Abstract

Heavy rare earth (RE) ion doped glass fibers make it possible to obtain high gain and high output power per unit length. It is known that high concentration of RE ions can be incorporated into multi-component phosphate glasses, which are usually used to fabricate high performance gain fibers. However, the increasing doping concentration of RE ions is mainly limited by the concentration quenching effect and crystallization during the fiber drawing process by the conventional rod-in-tube technique. In this work, no fluorescence quenching was observed in the prepared multi-component phosphate glasses even when Tb3+ doping concentration reached 16 mol %. Then, heavily Tb3+ doped multi-component phosphate glass fibers with silicate glass cladding were successfully drawn by a molten core method, which can effectively solve the crystallization problem caused by heavily RE ions doping. To the best of our knowledge, 16 mol % is the record high Tb3+ ion in phosphate glass fibers for green laser. An intense 540 nm green emission with fluorescence lifetime as long as 1.85 ms was obtained from the as-drawn fibers, showing promising applications for green fiber lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications

Guowu Tang, Tingting Zhu, Wangwang Liu, Wei Lin, Tian Qiao, Min Sun, Dongdan Chen, Qi Qian, and Zhongmin Yang
Opt. Mater. Express 6(6) 2147-2157 (2016)

Spectroscopic and structural characterization of barium tellurite glass fibers for mid-infrared ultra-broad tunable fiber lasers

W. C. Wang, W. J. Zhang, L. X. Li, Y. Liu, D. D. Chen, Q. Qian, and Q. Y. Zhang
Opt. Mater. Express 6(6) 2095-2107 (2016)

Spectroscopy of thulium and holmium co-doped silicate glasses

Ruijie Cao, Yu Lu, Ying Tian, Feifei Huang, Shiqing Xu, and Junjie Zhang
Opt. Mater. Express 6(7) 2252-2263 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
    [Crossref] [PubMed]
  2. X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
    [Crossref] [PubMed]
  3. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  4. G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).
    [Crossref]
  5. L. Zhang, M. Peng, G. Dong, and J. Qiu, “An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser,” Opt. Mater. 34(7), 1202–1207 (2012).
    [Crossref]
  6. S. Schweizer, L. W. Hobbs, M. Secu, J. Spaeth, A. Edgar, and G. V. M. Williams, “Photostimulated luminescence in Eu-doped fluorochlorozirconate glass ceramics,” Appl. Phys. Lett. 83(3), 449–451 (2003).
    [Crossref]
  7. M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
    [Crossref] [PubMed]
  8. D. Jiang, J. Wen, M. Jia, Q. Guo, Z. Xiao, W. Luo, F. Pang, Z. Chen, and T. Wang, “Luminescence and energy transfer characteristics in silica optical fiber materials with cerium and terbium co-doping,” Opt. Mater. Express 8(6), 1593–1602 (2018).
    [Crossref]
  9. G. Qin, T. Yamashita, and Y. Ohishi, “Optical amplification at 0.54 μm by Er3+-doped fluoride fibre,” Electron. Lett. 43(7), 377–379 (2007).
    [Crossref]
  10. T. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27(20), 1785–1786 (1991).
    [Crossref]
  11. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
    [Crossref]
  12. K. Linganna, V. B. Sreedhar, and C. K. Jayasankar, “Luminescence properties of Tb3+ ions in zinc fluorophosphates glasses for green laser applications,” Mater. Res. Bull. 67, 196–200 (2015).
    [Crossref]
  13. C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, “Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application,” J. Alloys Compd. 704, 557–564 (2017).
    [Crossref]
  14. S. Bjorklund, G. Kellermeyer, C. R. Hurt, N. McAvoy, and N. Filipescu, “Laser action from terbium trifluoroacetylacetonate in p-dioxane and acetonitrile at room temperature,” Appl. Phys. Lett. 10(5), 160–162 (1967).
    [Crossref]
  15. G. R. Atkins and A. L. G. Carter, “Photodarkening in Tb3+-doped phosphosilicate and germanosilicate optical fibers,” Opt. Lett. 19(12), 874–876 (1994).
    [Crossref] [PubMed]
  16. L. Sun, S. Jiang, and J. R. Marciante, “Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm),” Opt. Express 18(12), 12191–12196 (2010).
    [Crossref] [PubMed]
  17. C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers,” Opt. Express 24(4), 3258–3267 (2016).
    [Crossref] [PubMed]
  18. G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
    [Crossref]
  19. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  20. O. N. Egorova, S. L. Semjonov, V. V. Velmiskin, Y. P. Yatsenko, S. E. Sverchkov, B. I. Galagan, B. I. Denker, and E. M. Dianov, “Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser,” Opt. Express 22(7), 7632–7637 (2014).
    [Crossref] [PubMed]
  21. M. R. Dousti and R. J. Amjad, “Spectroscopic properties of Tb3+-doped lead zinc phosphate glass for green solid state laser,” J. Non-Cryst. Solids 420, 21–25 (2015).
    [Crossref]
  22. C. R. Kesavulu, A. C. A. Silva, M. R. Dousti, N. O. Dantas, A. S. S. de Camargo, and T. Catunda, “Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses,” J. Lumin. 165, 77–84 (2015).
    [Crossref]
  23. D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloys Compd. 509(5), 1906–1909 (2011).
    [Crossref]
  24. K. Linganna, S. Ju, Ch. Basavapoornima, V. Venkatramu, and C. K. Jayasankar, “Luminescence and decay characteristics of Tb3+-doped fluorophosphates glasses,” J. Asian Ceram. Soc. 6(1), 82–87 (2018).
    [Crossref]
  25. M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
    [Crossref]
  26. G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
    [Crossref]
  27. X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
    [Crossref] [PubMed]
  28. G. M. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
    [Crossref] [PubMed]
  29. S. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Bull. Am. Ceram. Soc. 92(4), 24–29 (2013).
  30. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
    [Crossref]
  31. W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 2018, e1802348 (2018).
    [Crossref] [PubMed]
  32. P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, and E. Burkel, “Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations,” Phys. Chem. Chem. Phys. 16(37), 19917–19927 (2014).
    [Crossref] [PubMed]
  33. X. Fang, C. S. Ray, A. Moguš-Milanković, and D. E. Day, “Iron redox equilibrium, structure and properties of iron phosphate glass,” J. Non-Cryst. Solids 283(1-3), 162–172 (2001).
    [Crossref]
  34. G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt, and L. Wondraczek, “Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics,” Sci. Rep. 5(1), 8942 (2015).
    [Crossref] [PubMed]
  35. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+,” J. Chem. Phys. 49(10), 4447–4449 (1968).
    [Crossref]
  36. B. Szpikowska-Sroka, N. Pawlik, T. Goryczka, M. Bańczyk, and W. A. Pisarski, “Influence of activator concentration on green-emitting Tb3+-doped materials derived by sol-gel method,” J. Lumin. 188, 400–408 (2017).
    [Crossref]
  37. G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
    [Crossref]
  38. X. Sun, X. Yu, W. Wang, Y. Li, Z. Zhang, and J. Zhao, “Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses,” J. Non-Cryst. Solids 379, 127–130 (2013).
    [Crossref]
  39. W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2977 (2015).
    [Crossref]
  40. M. Boivin, M. El-Amraoui, Y. Ledemi, S. Morency, R. Vallée, and Y. Messaddeq, “Germanate-tellurite composite fibers with a high-contrast step-index design for nonlinear applications,” Opt. Mater. Express 4(8), 1740–1746 (2014).
    [Crossref]

2018 (4)

D. Jiang, J. Wen, M. Jia, Q. Guo, Z. Xiao, W. Luo, F. Pang, Z. Chen, and T. Wang, “Luminescence and energy transfer characteristics in silica optical fiber materials with cerium and terbium co-doping,” Opt. Mater. Express 8(6), 1593–1602 (2018).
[Crossref]

K. Linganna, S. Ju, Ch. Basavapoornima, V. Venkatramu, and C. K. Jayasankar, “Luminescence and decay characteristics of Tb3+-doped fluorophosphates glasses,” J. Asian Ceram. Soc. 6(1), 82–87 (2018).
[Crossref]

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 2018, e1802348 (2018).
[Crossref] [PubMed]

2017 (2)

B. Szpikowska-Sroka, N. Pawlik, T. Goryczka, M. Bańczyk, and W. A. Pisarski, “Influence of activator concentration on green-emitting Tb3+-doped materials derived by sol-gel method,” J. Lumin. 188, 400–408 (2017).
[Crossref]

C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, “Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application,” J. Alloys Compd. 704, 557–564 (2017).
[Crossref]

2016 (6)

C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers,” Opt. Express 24(4), 3258–3267 (2016).
[Crossref] [PubMed]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

2015 (6)

M. R. Dousti and R. J. Amjad, “Spectroscopic properties of Tb3+-doped lead zinc phosphate glass for green solid state laser,” J. Non-Cryst. Solids 420, 21–25 (2015).
[Crossref]

C. R. Kesavulu, A. C. A. Silva, M. R. Dousti, N. O. Dantas, A. S. S. de Camargo, and T. Catunda, “Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses,” J. Lumin. 165, 77–84 (2015).
[Crossref]

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2977 (2015).
[Crossref]

G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt, and L. Wondraczek, “Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics,” Sci. Rep. 5(1), 8942 (2015).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

K. Linganna, V. B. Sreedhar, and C. K. Jayasankar, “Luminescence properties of Tb3+ ions in zinc fluorophosphates glasses for green laser applications,” Mater. Res. Bull. 67, 196–200 (2015).
[Crossref]

2014 (4)

P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, and E. Burkel, “Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations,” Phys. Chem. Chem. Phys. 16(37), 19917–19927 (2014).
[Crossref] [PubMed]

M. Boivin, M. El-Amraoui, Y. Ledemi, S. Morency, R. Vallée, and Y. Messaddeq, “Germanate-tellurite composite fibers with a high-contrast step-index design for nonlinear applications,” Opt. Mater. Express 4(8), 1740–1746 (2014).
[Crossref]

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

O. N. Egorova, S. L. Semjonov, V. V. Velmiskin, Y. P. Yatsenko, S. E. Sverchkov, B. I. Galagan, B. I. Denker, and E. M. Dianov, “Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser,” Opt. Express 22(7), 7632–7637 (2014).
[Crossref] [PubMed]

2013 (2)

S. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Bull. Am. Ceram. Soc. 92(4), 24–29 (2013).

X. Sun, X. Yu, W. Wang, Y. Li, Z. Zhang, and J. Zhao, “Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses,” J. Non-Cryst. Solids 379, 127–130 (2013).
[Crossref]

2012 (3)

G. M. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

L. Zhang, M. Peng, G. Dong, and J. Qiu, “An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser,” Opt. Mater. 34(7), 1202–1207 (2012).
[Crossref]

2011 (3)

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloys Compd. 509(5), 1906–1909 (2011).
[Crossref]

2010 (2)

2007 (1)

G. Qin, T. Yamashita, and Y. Ohishi, “Optical amplification at 0.54 μm by Er3+-doped fluoride fibre,” Electron. Lett. 43(7), 377–379 (2007).
[Crossref]

2003 (1)

S. Schweizer, L. W. Hobbs, M. Secu, J. Spaeth, A. Edgar, and G. V. M. Williams, “Photostimulated luminescence in Eu-doped fluorochlorozirconate glass ceramics,” Appl. Phys. Lett. 83(3), 449–451 (2003).
[Crossref]

2002 (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

2001 (1)

X. Fang, C. S. Ray, A. Moguš-Milanković, and D. E. Day, “Iron redox equilibrium, structure and properties of iron phosphate glass,” J. Non-Cryst. Solids 283(1-3), 162–172 (2001).
[Crossref]

1994 (1)

1991 (1)

T. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27(20), 1785–1786 (1991).
[Crossref]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+,” J. Chem. Phys. 49(10), 4447–4449 (1968).
[Crossref]

1967 (1)

S. Bjorklund, G. Kellermeyer, C. R. Hurt, N. McAvoy, and N. Filipescu, “Laser action from terbium trifluoroacetylacetonate in p-dioxane and acetonitrile at room temperature,” Appl. Phys. Lett. 10(5), 160–162 (1967).
[Crossref]

Abouraddy, A. F.

G. M. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

Amjad, R. J.

M. R. Dousti and R. J. Amjad, “Spectroscopic properties of Tb3+-doped lead zinc phosphate glass for green solid state laser,” J. Non-Cryst. Solids 420, 21–25 (2015).
[Crossref]

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Atkins, G. R.

Ballato, J.

S. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Bull. Am. Ceram. Soc. 92(4), 24–29 (2013).

Banczyk, M.

B. Szpikowska-Sroka, N. Pawlik, T. Goryczka, M. Bańczyk, and W. A. Pisarski, “Influence of activator concentration on green-emitting Tb3+-doped materials derived by sol-gel method,” J. Lumin. 188, 400–408 (2017).
[Crossref]

Basavapoornima, Ch.

K. Linganna, S. Ju, Ch. Basavapoornima, V. Venkatramu, and C. K. Jayasankar, “Luminescence and decay characteristics of Tb3+-doped fluorophosphates glasses,” J. Asian Ceram. Soc. 6(1), 82–87 (2018).
[Crossref]

Bjorklund, S.

S. Bjorklund, G. Kellermeyer, C. R. Hurt, N. McAvoy, and N. Filipescu, “Laser action from terbium trifluoroacetylacetonate in p-dioxane and acetonitrile at room temperature,” Appl. Phys. Lett. 10(5), 160–162 (1967).
[Crossref]

Bodnar, W.

P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, and E. Burkel, “Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations,” Phys. Chem. Chem. Phys. 16(37), 19917–19927 (2014).
[Crossref] [PubMed]

Boivin, M.

Brierley, M. C.

T. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27(20), 1785–1786 (1991).
[Crossref]

Burkel, E.

P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, and E. Burkel, “Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations,” Phys. Chem. Chem. Phys. 16(37), 19917–19927 (2014).
[Crossref] [PubMed]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+,” J. Chem. Phys. 49(10), 4447–4449 (1968).
[Crossref]

Carter, A. L. G.

Catunda, T.

C. R. Kesavulu, A. C. A. Silva, M. R. Dousti, N. O. Dantas, A. S. S. de Camargo, and T. Catunda, “Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses,” J. Lumin. 165, 77–84 (2015).
[Crossref]

Chen, D.

Chen, D. D.

Chen, X.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Chen, Z.

Cheng, H.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Cheng, J.

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloys Compd. 509(5), 1906–1909 (2011).
[Crossref]

Ciecinska, M.

P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, and E. Burkel, “Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations,” Phys. Chem. Chem. Phys. 16(37), 19917–19927 (2014).
[Crossref] [PubMed]

Da, N.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Dantas, N. O.

C. R. Kesavulu, A. C. A. Silva, M. R. Dousti, N. O. Dantas, A. S. S. de Camargo, and T. Catunda, “Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses,” J. Lumin. 165, 77–84 (2015).
[Crossref]

Day, D. E.

X. Fang, C. S. Ray, A. Moguš-Milanković, and D. E. Day, “Iron redox equilibrium, structure and properties of iron phosphate glass,” J. Non-Cryst. Solids 283(1-3), 162–172 (2001).
[Crossref]

de Camargo, A. S. S.

C. R. Kesavulu, A. C. A. Silva, M. R. Dousti, N. O. Dantas, A. S. S. de Camargo, and T. Catunda, “Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses,” J. Lumin. 165, 77–84 (2015).
[Crossref]

Dellith, J.

G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt, and L. Wondraczek, “Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics,” Sci. Rep. 5(1), 8942 (2015).
[Crossref] [PubMed]

Denker, B. I.

Dianov, E. M.

Dong, G.

L. Zhang, M. Peng, G. Dong, and J. Qiu, “An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser,” Opt. Mater. 34(7), 1202–1207 (2012).
[Crossref]

Dousti, M. R.

M. R. Dousti and R. J. Amjad, “Spectroscopic properties of Tb3+-doped lead zinc phosphate glass for green solid state laser,” J. Non-Cryst. Solids 420, 21–25 (2015).
[Crossref]

C. R. Kesavulu, A. C. A. Silva, M. R. Dousti, N. O. Dantas, A. S. S. de Camargo, and T. Catunda, “Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses,” J. Lumin. 165, 77–84 (2015).
[Crossref]

Dubs, C.

G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt, and L. Wondraczek, “Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics,” Sci. Rep. 5(1), 8942 (2015).
[Crossref] [PubMed]

Edgar, A.

S. Schweizer, L. W. Hobbs, M. Secu, J. Spaeth, A. Edgar, and G. V. M. Williams, “Photostimulated luminescence in Eu-doped fluorochlorozirconate glass ceramics,” Appl. Phys. Lett. 83(3), 449–451 (2003).
[Crossref]

Egorova, O. N.

El-Amraoui, M.

Falconi, M. C.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Fang, X.

X. Fang, C. S. Ray, A. Moguš-Milanković, and D. E. Day, “Iron redox equilibrium, structure and properties of iron phosphate glass,” J. Non-Cryst. Solids 283(1-3), 162–172 (2001).
[Crossref]

Fang, Z.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

Ferrari, M.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+,” J. Chem. Phys. 49(10), 4447–4449 (1968).
[Crossref]

Filipescu, N.

S. Bjorklund, G. Kellermeyer, C. R. Hurt, N. McAvoy, and N. Filipescu, “Laser action from terbium trifluoroacetylacetonate in p-dioxane and acetonitrile at room temperature,” Appl. Phys. Lett. 10(5), 160–162 (1967).
[Crossref]

Galagan, B. I.

Gao, G.

G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt, and L. Wondraczek, “Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics,” Sci. Rep. 5(1), 8942 (2015).
[Crossref] [PubMed]

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

Goryczka, T.

B. Szpikowska-Sroka, N. Pawlik, T. Goryczka, M. Bańczyk, and W. A. Pisarski, “Influence of activator concentration on green-emitting Tb3+-doped materials derived by sol-gel method,” J. Lumin. 188, 400–408 (2017).
[Crossref]

Granzow, N.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Guo, Q.

He, D.

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloys Compd. 509(5), 1906–1909 (2011).
[Crossref]

Hobbs, L. W.

S. Schweizer, L. W. Hobbs, M. Secu, J. Spaeth, A. Edgar, and G. V. M. Williams, “Photostimulated luminescence in Eu-doped fluorochlorozirconate glass ceramics,” Appl. Phys. Lett. 83(3), 449–451 (2003).
[Crossref]

Hu, L.

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloys Compd. 509(5), 1906–1909 (2011).
[Crossref]

Huang, K.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Hurt, C. R.

S. Bjorklund, G. Kellermeyer, C. R. Hurt, N. McAvoy, and N. Filipescu, “Laser action from terbium trifluoroacetylacetonate in p-dioxane and acetonitrile at room temperature,” Appl. Phys. Lett. 10(5), 160–162 (1967).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Jain, C.

Jayasankar, C. K.

K. Linganna, S. Ju, Ch. Basavapoornima, V. Venkatramu, and C. K. Jayasankar, “Luminescence and decay characteristics of Tb3+-doped fluorophosphates glasses,” J. Asian Ceram. Soc. 6(1), 82–87 (2018).
[Crossref]

K. Linganna, V. B. Sreedhar, and C. K. Jayasankar, “Luminescence properties of Tb3+ ions in zinc fluorophosphates glasses for green laser applications,” Mater. Res. Bull. 67, 196–200 (2015).
[Crossref]

Jia, M.

Jiang, D.

Jiang, L.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Jiang, S.

Ju, S.

K. Linganna, S. Ju, Ch. Basavapoornima, V. Venkatramu, and C. K. Jayasankar, “Luminescence and decay characteristics of Tb3+-doped fluorophosphates glasses,” J. Asian Ceram. Soc. 6(1), 82–87 (2018).
[Crossref]

Kaewkhao, J.

C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, “Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application,” J. Alloys Compd. 704, 557–564 (2017).
[Crossref]

Kaewnuam, E.

C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, “Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application,” J. Alloys Compd. 704, 557–564 (2017).
[Crossref]

Kellermeyer, G.

S. Bjorklund, G. Kellermeyer, C. R. Hurt, N. McAvoy, and N. Filipescu, “Laser action from terbium trifluoroacetylacetonate in p-dioxane and acetonitrile at room temperature,” Appl. Phys. Lett. 10(5), 160–162 (1967).
[Crossref]

Kesavulu, C. R.

C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, “Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application,” J. Alloys Compd. 704, 557–564 (2017).
[Crossref]

C. R. Kesavulu, A. C. A. Silva, M. R. Dousti, N. O. Dantas, A. S. S. de Camargo, and T. Catunda, “Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses,” J. Lumin. 165, 77–84 (2015).
[Crossref]

Kim, H. J.

C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, “Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application,” J. Alloys Compd. 704, 557–564 (2017).
[Crossref]

Kobelke, J.

Lauto, A.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Ledemi, Y.

Lee, H. W.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Lee, S. W.

C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, “Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application,” J. Alloys Compd. 704, 557–564 (2017).
[Crossref]

Li, L. X.

Li, S.

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloys Compd. 509(5), 1906–1909 (2011).
[Crossref]

Li, Y.

X. Sun, X. Yu, W. Wang, Y. Li, Z. Zhang, and J. Zhao, “Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses,” J. Non-Cryst. Solids 379, 127–130 (2013).
[Crossref]

Lin, W.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).
[Crossref]

Linganna, K.

K. Linganna, S. Ju, Ch. Basavapoornima, V. Venkatramu, and C. K. Jayasankar, “Luminescence and decay characteristics of Tb3+-doped fluorophosphates glasses,” J. Asian Ceram. Soc. 6(1), 82–87 (2018).
[Crossref]

K. Linganna, V. B. Sreedhar, and C. K. Jayasankar, “Luminescence properties of Tb3+ ions in zinc fluorophosphates glasses for green laser applications,” Mater. Res. Bull. 67, 196–200 (2015).
[Crossref]

Liu, W.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).
[Crossref]

Luo, W.

Marciante, J. R.

McAvoy, N.

S. Bjorklund, G. Kellermeyer, C. R. Hurt, N. McAvoy, and N. Filipescu, “Laser action from terbium trifluoroacetylacetonate in p-dioxane and acetonitrile at room temperature,” Appl. Phys. Lett. 10(5), 160–162 (1967).
[Crossref]

Messaddeq, Y.

Millar, C. A.

T. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27(20), 1785–1786 (1991).
[Crossref]

Moguš-Milankovic, A.

X. Fang, C. S. Ray, A. Moguš-Milanković, and D. E. Day, “Iron redox equilibrium, structure and properties of iron phosphate glass,” J. Non-Cryst. Solids 283(1-3), 162–172 (2001).
[Crossref]

Morency, S.

Morris, S.

S. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Bull. Am. Ceram. Soc. 92(4), 24–29 (2013).

Nazabal, V.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Nguyen-Dang, T.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 2018, e1802348 (2018).
[Crossref] [PubMed]

Ohishi, Y.

G. Qin, T. Yamashita, and Y. Ohishi, “Optical amplification at 0.54 μm by Er3+-doped fluoride fibre,” Electron. Lett. 43(7), 377–379 (2007).
[Crossref]

Page, A.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 2018, e1802348 (2018).
[Crossref] [PubMed]

Palma, G.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Pang, F.

Pawlik, N.

B. Szpikowska-Sroka, N. Pawlik, T. Goryczka, M. Bańczyk, and W. A. Pisarski, “Influence of activator concentration on green-emitting Tb3+-doped materials derived by sol-gel method,” J. Lumin. 188, 400–408 (2017).
[Crossref]

Peng, M.

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

L. Zhang, M. Peng, G. Dong, and J. Qiu, “An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser,” Opt. Mater. 34(7), 1202–1207 (2012).
[Crossref]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Pisarski, W. A.

B. Szpikowska-Sroka, N. Pawlik, T. Goryczka, M. Bańczyk, and W. A. Pisarski, “Influence of activator concentration on green-emitting Tb3+-doped materials derived by sol-gel method,” J. Lumin. 188, 400–408 (2017).
[Crossref]

Prudenzano, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Qian, G.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

Qian, Q.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).
[Crossref]

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2977 (2015).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Qiao, T.

Qin, G.

G. Qin, T. Yamashita, and Y. Ohishi, “Optical amplification at 0.54 μm by Er3+-doped fluoride fibre,” Electron. Lett. 43(7), 377–379 (2007).
[Crossref]

Qiu, J.

L. Zhang, M. Peng, G. Dong, and J. Qiu, “An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser,” Opt. Mater. 34(7), 1202–1207 (2012).
[Crossref]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Qu, Y.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 2018, e1802348 (2018).
[Crossref] [PubMed]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+,” J. Chem. Phys. 49(10), 4447–4449 (1968).
[Crossref]

Ray, C. S.

X. Fang, C. S. Ray, A. Moguš-Milanković, and D. E. Day, “Iron redox equilibrium, structure and properties of iron phosphate glass,” J. Non-Cryst. Solids 283(1-3), 162–172 (2001).
[Crossref]

Rodrigues, B. P.

Schmidt, M. A.

C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers,” Opt. Express 24(4), 3258–3267 (2016).
[Crossref] [PubMed]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt, and L. Wondraczek, “Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics,” Sci. Rep. 5(1), 8942 (2015).
[Crossref] [PubMed]

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Schweizer, S.

S. Schweizer, L. W. Hobbs, M. Secu, J. Spaeth, A. Edgar, and G. V. M. Williams, “Photostimulated luminescence in Eu-doped fluorochlorozirconate glass ceramics,” Appl. Phys. Lett. 83(3), 449–451 (2003).
[Crossref]

Secu, M.

S. Schweizer, L. W. Hobbs, M. Secu, J. Spaeth, A. Edgar, and G. V. M. Williams, “Photostimulated luminescence in Eu-doped fluorochlorozirconate glass ceramics,” Appl. Phys. Lett. 83(3), 449–451 (2003).
[Crossref]

Semjonov, S. L.

Shan, X.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

Shen, S.

Shen, Y.

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

Shi, Z.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

Silva, A. C. A.

C. R. Kesavulu, A. C. A. Silva, M. R. Dousti, N. O. Dantas, A. S. S. de Camargo, and T. Catunda, “Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses,” J. Lumin. 165, 77–84 (2015).
[Crossref]

Sordo, F.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 2018, e1802348 (2018).
[Crossref] [PubMed]

Sorin, F.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 2018, e1802348 (2018).
[Crossref] [PubMed]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Spaeth, J.

S. Schweizer, L. W. Hobbs, M. Secu, J. Spaeth, A. Edgar, and G. V. M. Williams, “Photostimulated luminescence in Eu-doped fluorochlorozirconate glass ceramics,” Appl. Phys. Lett. 83(3), 449–451 (2003).
[Crossref]

Sreedhar, V. B.

K. Linganna, V. B. Sreedhar, and C. K. Jayasankar, “Luminescence properties of Tb3+ ions in zinc fluorophosphates glasses for green laser applications,” Mater. Res. Bull. 67, 196–200 (2015).
[Crossref]

St J Russell, P.

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Starecki, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Stoch, A.

P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, and E. Burkel, “Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations,” Phys. Chem. Chem. Phys. 16(37), 19917–19927 (2014).
[Crossref] [PubMed]

Stoch, P.

P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, and E. Burkel, “Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations,” Phys. Chem. Chem. Phys. 16(37), 19917–19927 (2014).
[Crossref] [PubMed]

Stolyarov, A. M.

G. M. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

Sun, L.

Sun, M.

Sun, X.

X. Sun, X. Yu, W. Wang, Y. Li, Z. Zhang, and J. Zhao, “Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses,” J. Non-Cryst. Solids 379, 127–130 (2013).
[Crossref]

Surzhenko, O.

G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt, and L. Wondraczek, “Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics,” Sci. Rep. 5(1), 8942 (2015).
[Crossref] [PubMed]

Sverchkov, S. E.

Szczerba, W.

P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, and E. Burkel, “Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations,” Phys. Chem. Chem. Phys. 16(37), 19917–19927 (2014).
[Crossref] [PubMed]

Szebesta, D.

T. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27(20), 1785–1786 (1991).
[Crossref]

Szpikowska-Sroka, B.

B. Szpikowska-Sroka, N. Pawlik, T. Goryczka, M. Bańczyk, and W. A. Pisarski, “Influence of activator concentration on green-emitting Tb3+-doped materials derived by sol-gel method,” J. Lumin. 188, 400–408 (2017).
[Crossref]

Taccheo, S.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Tang, G.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Tao, G. M.

G. M. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

Troles, J.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Vallée, R.

Velmiskin, V. V.

Venkatramu, V.

K. Linganna, S. Ju, Ch. Basavapoornima, V. Venkatramu, and C. K. Jayasankar, “Luminescence and decay characteristics of Tb3+-doped fluorophosphates glasses,” J. Asian Ceram. Soc. 6(1), 82–87 (2018).
[Crossref]

Wang, J.

Wang, T.

Wang, W.

X. Sun, X. Yu, W. Wang, Y. Li, Z. Zhang, and J. Zhao, “Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses,” J. Non-Cryst. Solids 379, 127–130 (2013).
[Crossref]

Wang, W. C.

Wantana, N.

C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, “Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application,” J. Alloys Compd. 704, 557–564 (2017).
[Crossref]

Wei, J.

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

Wei, L.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 2018, e1802348 (2018).
[Crossref] [PubMed]

Wei, X.

Wen, J.

Wen, X.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Whitley, T.

T. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27(20), 1785–1786 (1991).
[Crossref]

Wieduwilt, T.

Williams, G. V. M.

S. Schweizer, L. W. Hobbs, M. Secu, J. Spaeth, A. Edgar, and G. V. M. Williams, “Photostimulated luminescence in Eu-doped fluorochlorozirconate glass ceramics,” Appl. Phys. Lett. 83(3), 449–451 (2003).
[Crossref]

Winterstein-Beckmann, A.

G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt, and L. Wondraczek, “Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics,” Sci. Rep. 5(1), 8942 (2015).
[Crossref] [PubMed]

Wondraczek, L.

C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Silver metaphosphate glass wires inside silica fibers--a new approach for hybrid optical fibers,” Opt. Express 24(4), 3258–3267 (2016).
[Crossref] [PubMed]

G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt, and L. Wondraczek, “Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics,” Sci. Rep. 5(1), 8942 (2015).
[Crossref] [PubMed]

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

Wyatt, R.

T. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27(20), 1785–1786 (1991).
[Crossref]

Xiao, Z.

Xu, S.

Yamashita, T.

G. Qin, T. Yamashita, and Y. Ohishi, “Optical amplification at 0.54 μm by Er3+-doped fluoride fibre,” Electron. Lett. 43(7), 377–379 (2007).
[Crossref]

Yan, W.

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 2018, e1802348 (2018).
[Crossref] [PubMed]

Yang, Q.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

Yang, Z.

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).
[Crossref]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm³⁺ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Yatsenko, Y. P.

Yu, C.

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloys Compd. 509(5), 1906–1909 (2011).
[Crossref]

Yu, X.

X. Sun, X. Yu, W. Wang, Y. Li, Z. Zhang, and J. Zhao, “Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses,” J. Non-Cryst. Solids 379, 127–130 (2013).
[Crossref]

Yuan, J.

Zhang, L.

L. Zhang, M. Peng, G. Dong, and J. Qiu, “An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser,” Opt. Mater. 34(7), 1202–1207 (2012).
[Crossref]

Zhang, Q.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Zhang, Q. Y.

Zhang, W.

Zhang, Z.

X. Sun, X. Yu, W. Wang, Y. Li, Z. Zhang, and J. Zhao, “Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses,” J. Non-Cryst. Solids 379, 127–130 (2013).
[Crossref]

Zhao, J.

X. Sun, X. Yu, W. Wang, Y. Li, Z. Zhang, and J. Zhao, “Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses,” J. Non-Cryst. Solids 379, 127–130 (2013).
[Crossref]

Zhu, T.

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Adv. Mater. (2)

M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. 23(22-23), 2681–2688 (2011).
[Crossref] [PubMed]

W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, “Advanced multimaterial electronic and optoelectronic fibers and textiles,” Adv. Mater. 2018, e1802348 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers- an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956 (2010).
[Crossref]

Appl. Phys. Express (1)

G. Tang, X. Wen, K. Huang, G. Qian, W. Lin, H. Cheng, L. Jiang, Q. Qian, and Z. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 μm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Appl. Phys. Lett. (2)

S. Bjorklund, G. Kellermeyer, C. R. Hurt, N. McAvoy, and N. Filipescu, “Laser action from terbium trifluoroacetylacetonate in p-dioxane and acetonitrile at room temperature,” Appl. Phys. Lett. 10(5), 160–162 (1967).
[Crossref]

S. Schweizer, L. W. Hobbs, M. Secu, J. Spaeth, A. Edgar, and G. V. M. Williams, “Photostimulated luminescence in Eu-doped fluorochlorozirconate glass ceramics,” Appl. Phys. Lett. 83(3), 449–451 (2003).
[Crossref]

Bull. Am. Ceram. Soc. (1)

S. Morris and J. Ballato, “Molten-core fabrication of novel optical fibers,” Bull. Am. Ceram. Soc. 92(4), 24–29 (2013).

Electron. Lett. (2)

G. Qin, T. Yamashita, and Y. Ohishi, “Optical amplification at 0.54 μm by Er3+-doped fluoride fibre,” Electron. Lett. 43(7), 377–379 (2007).
[Crossref]

T. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27(20), 1785–1786 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Int. J. Appl. Glass Sci. (1)

G. M. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

J. Alloys Compd. (2)

C. R. Kesavulu, H. J. Kim, S. W. Lee, J. Kaewkhao, E. Kaewnuam, and N. Wantana, “Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application,” J. Alloys Compd. 704, 557–564 (2017).
[Crossref]

D. He, C. Yu, J. Cheng, S. Li, and L. Hu, “Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass,” J. Alloys Compd. 509(5), 1906–1909 (2011).
[Crossref]

J. Asian Ceram. Soc. (1)

K. Linganna, S. Ju, Ch. Basavapoornima, V. Venkatramu, and C. K. Jayasankar, “Luminescence and decay characteristics of Tb3+-doped fluorophosphates glasses,” J. Asian Ceram. Soc. 6(1), 82–87 (2018).
[Crossref]

J. Chem. Phys. (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+,” J. Chem. Phys. 49(10), 4447–4449 (1968).
[Crossref]

J. Lumin. (2)

B. Szpikowska-Sroka, N. Pawlik, T. Goryczka, M. Bańczyk, and W. A. Pisarski, “Influence of activator concentration on green-emitting Tb3+-doped materials derived by sol-gel method,” J. Lumin. 188, 400–408 (2017).
[Crossref]

C. R. Kesavulu, A. C. A. Silva, M. R. Dousti, N. O. Dantas, A. S. S. de Camargo, and T. Catunda, “Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses,” J. Lumin. 165, 77–84 (2015).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

G. Gao, J. Wei, Y. Shen, M. Peng, and L. Wondraczek, “Heavily Eu2O3-doped yttria-aluminoborate glasses for red photoconversion with a high quantum yield: luminescence quenching and statistics of cluster formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(41), 8678–8682 (2014).
[Crossref]

J. Non-Cryst. Solids (4)

X. Sun, X. Yu, W. Wang, Y. Li, Z. Zhang, and J. Zhao, “Luminescent properties of Tb3+-activated B2O3-GeO2-Gd2O3 scintillating glasses,” J. Non-Cryst. Solids 379, 127–130 (2013).
[Crossref]

X. Fang, C. S. Ray, A. Moguš-Milanković, and D. E. Day, “Iron redox equilibrium, structure and properties of iron phosphate glass,” J. Non-Cryst. Solids 283(1-3), 162–172 (2001).
[Crossref]

M. R. Dousti and R. J. Amjad, “Spectroscopic properties of Tb3+-doped lead zinc phosphate glass for green solid state laser,” J. Non-Cryst. Solids 420, 21–25 (2015).
[Crossref]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
[Crossref]

Lasers Surg. Med. (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[Crossref] [PubMed]

Mater. Res. Bull. (1)

K. Linganna, V. B. Sreedhar, and C. K. Jayasankar, “Luminescence properties of Tb3+ ions in zinc fluorophosphates glasses for green laser applications,” Mater. Res. Bull. 67, 196–200 (2015).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

L. Zhang, M. Peng, G. Dong, and J. Qiu, “An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser,” Opt. Mater. 34(7), 1202–1207 (2012).
[Crossref]

Opt. Mater. Express (4)

Phys. Chem. Chem. Phys. (1)

P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, and E. Burkel, “Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations,” Phys. Chem. Chem. Phys. 16(37), 19917–19927 (2014).
[Crossref] [PubMed]

Sci. Rep. (2)

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

G. Gao, A. Winterstein-Beckmann, O. Surzhenko, C. Dubs, J. Dellith, M. A. Schmidt, and L. Wondraczek, “Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics,” Sci. Rep. 5(1), 8942 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 DSC curves of the Tb3+ doped multi-component phosphate glasses.
Fig. 2
Fig. 2 Raman spectra of the Tb3+ doped multi-component phosphate glasses.
Fig. 3
Fig. 3 Absorption spectra of the Tb3+ doped multi-component phosphate glasses.
Fig. 4
Fig. 4 (a) Excitation and (b) emission spectra of the Tb3+ doped multi-component phosphate glasses. The inset of Fig. 4(b) shows the energy level diagram of Tb3+.
Fig. 5
Fig. 5 Normalized decay curves of photoluminescence from the Tb3+ doped multi-component phosphate glasses. The inset shows the fluorescence lifetime of the multi-component phosphate glasses doped with different Tb3+ concentration.
Fig. 6
Fig. 6 Core glass rod fabricated by thermal drawing process.
Fig. 7
Fig. 7 (a) Electron micrograph of the as-drawn fiber in cross section. (b)-(e) EPMA images of the marked area in (a).
Fig. 8
Fig. 8 Elemental profiles (relative elemental composition as a function of position across the fiber) for the as-drawn fiber.
Fig. 9
Fig. 9 Emission spectra of the core glass and the as-drawn fibers. The inset shows the fluorescence decay curves of the as-drawn fibers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

NA= n core 2 n cladding 2
V= 2πr λ NA

Metrics