sci. Rep. 8(1), 15811 (2018).
[Crossref]

2017 (3)

2016 (1)

K. X. Liu and S. L. He, “Truly trapped rainbow by utilizing nonreciprocal waveguides,” Sci. Rep. 6(1), 30206 (2016).
[Crossref]

2015 (4)

2013 (2)

2012 (3)

Y. Cui, K. H. Fung, J. Xu, H. Ma, and Y. Jin, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

C. Ouyang, D. Han, F. Zhao, X. Hu, X. Liu, and J. Zi, “Wideband trapping of light by edge states in honeycomb photonic crystals,” J. Phys.: Condens. Matter 24(49), 492203 (2012).
[Crossref]

X. Yao and A. Belyanin, “Giant Optical Nonlinearity of Graphene in a Strong Magnetic Field,” Phys. Rev. Lett. 108(25), 255503 (2012).
[Crossref]

2010 (2)

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O. Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[Crossref]

H. J. Khozondar, Z. I. Sahhar, and M. M. Shabat, “Electromagnetic surface waves of a ferrite slab bounded by metamaterials,” AEU-Int. J. Electron. 64(11), 1063–1067 (2010).
[Crossref]

2009 (1)

Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref]

2008 (5)

2007 (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref]

2004 (1)

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref]

1997 (1)

K. Okubo, V. Priye, and M. Tsutsumi, “A new magnetostatic wave delay line using yig film,” IEEE Trans. Magn. 33(3), 2338–2341 (1997).
[Crossref]

1985 (1)

A. D. Fisher, “Optical signal processing with magnetostatic waves,” Circuits, Syst. & Signal Process 4(1-2), 265–284 (1985).
[Crossref]

1974 (1)

T. J. Gerson, “Surface electromagnetic modes of a ferrite slab,” IEEE Trans. Microwave Theory Tech. 22(8), 757–763 (1974).
[Crossref]

1970 (1)

S. R. Seshadri, “Surface Magnetostatic Modes of a Ferrite Slab,” Proc. IEEE 58(3), 506–507 (1970).
[Crossref]

1969 (1)

P. Young, “Effect of boundary conditions on the propagation of surface magnetostatic waves in a transversely magnetised thin y.i.g. slab,” Electron. Lett. 5(18), 429 (1969).
[Crossref]

1960 (1)

R. W. Damon and J. R. Eshbach, “Magnetostatic Modes of a Ferromagnetic Slab,” J. Appl. Phys. 31(5), S104–S105 (1960).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Bartoli, F.

Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref]

Belyanin, A.

X. Yao and A. Belyanin, “Giant Optical Nonlinearity of Graphene in a Strong Magnetic Field,” Phys. Rev. Lett. 108(25), 255503 (2012).
[Crossref]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref]

Cappellaro, P.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Chang, S. J.

Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
[Crossref]

F. Fan, S. Chen, and S. J. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–11 (2017).
[Crossref]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref]

Chen, J.

Chen, S.

Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
[Crossref]

F. Fan, S. Chen, and S. J. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–11 (2017).
[Crossref]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref]

Chernov, A. I.

Corcoran, B.

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, and Y. Jin, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Damon, R. W.

R. W. Damon and J. R. Eshbach, “Magnetostatic Modes of a Ferromagnetic Slab,” J. Appl. Phys. 31(5), S104–S105 (1960).
[Crossref]

Davis, R. J.

Z. X. Xu, J. Shi, R. J. Davis, X. X. Yin, and D. F. Sievenpiper, “Rainbow Trapping with Long Oscillation Lifetimes in Gradient Magnetoinductive Metasurfaces,” Phys. Rev. Appl. 12(2), 024043 (2019).
[Crossref]

Deng, X.

Deng, X. H.

Ding, Y.

Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref]

Dodonov, D. V.

Eggleton, B. J.

Eshbach, J. R.

R. W. Damon and J. R. Eshbach, “Magnetostatic Modes of a Ferromagnetic Slab,” J. Appl. Phys. 31(5), S104–S105 (1960).
[Crossref]

Fan, F.

Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
[Crossref]

F. Fan, S. Chen, and S. J. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–11 (2017).
[Crossref]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref]

Faolain, L. O.

Fisher, A. D.

A. D. Fisher, “Optical signal processing with magnetostatic waves,” Circuits, Syst. & Signal Process 4(1-2), 265–284 (1985).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, and Y. Jin, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Gan, Q.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref]

Gerson, T. J.

T. J. Gerson, “Surface electromagnetic modes of a ferrite slab,” IEEE Trans. Microwave Theory Tech. 22(8), 757–763 (1974).
[Crossref]

Grillet, C.

Gurudev Dutt, M. V.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Han, D.

C. Ouyang, D. Han, F. Zhao, X. Hu, X. Liu, and J. Zi, “Wideband trapping of light by edge states in honeycomb photonic crystals,” J. Phys.: Condens. Matter 24(49), 492203 (2012).
[Crossref]

Han, J.

He, J.

He, S.

B. Li, Y. He, and S. He, “Investigation of light trapping effect in hyperbolic metamaterial slow-light waveguides,” Appl. Phys. Express 8(8), 082601 (2015).
[Crossref]

J. He, Y. Jin, Z. Hong, and S. He, “Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding,” Opt. Express 16(15), 11077–11082 (2008).
[Crossref]

He, S. L.

K. X. Liu and S. L. He, “Truly trapped rainbow by utilizing nonreciprocal waveguides,” Sci. Rep. 6(1), 30206 (2016).
[Crossref]

He, Y.

B. Li, Y. He, and S. He, “Investigation of light trapping effect in hyperbolic metamaterial slow-light waveguides,” Appl. Phys. Express 8(8), 082601 (2015).
[Crossref]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref]

Hodges, J. S.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Hong, L.

Hong, L. J.

Q. Shen, L. J. Hong, X. H. Deng, and L. F. Shen, “Completely stopping microwaves with extremely enhanced magnetic fields,” Sci. Rep. 8(1), 15811 (2018).
[Crossref]

Hong, S.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Hong, Z.

Hu, H.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

Hu, X.

C. Ouyang, D. Han, F. Zhao, X. Hu, X. Liu, and J. Zi, “Wideband trapping of light by edge states in honeycomb photonic crystals,” J. Phys.: Condens. Matter 24(49), 492203 (2012).
[Crossref]

Ji, D.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

Jiang, L.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, and Y. Jin, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

J. He, Y. Jin, Z. Hong, and S. He, “Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding,” Opt. Express 16(15), 11077–11082 (2008).
[Crossref]

Kang, L.

Khozondar, H. J.

H. J. Khozondar, Z. I. Sahhar, and M. M. Shabat, “Electromagnetic surface waves of a ferrite slab bounded by metamaterials,” AEU-Int. J. Electron. 64(11), 1063–1067 (2010).
[Crossref]

Kozhaev, M. A.

Krauss, T. F.

Lakhtakia, A.

Li, B.

B. Li, Y. He, and S. He, “Investigation of light trapping effect in hyperbolic metamaterial slow-light waveguides,” Appl. Phys. Express 8(8), 082601 (2015).
[Crossref]

Liu, K.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

Liu, K. X.

K. X. Liu and S. L. He, “Truly trapped rainbow by utilizing nonreciprocal waveguides,” Sci. Rep. 6(1), 30206 (2016).
[Crossref]

Liu, X.

C. Ouyang, D. Han, F. Zhao, X. Hu, X. Liu, and J. Zi, “Wideband trapping of light by edge states in honeycomb photonic crystals,” J. Phys.: Condens. Matter 24(49), 492203 (2012).
[Crossref]

Liu, Y.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Lukin, M. D.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, and Y. Jin, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Maze, J. R.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Monat, C.

Moss, D. J.

Mu, Q. Y.

Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
[Crossref]

Okubo, K.

K. Okubo, V. Priye, and M. Tsutsumi, “A new magnetostatic wave delay line using yig film,” IEEE Trans. Magn. 33(3), 2338–2341 (1997).
[Crossref]

Ouyang, C.

C. Ouyang, D. Han, F. Zhao, X. Hu, X. Liu, and J. Zi, “Wideband trapping of light by edge states in honeycomb photonic crystals,” J. Phys.: Condens. Matter 24(49), 492203 (2012).
[Crossref]

Pelusi, M.

Priye, V.

K. Okubo, V. Priye, and M. Tsutsumi, “A new magnetostatic wave delay line using yig film,” IEEE Trans. Magn. 33(3), 2338–2341 (1997).
[Crossref]

Qiu, C. W.

Sahhar, Z. I.

H. J. Khozondar, Z. I. Sahhar, and M. M. Shabat, “Electromagnetic surface waves of a ferrite slab bounded by metamaterials,” AEU-Int. J. Electron. 64(11), 1063–1067 (2010).
[Crossref]

Savochkin, I. V.

Seshadri, S. R.

S. R. Seshadri, “Surface Magnetostatic Modes of a Ferrite Slab,” Proc. IEEE 58(3), 506–507 (1970).
[Crossref]

Shabat, M. M.

H. J. Khozondar, Z. I. Sahhar, and M. M. Shabat, “Electromagnetic surface waves of a ferrite slab bounded by metamaterials,” AEU-Int. J. Electron. 64(11), 1063–1067 (2010).
[Crossref]

Shen, L.

Shen, L. F.

Shen, Q.

Q. Shen, L. J. Hong, X. H. Deng, and L. F. Shen, “Completely stopping microwaves with extremely enhanced magnetic fields,” Sci. Rep. 8(1), 15811 (2018).
[Crossref]

Shi, J.

Z. X. Xu, J. Shi, R. J. Davis, X. X. Yin, and D. F. Sievenpiper, “Rainbow Trapping with Long Oscillation Lifetimes in Gradient Magnetoinductive Metasurfaces,” Phys. Rev. Appl. 12(2), 024043 (2019).
[Crossref]

Sievenpiper, D. F.

Z. X. Xu, J. Shi, R. J. Davis, X. X. Yin, and D. F. Sievenpiper, “Rainbow Trapping with Long Oscillation Lifetimes in Gradient Magnetoinductive Metasurfaces,” Phys. Rev. Appl. 12(2), 024043 (2019).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Stanwix, P. L.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref]

Tang, C.

Taylor, J. M.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Togan, E.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref]

Tsutsumi, M.

K. Okubo, V. Priye, and M. Tsutsumi, “A new magnetostatic wave delay line using yig film,” IEEE Trans. Magn. 33(3), 2338–2341 (1997).
[Crossref]

Vetoshko, P. M.

Walsworth, R. L.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Wang, X. H.

Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
[Crossref]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref]

Wang, Z. Y.

White, T. P.

Wu, J. J.

Xiong, C. Z.

Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, and Y. Jin, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Xu, S.

Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
[Crossref]

Xu, Z. X.

Z. X. Xu, J. Shi, R. J. Davis, X. X. Yin, and D. F. Sievenpiper, “Rainbow Trapping with Long Oscillation Lifetimes in Gradient Magnetoinductive Metasurfaces,” Phys. Rev. Appl. 12(2), 024043 (2019).
[Crossref]

Yacoby, A.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Yang, T. J.

Yao, X.

X. Yao and A. Belyanin, “Giant Optical Nonlinearity of Graphene in a Strong Magnetic Field,” Phys. Rev. Lett. 108(25), 255503 (2012).
[Crossref]

Yin, X. X.

Z. X. Xu, J. Shi, R. J. Davis, X. X. Yin, and D. F. Sievenpiper, “Rainbow Trapping with Long Oscillation Lifetimes in Gradient Magnetoinductive Metasurfaces,” Phys. Rev. Appl. 12(2), 024043 (2019).
[Crossref]

Young, P.

P. Young, “Effect of boundary conditions on the propagation of surface magnetostatic waves in a transversely magnetised thin y.i.g. slab,” Electron. Lett. 5(18), 429 (1969).
[Crossref]

Yu, Y.

Zeng, X.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

Zha, T.

Zhang, L.

Zhang, T.

Zhang, X.

Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
[Crossref]

Zhao, F.

C. Ouyang, D. Han, F. Zhao, X. Hu, X. Liu, and J. Zi, “Wideband trapping of light by edge states in honeycomb photonic crystals,” J. Phys.: Condens. Matter 24(49), 492203 (2012).
[Crossref]

Zhao, H.

Zhao, Q.

Zheng, X.

Zheng, X. D.

Zhou, J.

Zi, J.

C. Ouyang, D. Han, F. Zhao, X. Hu, X. Liu, and J. Zi, “Wideband trapping of light by edge states in honeycomb photonic crystals,” J. Phys.: Condens. Matter 24(49), 492203 (2012).
[Crossref]

Zibrov, A. S.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Zvezdin, A. K.

AEU-Int. J. Electron. (1)

H. J. Khozondar, Z. I. Sahhar, and M. M. Shabat, “Electromagnetic surface waves of a ferrite slab bounded by metamaterials,” AEU-Int. J. Electron. 64(11), 1063–1067 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

B. Li, Y. He, and S. He, “Investigation of light trapping effect in hyperbolic metamaterial slow-light waveguides,” Appl. Phys. Express 8(8), 082601 (2015).
[Crossref]

Circuits, Syst. & Signal Process (1)

A. D. Fisher, “Optical signal processing with magnetostatic waves,” Circuits, Syst. & Signal Process 4(1-2), 265–284 (1985).
[Crossref]

Electron. Lett. (1)

P. Young, “Effect of boundary conditions on the propagation of surface magnetostatic waves in a transversely magnetised thin y.i.g. slab,” Electron. Lett. 5(18), 429 (1969).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Fan, S. Chen, and S. J. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–11 (2017).
[Crossref]

IEEE Trans. Magn. (1)

K. Okubo, V. Priye, and M. Tsutsumi, “A new magnetostatic wave delay line using yig film,” IEEE Trans. Magn. 33(3), 2338–2341 (1997).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

T. J. Gerson, “Surface electromagnetic modes of a ferrite slab,” IEEE Trans. Microwave Theory Tech. 22(8), 757–763 (1974).
[Crossref]

J. Appl. Phys. (1)

R. W. Damon and J. R. Eshbach, “Magnetostatic Modes of a Ferromagnetic Slab,” J. Appl. Phys. 31(5), S104–S105 (1960).
[Crossref]

J. Lightwave Technol. (1)

J. Phys.: Condens. Matter (1)

C. Ouyang, D. Han, F. Zhao, X. Hu, X. Liu, and J. Zi, “Wideband trapping of light by edge states in honeycomb photonic crystals,” J. Phys.: Condens. Matter 24(49), 492203 (2012).
[Crossref]

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, and Y. Jin, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nature (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “Trapped rainbow storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref]

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455(7213), 644–647 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Photonics Res. (1)

Q. Y. Mu, F. Fan, S. Chen, S. Xu, C. Z. Xiong, X. Zhang, X. H. Wang, and S. J. Chang, “Tunable magneto-optical polarization device for terahertz waves based on insb and its plasmonic structure,” Photonics Res. 7(3), 325–331 (2019).
[Crossref]

Phys. Rev. Appl. (1)

Z. X. Xu, J. Shi, R. J. Davis, X. X. Yin, and D. F. Sievenpiper, “Rainbow Trapping with Long Oscillation Lifetimes in Gradient Magnetoinductive Metasurfaces,” Phys. Rev. Appl. 12(2), 024043 (2019).
[Crossref]

Phys. Rev. Lett. (3)

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[Crossref]

Q. Gan, Y. Ding, and F. Bartoli, “Rainbow Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref]

X. Yao and A. Belyanin, “Giant Optical Nonlinearity of Graphene in a Strong Magnetic Field,” Phys. Rev. Lett. 108(25), 255503 (2012).
[Crossref]

Proc. IEEE (1)

S. R. Seshadri, “Surface Magnetostatic Modes of a Ferrite Slab,” Proc. IEEE 58(3), 506–507 (1970).
[Crossref]

Sci. Rep. (3)

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref]

K. X. Liu and S. L. He, “Truly trapped rainbow by utilizing nonreciprocal waveguides,” Sci. Rep. 6(1), 30206 (2016).
[Crossref]

Q. Shen, L. J. Hong, X. H. Deng, and L. F. Shen, “Completely stopping microwaves with extremely enhanced magnetic fields,” Sci. Rep. 8(1), 15811 (2018).
[Crossref]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Dispersion relations in the (a) MAYM and (b) MAY systems. Dashed lines in (a) represent the dispersion curves for bound modes with lowest order in the YIG layer, and green shaded areas in (a) and (b) represent bound-mode and bulk-mode zones respectively. The yellow shaded areas in (a) and (b) represent the complete one-way propagation (COWP) band and dotted lines represent the light line in air. The parameters of the two systems are as follows: ${\varepsilon _r} = 1$, ${\varepsilon _m} = 15$; ${\omega _0} = 0.5{\omega _m}$, $\omega _{m}=10\pi \times 10^{9}$ rad/s; $d_1=0.05\lambda _m$, $d_2=0.3\lambda _m$ and $\nu =0$.
Fig. 2.
Fig. 2. Dispersion relations of guiding modes for the 2D (solid lines) and 3D (solid circles) guiding system with the case (a) $d_2=0.1\lambda _m$, (b) $d_2=0.05\lambda _m$. The blue zones represent the complete forbidden propagation (CFP) band. The inset is a 3D system corresponding to the 2D system in Fig. 1(a).
Fig. 3.
Fig. 3. Mode profile ($- {d_2} \le y < 0$) as a function of the working frequency for the guiding mode. (a) Magnetic field profile; (b) Electric field profile. (c) The ratio of the maxima magnetic field to the corresponding electric field as a function of the working frequency. The shaded rectangle represents the infinite value area. (d) Magnetic field profile at $f_0 =6.83$ GHz, see the dashed line in (a), showing the transition frequency from the SMP-like to magnetostatic-like modes. (e) $f_ 0$ as a function of YIG thickness.
Fig. 4.
Fig. 4. (a) Dispersion relations for different external magnetic field. (b) $v_{g}$ versus $H_{0}$ at three frequencies. (c) $\mu _{v}$ versus $H_{0}$ at three frequencies.
Fig. 5.
Fig. 5. (a) Schematic of our proposed configuration applied with variable $H_{0}$. Simulated H field at different frequencies, (b) 7 GHz, (c) 7.5 GHz, (d) 8 GHz. (e) Distributions of H field amplitude along the YIG-metal interface at different time.
Fig. 6.
Fig. 6. FDTD simulated H amplitudes at different evolution times: (a) $8T_0$, (b) $16T_0$, (c) $25T_0$, (d) $60T_0$. (e) Distributions of H field amplitude along the YIG-metal interface. The solid lines and dashed lines represent the distributions of H for the three-frequency time-pulse system and the single lowest frequency time pulse, respectively. The external magnetic field is set as $H_{0}\left ( z \right )=(0.7-\delta z/\lambda _{m})M_{s}$. (f) Distributions of H field amplitude along the YIG-metal interface at $t=60T$ for three separate Gaussian pulses.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

μ m = [ 1 0 0 0 μ 1 i μ 2 0 i μ 2 μ 1 ] ,
μ 1 = 1 + ω m ( ω 0 i ν ω ) ( ω 0 i ν ω ) 2 ω 2 μ 2 = ω m ω ( ω 0 i ν ω ) 2 ω 2 ,
E x ( z , y ) = [ A 1 exp ( α r y ) + A 2 exp ( α r y ) ] exp [ i ( k z ω t ) ]
E x ( z , y ) = [ B 1 exp ( α m y ) + B 2 exp ( α m y ) ] exp [ i ( k z ω t ) ]
α r μ v + ( α m tanh α m d 2 + μ 2 μ 1 k ) tanh ( α r d 1 ) = 0
ω s p + = ω 0 + ω m
ω s p = ω 0 + 0.5 ω m
α r μ v + ( α m + μ 2 μ 1 k ) tanh ( α r d 1 ) = 0
α r μ v + ( k y tan k y d 2 + μ 2 μ 1 k ) tanh ( α r d 1 ) = 0