Abstract

The nonlinear responses of the suspension of graphene quantum dots (GQDs) in water are investigated at 355 nm, 532 nm and 1064 nm in the picosecond regime. The third-order nonlinear (NL) refractive index and the NL absorption coefficients are determined. We found that only under UV illumination is the NL response large. Furthermore, the NL refractive index and the saturable absorption are estimated for a single nanoparticle constituting the GQDs through a simple model. The obtained value of the Kerr coefficient is in the order of magnitude of that found in bulk materials and three orders of magnitude lower with an opposite sign than that found for the monolayer graphene.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Soret reverse saturable absorption of graphene oxide and its application in random lasers

Radivoje Prizia, Claudio Conti, and Neda Ghofraniha
J. Opt. Soc. Am. B 36(1) 19-25 (2019)

Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion

Xiao-Liang Zhang, Zhi-Bo Liu, Xiao-Chun Li, Qiang Ma, Xu-Dong Chen, Jian-Guo Tian, Yan-Fei Xu, and Yong-Sheng Chen
Opt. Express 21(6) 7511-7520 (2013)

Fluoro-graphene: nonlinear optical properties

N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris
Opt. Express 21(18) 21027-21038 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev. 71(9), 622–634 (1947).
    [Crossref]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  3. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref] [PubMed]
  4. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  5. M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98(20), 206805 (2007).
    [Crossref] [PubMed]
  6. F. Bonaccorsa, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  7. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  8. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  9. S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20(38), 384204 (2008).
    [Crossref] [PubMed]
  10. J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Numerical study of the optical nonlinearity of doped and gapped graphene: From weak to strong field excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 92(23), 235307 (2015).
    [Crossref]
  11. D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
    [Crossref]
  12. E. Dremetsika, B. Dlubak, S.-P. Gorza, C. Ciret, M.-B. Martin, S. Hofmann, P. Seneor, D. Dolfi, S. Massar, P. Emplit, and P. Kockaert, “Measuring the nonlinear refractive index of graphene using the optical Kerr effect method,” Opt. Lett. 41(14), 3281–3284 (2016).
    [Crossref] [PubMed]
  13. J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16(5), 053014 (2014).
    [Crossref]
  14. N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
    [Crossref]
  15. D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole, “Core-shell quantum dots: Properties and applications,” J. Alloys Compd. 636, 395–404 (2015).
    [Crossref]
  16. P. W. Smith, P. J. Maloney, and A. Ashkin, “Use of a liquid suspension of dielectric spheres as an artificial Kerr medium,” Opt. Lett. 7(8), 347–349 (1982).
    [Crossref] [PubMed]
  17. S. S. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and nonlinear optical properties of graphene quantum dots: A computational study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
    [Crossref]
  18. E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22(11), 2444–2449 (2005).
    [Crossref]
  19. H. P. S. Castro, M. K. Pereira, V. C. Ferreira, J. M. Hickmann, and R. R. B. Correia, “Optical characterization of carbon quantum dots in colloidal suspensions,” Opt. Mater. Express 7(2), 401–408 (2017).
    [Crossref]
  20. I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, “Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots,” RSC Advances 4(76), 40152–40160 (2014).
    [Crossref]
  21. M. Williams, G. S. Pati and R. Tripathi, “Investigations of Nonlinear Optical Properties of Diamond Nanoparticles using Z-scan Technique,” Frontiers in Optics, JW3A.28 (2017).
  22. L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
    [Crossref]
  23. C. Zheng, L. Huang, Q. Guo, W. Chen, W. Lei, and H. Wang, “Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses,” RSC Advances 8(19), 10267–10276 (2018).
    [Crossref]
  24. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broaband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
    [Crossref]
  25. M. Bacon, S. J. Bradley, and T. Nann, “Graphene Quantum Dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
    [Crossref]
  26. M. Thakur, M. K. Kumawat, and R. Srivastava, “Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications,” RSC Advances 7(9), 5251–5261 (2017).
    [Crossref]
  27. J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, and L. Song, “Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors,” Appl. Phys. Lett. 105(11), 111116 (2014).
    [Crossref]
  28. M. Zeng, X. Wang, Y. H. Yu, L. Zhang, W. Shafi, X. Huang, and Z. Cheng, “The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Mini Emulsion Polymerization,” J. Nanomater. 2016, 1–8 (2016).
    [Crossref]
  29. M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
    [Crossref]
  30. X. Feng, Z. Li, X. Li, and Y. Liu, “Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region,” Sci. Rep. 6(1), 33260 (2016).
    [Crossref] [PubMed]
  31. S. S. R. K. C. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and Nonlinear Optical Properties of Graphene Quantum Dots: A Computational Study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
    [Crossref]
  32. C. Schnebelin, C. Cassagne, C. B. de Araújo, and G. Boudebs, “Measurements of the third- and fifth-order optical nonlinearities of water at 532 and 1064 nm using the D4σ method,” Opt. Lett. 39(17), 5046–5049 (2014).
    [Crossref] [PubMed]
  33. H. Wang, C. Ciret, J. L. Godet, C. Cassagne, and G. Boudebs, “Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm,” Appl. Phys. B 124(6), 95 (2018).
    [Crossref]
  34. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  35. G. Boudebs, V. Besse, C. Cassagne, H. Leblond, and C. B. de Araújo, “Nonlinear characterization of materials using the D4σ method inside a Z-scan 4f-system,” Opt. Lett. 38(13), 2206–2208 (2013).
    [Crossref] [PubMed]
  36. H. Wang, G. Boudebs, and C. B. de Araújo, “Picosecond cubic and quantic nonlinearity of lithium niobate at 532 nm,” J. Appl. Phys. 122(8), 083103 (2017).
    [Crossref]
  37. K. Fedus and G. Boudebs, “Experimental techniques using 4f coherent imaging system for measuring nonlinear refraction,” Opt. Commun. 292, 140–148 (2013).
    [Crossref]
  38. C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79(3), 036401 (2016).
    [Crossref] [PubMed]
  39. J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
    [Crossref] [PubMed]
  40. Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, and Z. Yoshida, “How the π Conjugation Length Affects the Fluorescence Emission Efficiency,” J. Am. Chem. Soc. 130(42), 13867–13869 (2008).
    [Crossref] [PubMed]
  41. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
    [Crossref] [PubMed]
  42. https://www.strem.com/catalog/v/06-0334/44/nanomaterials_1034343-98-0 & https://www.strem.com/catalog/v/96-7420/graphene_quantum_dots_in_water_gqds_mini_kit_liquids
  43. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
    [Crossref]
  44. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  45. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
    [Crossref] [PubMed]
  46. V. A. Margulis, O. V. Boyarkina, and E. A. Gaiduk, “Non-degenerate optical four-wave mixing in single-walled carbon nanotubes,” Opt. Commun. 249(1–3), 339–349 (2005).
    [Crossref]
  47. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
    [Crossref] [PubMed]
  48. K. Fedus, G. Boudebs, Q. Coulombier, J. Troles, and X. H. Zhang, “Nonlinear characterization of GeS2-Sb2S3-CsI glass system,” J. Appl. Phys. 107(2), 023108 (2010).
    [Crossref]
  49. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
    [Crossref]
  50. R. Boyd, Nonlinear optics, 3rd Ed., Academic Press (2008).
  51. S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
    [Crossref] [PubMed]
  52. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
    [Crossref]

2018 (2)

C. Zheng, L. Huang, Q. Guo, W. Chen, W. Lei, and H. Wang, “Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses,” RSC Advances 8(19), 10267–10276 (2018).
[Crossref]

H. Wang, C. Ciret, J. L. Godet, C. Cassagne, and G. Boudebs, “Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm,” Appl. Phys. B 124(6), 95 (2018).
[Crossref]

2017 (3)

H. Wang, G. Boudebs, and C. B. de Araújo, “Picosecond cubic and quantic nonlinearity of lithium niobate at 532 nm,” J. Appl. Phys. 122(8), 083103 (2017).
[Crossref]

M. Thakur, M. K. Kumawat, and R. Srivastava, “Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications,” RSC Advances 7(9), 5251–5261 (2017).
[Crossref]

H. P. S. Castro, M. K. Pereira, V. C. Ferreira, J. M. Hickmann, and R. R. B. Correia, “Optical characterization of carbon quantum dots in colloidal suspensions,” Opt. Mater. Express 7(2), 401–408 (2017).
[Crossref]

2016 (6)

E. Dremetsika, B. Dlubak, S.-P. Gorza, C. Ciret, M.-B. Martin, S. Hofmann, P. Seneor, D. Dolfi, S. Massar, P. Emplit, and P. Kockaert, “Measuring the nonlinear refractive index of graphene using the optical Kerr effect method,” Opt. Lett. 41(14), 3281–3284 (2016).
[Crossref] [PubMed]

M. Zeng, X. Wang, Y. H. Yu, L. Zhang, W. Shafi, X. Huang, and Z. Cheng, “The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Mini Emulsion Polymerization,” J. Nanomater. 2016, 1–8 (2016).
[Crossref]

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

X. Feng, Z. Li, X. Li, and Y. Liu, “Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region,” Sci. Rep. 6(1), 33260 (2016).
[Crossref] [PubMed]

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79(3), 036401 (2016).
[Crossref] [PubMed]

2015 (5)

D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole, “Core-shell quantum dots: Properties and applications,” J. Alloys Compd. 636, 395–404 (2015).
[Crossref]

S. S. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and nonlinear optical properties of graphene quantum dots: A computational study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
[Crossref]

S. S. R. K. C. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and Nonlinear Optical Properties of Graphene Quantum Dots: A Computational Study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Numerical study of the optical nonlinearity of doped and gapped graphene: From weak to strong field excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 92(23), 235307 (2015).
[Crossref]

D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
[Crossref]

2014 (6)

I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, “Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots,” RSC Advances 4(76), 40152–40160 (2014).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, and L. Song, “Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors,” Appl. Phys. Lett. 105(11), 111116 (2014).
[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16(5), 053014 (2014).
[Crossref]

M. Bacon, S. J. Bradley, and T. Nann, “Graphene Quantum Dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
[Crossref]

C. Schnebelin, C. Cassagne, C. B. de Araújo, and G. Boudebs, “Measurements of the third- and fifth-order optical nonlinearities of water at 532 and 1064 nm using the D4σ method,” Opt. Lett. 39(17), 5046–5049 (2014).
[Crossref] [PubMed]

2013 (3)

G. Boudebs, V. Besse, C. Cassagne, H. Leblond, and C. B. de Araújo, “Nonlinear characterization of materials using the D4σ method inside a Z-scan 4f-system,” Opt. Lett. 38(13), 2206–2208 (2013).
[Crossref] [PubMed]

K. Fedus and G. Boudebs, “Experimental techniques using 4f coherent imaging system for measuring nonlinear refraction,” Opt. Commun. 292, 140–148 (2013).
[Crossref]

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broaband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

2012 (3)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

2010 (7)

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

K. Fedus, G. Boudebs, Q. Coulombier, J. Troles, and X. H. Zhang, “Nonlinear characterization of GeS2-Sb2S3-CsI glass system,” J. Appl. Phys. 107(2), 023108 (2010).
[Crossref]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

F. Bonaccorsa, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
[Crossref]

2009 (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

2008 (2)

Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, and Z. Yoshida, “How the π Conjugation Length Affects the Fluorescence Emission Efficiency,” J. Am. Chem. Soc. 130(42), 13867–13869 (2008).
[Crossref] [PubMed]

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20(38), 384204 (2008).
[Crossref] [PubMed]

2007 (3)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98(20), 206805 (2007).
[Crossref] [PubMed]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

2005 (2)

E. L. Falcão-Filho, C. B. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B 22(11), 2444–2449 (2005).
[Crossref]

V. A. Margulis, O. V. Boyarkina, and E. A. Gaiduk, “Non-degenerate optical four-wave mixing in single-walled carbon nanotubes,” Opt. Commun. 249(1–3), 339–349 (2005).
[Crossref]

2004 (2)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

1992 (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1982 (1)

1947 (1)

P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev. 71(9), 622–634 (1947).
[Crossref]

Ajayan, P. M.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Alemany, L. B.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Aloukos, P.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broaband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Ashkin, A.

Bacon, M.

M. Bacon, S. J. Bradley, and T. Nann, “Graphene Quantum Dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
[Crossref]

Bai, L.

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

Bakandritsos, A.

I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, “Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots,” RSC Advances 4(76), 40152–40160 (2014).
[Crossref]

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broaband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Bao, Q.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Besse, V.

Bonaccorsa, F.

F. Bonaccorsa, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Boudebs, G.

H. Wang, C. Ciret, J. L. Godet, C. Cassagne, and G. Boudebs, “Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm,” Appl. Phys. B 124(6), 95 (2018).
[Crossref]

H. Wang, G. Boudebs, and C. B. de Araújo, “Picosecond cubic and quantic nonlinearity of lithium niobate at 532 nm,” J. Appl. Phys. 122(8), 083103 (2017).
[Crossref]

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79(3), 036401 (2016).
[Crossref] [PubMed]

C. Schnebelin, C. Cassagne, C. B. de Araújo, and G. Boudebs, “Measurements of the third- and fifth-order optical nonlinearities of water at 532 and 1064 nm using the D4σ method,” Opt. Lett. 39(17), 5046–5049 (2014).
[Crossref] [PubMed]

G. Boudebs, V. Besse, C. Cassagne, H. Leblond, and C. B. de Araújo, “Nonlinear characterization of materials using the D4σ method inside a Z-scan 4f-system,” Opt. Lett. 38(13), 2206–2208 (2013).
[Crossref] [PubMed]

K. Fedus and G. Boudebs, “Experimental techniques using 4f coherent imaging system for measuring nonlinear refraction,” Opt. Commun. 292, 140–148 (2013).
[Crossref]

K. Fedus, G. Boudebs, Q. Coulombier, J. Troles, and X. H. Zhang, “Nonlinear characterization of GeS2-Sb2S3-CsI glass system,” J. Appl. Phys. 107(2), 023108 (2010).
[Crossref]

Bourlinos, A. B.

I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, “Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots,” RSC Advances 4(76), 40152–40160 (2014).
[Crossref]

Boyarkina, O. V.

V. A. Margulis, O. V. Boyarkina, and E. A. Gaiduk, “Non-degenerate optical four-wave mixing in single-walled carbon nanotubes,” Opt. Commun. 249(1–3), 339–349 (2005).
[Crossref]

Boyd, R. W.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

Bradley, S. J.

M. Bacon, S. J. Bradley, and T. Nann, “Graphene Quantum Dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
[Crossref]

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Cassagne, C.

Castelló-Lurbe, D.

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

Castro, H. P. S.

Chatzidimitriou, D.

D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
[Crossref]

Chen, B.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Chen, W.

C. Zheng, L. Huang, Q. Guo, W. Chen, W. Lei, and H. Wang, “Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses,” RSC Advances 8(19), 10267–10276 (2018).
[Crossref]

Chen, Y.

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
[Crossref]

Cheng, J.

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

Cheng, J. L.

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Numerical study of the optical nonlinearity of doped and gapped graphene: From weak to strong field excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 92(23), 235307 (2015).
[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16(5), 053014 (2014).
[Crossref]

Cheng, Z.

M. Zeng, X. Wang, Y. H. Yu, L. Zhang, W. Shafi, X. Huang, and Z. Cheng, “The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Mini Emulsion Polymerization,” J. Nanomater. 2016, 1–8 (2016).
[Crossref]

Chhowalla, M.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Christodoulides, D. N.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Ciret, C.

Ciuk, T.

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

Cole, I.

D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole, “Core-shell quantum dots: Properties and applications,” J. Alloys Compd. 636, 395–404 (2015).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Correia, R. R. B.

Coulombier, Q.

K. Fedus, G. Boudebs, Q. Coulombier, J. Troles, and X. H. Zhang, “Nonlinear characterization of GeS2-Sb2S3-CsI glass system,” J. Appl. Phys. 107(2), 023108 (2010).
[Crossref]

Couris, S.

I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, “Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots,” RSC Advances 4(76), 40152–40160 (2014).
[Crossref]

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broaband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

de Araújo, C. B.

Dlubak, B.

Dolfi, D.

Dremetsika, E.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Eda, G.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Emplit, P.

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Falcão-Filho, E. L.

Fang, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Fang, Y.

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

Fedus, K.

K. Fedus and G. Boudebs, “Experimental techniques using 4f coherent imaging system for measuring nonlinear refraction,” Opt. Commun. 292, 140–148 (2013).
[Crossref]

K. Fedus, G. Boudebs, Q. Coulombier, J. Troles, and X. H. Zhang, “Nonlinear characterization of GeS2-Sb2S3-CsI glass system,” J. Appl. Phys. 107(2), 023108 (2010).
[Crossref]

Feng, M.

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
[Crossref]

Feng, X.

X. Feng, Z. Li, X. Li, and Y. Liu, “Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region,” Sci. Rep. 6(1), 33260 (2016).
[Crossref] [PubMed]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

F. Bonaccorsa, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Ferreira, V. C.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gaddam, R. R.

D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole, “Core-shell quantum dots: Properties and applications,” J. Alloys Compd. 636, 395–404 (2015).
[Crossref]

Gaiduk, E. A.

V. A. Margulis, O. V. Boyarkina, and E. A. Gaiduk, “Non-degenerate optical four-wave mixing in single-walled carbon nanotubes,” Opt. Commun. 249(1–3), 339–349 (2005).
[Crossref]

Galembeck, A.

Gao, G.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Gao, W.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Ge, L.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Godet, J. L.

H. Wang, C. Ciret, J. L. Godet, C. Cassagne, and G. Boudebs, “Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm,” Appl. Phys. B 124(6), 95 (2018).
[Crossref]

Gomes, A. S. L.

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79(3), 036401 (2016).
[Crossref] [PubMed]

Gorza, S.-P.

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, Q.

C. Zheng, L. Huang, Q. Guo, W. Chen, W. Lei, and H. Wang, “Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses,” RSC Advances 8(19), 10267–10276 (2018).
[Crossref]

Gupta, B. K.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Hagan, D.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Han, M. Y.

M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98(20), 206805 (2007).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorsa, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Hayashi, T.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Hickmann, J. M.

Hofmann, S.

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Huang, H.

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

Huang, L.

C. Zheng, L. Huang, Q. Guo, W. Chen, W. Lei, and H. Wang, “Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses,” RSC Advances 8(19), 10267–10276 (2018).
[Crossref]

Huang, X.

M. Zeng, X. Wang, Y. H. Yu, L. Zhang, W. Shafi, X. Huang, and Z. Cheng, “The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Mini Emulsion Polymerization,” J. Nanomater. 2016, 1–8 (2016).
[Crossref]

Jablonski, M.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Ji, R.

J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, and L. Song, “Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors,” Appl. Phys. Lett. 105(11), 111116 (2014).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Kaipparettu, B. A.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Kang, Z.

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

Khoo, I. C.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Kim, P.

M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98(20), 206805 (2007).
[Crossref] [PubMed]

Kockaert, P.

Kolokithas-Ntoukas, A.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broaband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Krajewska, A.

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

Kriezis, E. E.

D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
[Crossref]

Kumawat, M. K.

M. Thakur, M. K. Kumawat, and R. Srivastava, “Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications,” RSC Advances 7(9), 5251–5261 (2017).
[Crossref]

Leblond, H.

Lei, W.

C. Zheng, L. Huang, Q. Guo, W. Chen, W. Lei, and H. Wang, “Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses,” RSC Advances 8(19), 10267–10276 (2018).
[Crossref]

Li, H.

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, X.

X. Feng, Z. Li, X. Li, and Y. Liu, “Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region,” Sci. Rep. 6(1), 33260 (2016).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, Z.

X. Feng, Z. Li, X. Li, and Y. Liu, “Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region,” Sci. Rep. 6(1), 33260 (2016).
[Crossref] [PubMed]

Liaros, N.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broaband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Liu, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Liu, X.

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Liu, Y.

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

X. Feng, Z. Li, X. Li, and Y. Liu, “Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region,” Sci. Rep. 6(1), 33260 (2016).
[Crossref] [PubMed]

Liu, Z.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Loh, K. P.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Lu, Q.

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Maloney, P. J.

Margulis, V. A.

V. A. Margulis, O. V. Boyarkina, and E. A. Gaiduk, “Non-degenerate optical four-wave mixing in single-walled carbon nanotubes,” Opt. Commun. 249(1–3), 339–349 (2005).
[Crossref]

Marti, A. A.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Martin, M.-B.

Massar, S.

Matsubara, Y.

Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, and Z. Yoshida, “How the π Conjugation Length Affects the Fluorescence Emission Efficiency,” J. Am. Chem. Soc. 130(42), 13867–13869 (2008).
[Crossref] [PubMed]

Meng, C.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Mikhailov, S. A.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20(38), 384204 (2008).
[Crossref] [PubMed]

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mukhopadhyay, M.

S. S. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and nonlinear optical properties of graphene quantum dots: A computational study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
[Crossref]

S. S. R. K. C. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and Nonlinear Optical Properties of Graphene Quantum Dots: A Computational Study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
[Crossref]

Nann, T.

M. Bacon, S. J. Bradley, and T. Nann, “Graphene Quantum Dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ochi, T.

Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, and Z. Yoshida, “How the π Conjugation Length Affects the Fluorescence Emission Efficiency,” J. Am. Chem. Soc. 130(42), 13867–13869 (2008).
[Crossref] [PubMed]

Oliveira, M. M.

Ozyilmaz, B.

M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98(20), 206805 (2007).
[Crossref] [PubMed]

Papagiannouli, I.

I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, “Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots,” RSC Advances 4(76), 40152–40160 (2014).
[Crossref]

Pasternak, I.

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

Pati, S. K.

S. S. R. K. C. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and Nonlinear Optical Properties of Graphene Quantum Dots: A Computational Study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
[Crossref]

S. S. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and nonlinear optical properties of graphene quantum dots: A computational study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
[Crossref]

Peng, J.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Pereira, M. K.

Pitilakis, A.

D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Qiao, S.

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

Qu, S.

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Romero-Aburto, R.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Salamo, G. J.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Schnebelin, C.

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

Seneor, P.

Set, S. Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Shafi, W.

M. Zeng, X. Wang, Y. H. Yu, L. Zhang, W. Shafi, X. Huang, and Z. Cheng, “The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Mini Emulsion Polymerization,” J. Nanomater. 2016, 1–8 (2016).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, Y. R.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Sipe, J. E.

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Numerical study of the optical nonlinearity of doped and gapped graphene: From weak to strong field excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 92(23), 235307 (2015).
[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16(5), 053014 (2014).
[Crossref]

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

Smith, P. W.

Song, L.

J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, and L. Song, “Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors,” Appl. Phys. Lett. 105(11), 111116 (2014).
[Crossref]

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Song, Y.

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

Srivastava, R.

M. Thakur, M. K. Kumawat, and R. Srivastava, “Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications,” RSC Advances 7(9), 5251–5261 (2017).
[Crossref]

Stegeman, G. I.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Strupinski, W.

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

F. Bonaccorsa, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Szabo, T.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broaband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Tanaka, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tang, L.

J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, and L. Song, “Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors,” Appl. Phys. Lett. 105(11), 111116 (2014).
[Crossref]

Thakur, M.

M. Thakur, M. K. Kumawat, and R. Srivastava, “Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications,” RSC Advances 7(9), 5251–5261 (2017).
[Crossref]

Thienpont, H.

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

Tong, L.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Trinchi, A.

D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole, “Core-shell quantum dots: Properties and applications,” J. Alloys Compd. 636, 395–404 (2015).
[Crossref]

Troles, J.

K. Fedus, G. Boudebs, Q. Coulombier, J. Troles, and X. H. Zhang, “Nonlinear characterization of GeS2-Sb2S3-CsI glass system,” J. Appl. Phys. 107(2), 023108 (2010).
[Crossref]

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Van Erps, J.

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

Van Stryland, E. W.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Vasudevan, D.

D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole, “Core-shell quantum dots: Properties and applications,” J. Alloys Compd. 636, 395–404 (2015).
[Crossref]

Vermeulen, N.

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Numerical study of the optical nonlinearity of doped and gapped graphene: From weak to strong field excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 92(23), 235307 (2015).
[Crossref]

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16(5), 053014 (2014).
[Crossref]

Vithayathil, S. A.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Wakamiya, T.

Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, and Z. Yoshida, “How the π Conjugation Length Affects the Fluorescence Emission Efficiency,” J. Am. Chem. Soc. 130(42), 13867–13869 (2008).
[Crossref] [PubMed]

Wallace, P. R.

P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev. 71(9), 622–634 (1947).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, H.

H. Wang, C. Ciret, J. L. Godet, C. Cassagne, and G. Boudebs, “Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm,” Appl. Phys. B 124(6), 95 (2018).
[Crossref]

C. Zheng, L. Huang, Q. Guo, W. Chen, W. Lei, and H. Wang, “Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses,” RSC Advances 8(19), 10267–10276 (2018).
[Crossref]

H. Wang, G. Boudebs, and C. B. de Araújo, “Picosecond cubic and quantic nonlinearity of lithium niobate at 532 nm,” J. Appl. Phys. 122(8), 083103 (2017).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, L.

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Wang, X.

M. Zeng, X. Wang, Y. H. Yu, L. Zhang, W. Shafi, X. Huang, and Z. Cheng, “The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Mini Emulsion Polymerization,” J. Nanomater. 2016, 1–8 (2016).
[Crossref]

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Wang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Xiang, J.

J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, and L. Song, “Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors,” Appl. Phys. Lett. 105(11), 111116 (2014).
[Crossref]

Xiao, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Xu, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Yaguchi, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Yamaguchi, Y.

Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, and Z. Yoshida, “How the π Conjugation Length Affects the Fluorescence Emission Efficiency,” J. Am. Chem. Soc. 130(42), 13867–13869 (2008).
[Crossref] [PubMed]

Yamijala, S. S.

S. S. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and nonlinear optical properties of graphene quantum dots: A computational study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
[Crossref]

Yamijala, S. S. R. K. C.

S. S. R. K. C. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and Nonlinear Optical Properties of Graphene Quantum Dots: A Computational Study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
[Crossref]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yang, Y.

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

Yoshida, Z.

Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, and Z. Yoshida, “How the π Conjugation Length Affects the Fluorescence Emission Efficiency,” J. Am. Chem. Soc. 130(42), 13867–13869 (2008).
[Crossref] [PubMed]

Yu, Y. H.

M. Zeng, X. Wang, Y. H. Yu, L. Zhang, W. Shafi, X. Huang, and Z. Cheng, “The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Mini Emulsion Polymerization,” J. Nanomater. 2016, 1–8 (2016).
[Crossref]

Yuan, J.

J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, and L. Song, “Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors,” Appl. Phys. Lett. 105(11), 111116 (2014).
[Crossref]

Zarbin, A. J. G.

Zboril, R.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broaband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Zeng, M.

M. Zeng, X. Wang, Y. H. Yu, L. Zhang, W. Shafi, X. Huang, and Z. Cheng, “The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Mini Emulsion Polymerization,” J. Nanomater. 2016, 1–8 (2016).
[Crossref]

Zhan, H.

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
[Crossref]

Zhan, X.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhang, L.

M. Zeng, X. Wang, Y. H. Yu, L. Zhang, W. Shafi, X. Huang, and Z. Cheng, “The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Mini Emulsion Polymerization,” J. Nanomater. 2016, 1–8 (2016).
[Crossref]

Zhang, X. H.

K. Fedus, G. Boudebs, Q. Coulombier, J. Troles, and X. H. Zhang, “Nonlinear characterization of GeS2-Sb2S3-CsI glass system,” J. Appl. Phys. 107(2), 023108 (2010).
[Crossref]

Zhang, Y.

M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98(20), 206805 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, and L. Song, “Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors,” Appl. Phys. Lett. 105(11), 111116 (2014).
[Crossref]

J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, and L. Song, “Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors,” Appl. Phys. Lett. 105(11), 111116 (2014).
[Crossref]

Zheng, C.

C. Zheng, L. Huang, Q. Guo, W. Chen, W. Lei, and H. Wang, “Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses,” RSC Advances 8(19), 10267–10276 (2018).
[Crossref]

Zhu, J. J.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Ziegler, K.

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20(38), 384204 (2008).
[Crossref] [PubMed]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Adv. Opt. Photonics (1)

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, “A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots,” Angew. Chem. Int. Ed. Engl. 51(49), 12215–12218 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

H. Wang, C. Ciret, J. L. Godet, C. Cassagne, and G. Boudebs, “Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm,” Appl. Phys. B 124(6), 95 (2018).
[Crossref]

Appl. Phys. Lett. (3)

J. Zhao, L. Tang, J. Xiang, R. Ji, J. Yuan, J. Zhao, and L. Song, “Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors,” Appl. Phys. Lett. 105(11), 111116 (2014).
[Crossref]

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
[Crossref]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

J. Alloys Compd. (1)

D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole, “Core-shell quantum dots: Properties and applications,” J. Alloys Compd. 636, 395–404 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, and Z. Yoshida, “How the π Conjugation Length Affects the Fluorescence Emission Efficiency,” J. Am. Chem. Soc. 130(42), 13867–13869 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (3)

H. Wang, G. Boudebs, and C. B. de Araújo, “Picosecond cubic and quantic nonlinearity of lithium niobate at 532 nm,” J. Appl. Phys. 122(8), 083103 (2017).
[Crossref]

K. Fedus, G. Boudebs, Q. Coulombier, J. Troles, and X. H. Zhang, “Nonlinear characterization of GeS2-Sb2S3-CsI glass system,” J. Appl. Phys. 107(2), 023108 (2010).
[Crossref]

D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118(2), 023105 (2015).
[Crossref]

J. Nanomater. (1)

M. Zeng, X. Wang, Y. H. Yu, L. Zhang, W. Shafi, X. Huang, and Z. Cheng, “The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Mini Emulsion Polymerization,” J. Nanomater. 2016, 1–8 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (3)

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broaband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

S. S. R. K. C. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and Nonlinear Optical Properties of Graphene Quantum Dots: A Computational Study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
[Crossref]

S. S. Yamijala, M. Mukhopadhyay, and S. K. Pati, “Linear and nonlinear optical properties of graphene quantum dots: A computational study,” J. Phys. Chem. C 119(21), 12079–12087 (2015).
[Crossref]

J. Phys. Condens. Matter (1)

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20(38), 384204 (2008).
[Crossref] [PubMed]

Nano Lett. (2)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Nat. Chem. (1)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorsa, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Nature (1)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16(5), 053014 (2014).
[Crossref]

Opt. Commun. (2)

K. Fedus and G. Boudebs, “Experimental techniques using 4f coherent imaging system for measuring nonlinear refraction,” Opt. Commun. 292, 140–148 (2013).
[Crossref]

V. A. Margulis, O. V. Boyarkina, and E. A. Gaiduk, “Non-degenerate optical four-wave mixing in single-walled carbon nanotubes,” Opt. Commun. 249(1–3), 339–349 (2005).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Part. Part. Syst. Charact. (1)

M. Bacon, S. J. Bradley, and T. Nann, “Graphene Quantum Dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
[Crossref]

Phys. Rev. (1)

P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev. 71(9), 622–634 (1947).
[Crossref]

Phys. Rev. A (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[Crossref] [PubMed]

Phys. Rev. Appl. (1)

N. Vermeulen, D. Castelló-Lurbe, J. Cheng, I. Pasternak, A. Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van Erps, “Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation,” Phys. Rev. Appl. 6(4), 044006 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Numerical study of the optical nonlinearity of doped and gapped graphene: From weak to strong field excitation,” Phys. Rev. B Condens. Matter Mater. Phys. 92(23), 235307 (2015).
[Crossref]

Phys. Rev. Lett. (2)

M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98(20), 206805 (2007).
[Crossref] [PubMed]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

C. B. de Araújo, A. S. L. Gomes, and G. Boudebs, “Techniques for nonlinear optical characterization of materials: a review,” Rep. Prog. Phys. 79(3), 036401 (2016).
[Crossref] [PubMed]

RSC Advances (4)

M. Thakur, M. K. Kumawat, and R. Srivastava, “Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications,” RSC Advances 7(9), 5251–5261 (2017).
[Crossref]

L. Bai, S. Qiao, H. Li, Y. Fang, Y. Yang, H. Huang, Y. Liu, Y. Song, and Z. Kang, “N-doped carbon dot with surface dominant non-linear optical property,” RSC Advances 6(98), 95476–95482 (2016).
[Crossref]

C. Zheng, L. Huang, Q. Guo, W. Chen, W. Lei, and H. Wang, “Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses,” RSC Advances 8(19), 10267–10276 (2018).
[Crossref]

I. Papagiannouli, A. B. Bourlinos, A. Bakandritsos, and S. Couris, “Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots,” RSC Advances 4(76), 40152–40160 (2014).
[Crossref]

Sci. Rep. (1)

X. Feng, Z. Li, X. Li, and Y. Liu, “Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region,” Sci. Rep. 6(1), 33260 (2016).
[Crossref] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Other (3)

M. Williams, G. S. Pati and R. Tripathi, “Investigations of Nonlinear Optical Properties of Diamond Nanoparticles using Z-scan Technique,” Frontiers in Optics, JW3A.28 (2017).

https://www.strem.com/catalog/v/06-0334/44/nanomaterials_1034343-98-0 & https://www.strem.com/catalog/v/96-7420/graphene_quantum_dots_in_water_gqds_mini_kit_liquids

R. Boyd, Nonlinear optics, 3rd Ed., Academic Press (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Spectral absorbance of 2 mm solution of GQDs at 1 mg/ml concentration in water. The absorption is maximal at 234 nm and 347 nm; (b) Photoluminescence of GQDs excited at 355 nm in the ps regime. The first vertical line is the incident laser wavelength. Maximum emission is found at 486 nm.
Fig. 2
Fig. 2 Experimental D4σ-Z-scan setup. The sample (NLM) is scanned along the beam direction around the focal plane (z = 0). The labels refer to: lenses (L1, L2 and L3), beam splitters (BS1 and BS2), mirrors (M1 and M2), Camera (CCD).
Fig. 3
Fig. 3 NL responses at 355 nm of 1 mm thick GQDs-water solution (red circles) and 2 mm thick water (blue squares) at the same intensity: 12 GW/cm2; (a) NL refraction; (b) NL absorption. The solid and dashed lines are the numerical fittings.
Fig. 4
Fig. 4 NL responses at 1064 nm of 2 mm thick GQDs-water solution (red circles) and 2 mm thick pure water (blue squares) at the same intensity: 69 GW/cm2; (a) NL refraction; (b) NL absorption. The solid and dashed lines are the fittings.
Fig. 5
Fig. 5 The light beam in the cell with the different geometrical parameters considered for the calculation of the total phase shift. Inside the beam the GQDs are considered stacked, side by side, filling totally a cylinder having the same section than the beam with a thickness L GQD . Above and below the beam, the same number of GQDs but randomly distributed.

Tables (1)

Tables Icon

Table 1 GQDs in water at a concentration of 1 mg/ml. Average values of the measured NL coefficients at different wavelengths. The third column shows the range of incident intensity. α, n2 and C2 denote the linear absorption, the NL refractive index and the NL absorption coefficients respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n 2l = [ ( λΔ φ 0 / 2π I 0 ) n 2c L c ] q 0 L eff log( 1+ q 0 ) ,
χ eff ( 3 ) =( 1f ) χ solv ( 3 ) +f χ GQD ( 3 ) ,
2π n 2 I 0 L λ = 2π n 2,solv I 0 L solv λ + 2π n 2,GQD I 0 L GQD λ ,
Δ φ T =Δ φ solv +Δ φ GQD .
Δ φ T = 2π n 2 I 0 L λ = 2π I 0 N layer L 1layer n 2,1lay λ .
n 2,1lay = n 2 L N layer L 1layer ,
N layer = N ns S beam / S GQD = N ns ω 0f 2 / ( D ns /2 ) 2 .
n 2,1lay = 4π n 2 M 3 3 S at N A C L 1layer ,

Metrics