Abstract

Laser-induced breakdown spectroscopy (LIBS), commonly used for atomic emission analysis, was used to gain some understanding of the process of aging in metalized pyrotechnic substances. In particular, the formation of zirconium dioxide (ZrO2) was investigated through the ZrO molecular band structure. The plasma emission structure that considers the electronic, vibrational and rotational transitions in molecules corresponds to the ZrO α (1,0) bands of the b3ϕ – a3Δ system. The ZrO signal originates from both pure Zr exposed to oxygen, as well as from pre-existing ZrO2, which makes it difficult to discriminate its source. Here, we confirmed that the aging samples showed the same increase in the ZrO signal as the non-aging samples with added ZrO2. A calibration curve for varying ZrO2 concentration with respect to the area under curve (AUC) of the ZrO signal intensity was constructed. The percentage of oxidation in two types of metalized pyrotechnic substances, namely Zr/KClO4 and Zr/Fe2O3, was predicted through the geometrical interpretation of the ZrO molecular emission spectra.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas

Kyle C. Hartig, Sivanandan S. Harilal, Mark C. Phillips, Brian E. Brumfield, and Igor Jovanovic
Opt. Express 25(10) 11477-11490 (2017)

Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy

Amir Hossein Rezaei, Mohammad Hossein Keshavarz, Masoud Kavosh Tehrani, Seyyed Mohammad Reza Darbani, Amir Hossein Farhadian, Seyyed Jabbar Mousavi, and Ali Mousaviazar
Appl. Opt. 55(12) 3233-3240 (2016)

Elucidating uranium monoxide spectral features from a laser-produced plasma

Sivanandan S. Harilal, Brian E. Brumfield, Nick Glumac, and Mark C. Phillips
Opt. Express 26(16) 20319-20330 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Z. Musazzi and U. Perini, eds., “Laser-induced Breakdown Spectroscopy: Theory and Applications (Springer, 2014), pp. 377–410.
  2. S. J. Choi, J. J. Choi, and J. J. Yoh, “Novel control of plasma expansion direction aimed at very low pressure laser-induced plasma spectroscopy,” Opt. Express 23(5), 6336–6344 (2015).
    [Crossref] [PubMed]
  3. J. H. Yang and J. J. Yoh, “Reconstruction of chemical fingerprints from an individual’s time-delayed, overlapped fingerprints via laser-induced breakdown spectrometry (LIBS) and raman spectroscopy,” Microchem. J. 139, 386–393 (2018).
    [Crossref]
  4. J. H. Yang, S.-J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
    [Crossref]
  5. S. G. Rautian and A. S. Yatsenko, “Grotrian diagrams,” Phys. Uspekhi 169(2), 217–220 (1999).
  6. G. H. Wagnière, Introduction to Elementary Molecular Orbital Theory and to Semiempirical Methods (Springer-Verlag, 1976).
  7. M. Lax and J. Chem, “The Franck-Condon principle and its application to crystals,” J. Chem. Phys. 20(11), 1752–1760 (1952).
    [Crossref]
  8. N. Kawahara, K. Tsuboi, and E. Tomita, “Laser-induced plasma generation and evolution in a transient spray,” Opt. Express 22(Suppl 1), A44–A52 (2014).
    [Crossref] [PubMed]
  9. A. I. Florescu-Mitchell and J. B. A. Mitchell, “Dissociative recombination,” Phys. Rep. 430(5-6), 277–374 (2006).
    [Crossref]
  10. A. F. Bravo, T. Delgado, P. Lucena, and J. J. Laserna, “Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds,” Spectrochim. Acta B At. Spectrosc. 89, 77–83 (2013).
    [Crossref]
  11. X. Mao, A. A. Bol’shakov, I. H. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
    [Crossref]
  12. M. J. Witte, “Diatomic carbon measurements with laser-induced breakdown spectroscopy,” Master's Thesis, University of Tennessee, 2015.
  13. H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
    [Crossref]
  14. M. Gaft, L. Nagli, N. Eliezer, Y. Groisman, and O. Forni, “Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air,” Spectrochim. Acta B At. Spectrosc. 98, 39–47 (2014).
    [Crossref]
  15. H. F. Amir, K. T. Masoud, H. K. Mohammad, K. Mehran, M. R. D. Seyyed, and H. R. Amir, “A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS),” J. Therm. Anal. Calorim. 124(1), 279–286 (2016).
    [Crossref]
  16. A. B. Alexander, X. Mao, D. L. Perry, and R. E. Russo, “Laser ablation molecular isotopic spectrometry for rare isotopes of the light elements,” Spectroscopy, vol. 29 (2014).
  17. R. H. Nielsen and G. Wilfing, “Zirconium and zirconium compounds,” in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2012), pp. 753–778.
  18. R. E. Russo, A. B. Alexander, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
    [Crossref]
  19. H. Hou, G. C. Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
    [Crossref] [PubMed]
  20. A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, T. Sakka, and I. Wakaida, “Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser,” Spectrochim. Acta B At. Spectrosc. 142, 37–49 (2018).
    [Crossref]
  21. D. S. Vogt, K. Rammelkamp, S. Schröder, and H. W. Hübers, “Molecular emission in laser-induced breakdown spectroscopy: An investigation of its suitability for chlorine quantification on Mars,” Icarus 302, 470–482 (2018).
    [Crossref]
  22. R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
    [Crossref]
  23. N. I. S. T. Standard Reference Database Number, 69. http://webbook.nist.gov/chemistry/ (accessed from June 1, 2014).
  24. T. E. Brown, H. E. Lemay, and B. E. Bursten, Chemistry–The Central Science (Prentice Hall, 2006.
  25. J. Priyadharsini, G. P. Gigi, V. Niraimathi, and A. J. Suresh, “Area under curve and second order derivative spectroscopy of metaxalone in bulk drug and tablet formulation,” International Journal of Chemical Sciences 8, 823–827 (2010).
  26. A. B. Chauhan and D. B. Patel, “Area under the curve spectrophotometric method for determination of tigecycline in pharmaceutical formulation,” Journal of Pharmaceutical Sciences and Research 2(2), 88–91 (2012).
  27. L. Zhang, X. Xiao, Z. Yang, M. Jiang, and X. Li, “A new method of area under the absorbance-wavelength curve for rats total metabolomic pharmacokinetics from Yangxue Injection with multi components,” J. Spectrosc. 2013, 4142–4146 (2013).
    [Crossref]
  28. A. J. R. Bauer and S. G. Buckley, “Novel applications of laser-induced breakdown spectroscopy,” Appl. Spectrosc. 71(4), 553–566 (2017).
    [Crossref] [PubMed]
  29. S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett. 10(1), 73–85 (2015).
    [Crossref] [PubMed]

2018 (3)

J. H. Yang and J. J. Yoh, “Reconstruction of chemical fingerprints from an individual’s time-delayed, overlapped fingerprints via laser-induced breakdown spectrometry (LIBS) and raman spectroscopy,” Microchem. J. 139, 386–393 (2018).
[Crossref]

A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, T. Sakka, and I. Wakaida, “Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser,” Spectrochim. Acta B At. Spectrosc. 142, 37–49 (2018).
[Crossref]

D. S. Vogt, K. Rammelkamp, S. Schröder, and H. W. Hübers, “Molecular emission in laser-induced breakdown spectroscopy: An investigation of its suitability for chlorine quantification on Mars,” Icarus 302, 470–482 (2018).
[Crossref]

2017 (2)

J. H. Yang, S.-J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
[Crossref]

A. J. R. Bauer and S. G. Buckley, “Novel applications of laser-induced breakdown spectroscopy,” Appl. Spectrosc. 71(4), 553–566 (2017).
[Crossref] [PubMed]

2016 (2)

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

H. F. Amir, K. T. Masoud, H. K. Mohammad, K. Mehran, M. R. D. Seyyed, and H. R. Amir, “A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS),” J. Therm. Anal. Calorim. 124(1), 279–286 (2016).
[Crossref]

2015 (3)

S. J. Choi, J. J. Choi, and J. J. Yoh, “Novel control of plasma expansion direction aimed at very low pressure laser-induced plasma spectroscopy,” Opt. Express 23(5), 6336–6344 (2015).
[Crossref] [PubMed]

S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett. 10(1), 73–85 (2015).
[Crossref] [PubMed]

H. Hou, G. C. Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

2014 (2)

M. Gaft, L. Nagli, N. Eliezer, Y. Groisman, and O. Forni, “Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air,” Spectrochim. Acta B At. Spectrosc. 98, 39–47 (2014).
[Crossref]

N. Kawahara, K. Tsuboi, and E. Tomita, “Laser-induced plasma generation and evolution in a transient spray,” Opt. Express 22(Suppl 1), A44–A52 (2014).
[Crossref] [PubMed]

2013 (2)

A. F. Bravo, T. Delgado, P. Lucena, and J. J. Laserna, “Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds,” Spectrochim. Acta B At. Spectrosc. 89, 77–83 (2013).
[Crossref]

L. Zhang, X. Xiao, Z. Yang, M. Jiang, and X. Li, “A new method of area under the absorbance-wavelength curve for rats total metabolomic pharmacokinetics from Yangxue Injection with multi components,” J. Spectrosc. 2013, 4142–4146 (2013).
[Crossref]

2012 (1)

A. B. Chauhan and D. B. Patel, “Area under the curve spectrophotometric method for determination of tigecycline in pharmaceutical formulation,” Journal of Pharmaceutical Sciences and Research 2(2), 88–91 (2012).

2011 (2)

X. Mao, A. A. Bol’shakov, I. H. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

R. E. Russo, A. B. Alexander, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

2010 (1)

J. Priyadharsini, G. P. Gigi, V. Niraimathi, and A. J. Suresh, “Area under curve and second order derivative spectroscopy of metaxalone in bulk drug and tablet formulation,” International Journal of Chemical Sciences 8, 823–827 (2010).

2006 (1)

A. I. Florescu-Mitchell and J. B. A. Mitchell, “Dissociative recombination,” Phys. Rep. 430(5-6), 277–374 (2006).
[Crossref]

1999 (1)

S. G. Rautian and A. S. Yatsenko, “Grotrian diagrams,” Phys. Uspekhi 169(2), 217–220 (1999).

1998 (1)

H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
[Crossref]

1952 (1)

M. Lax and J. Chem, “The Franck-Condon principle and its application to crystals,” J. Chem. Phys. 20(11), 1752–1760 (1952).
[Crossref]

Akaoka, K.

A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, T. Sakka, and I. Wakaida, “Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser,” Spectrochim. Acta B At. Spectrosc. 142, 37–49 (2018).
[Crossref]

Alexander, A. B.

R. E. Russo, A. B. Alexander, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

Ali, T. T.

S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett. 10(1), 73–85 (2015).
[Crossref] [PubMed]

Amir, H. F.

H. F. Amir, K. T. Masoud, H. K. Mohammad, K. Mehran, M. R. D. Seyyed, and H. R. Amir, “A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS),” J. Therm. Anal. Calorim. 124(1), 279–286 (2016).
[Crossref]

Amir, H. R.

H. F. Amir, K. T. Masoud, H. K. Mohammad, K. Mehran, M. R. D. Seyyed, and H. R. Amir, “A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS),” J. Therm. Anal. Calorim. 124(1), 279–286 (2016).
[Crossref]

Basahel, S. N.

S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett. 10(1), 73–85 (2015).
[Crossref] [PubMed]

Bauer, A. J. R.

Bol’shakov, A. A.

X. Mao, A. A. Bol’shakov, I. H. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Bravo, A. F.

A. F. Bravo, T. Delgado, P. Lucena, and J. J. Laserna, “Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds,” Spectrochim. Acta B At. Spectrosc. 89, 77–83 (2013).
[Crossref]

Buckley, S. G.

Chan, G. C. Y.

H. Hou, G. C. Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

Chauhan, A. B.

A. B. Chauhan and D. B. Patel, “Area under the curve spectrophotometric method for determination of tigecycline in pharmaceutical formulation,” Journal of Pharmaceutical Sciences and Research 2(2), 88–91 (2012).

Chem, J.

M. Lax and J. Chem, “The Franck-Condon principle and its application to crystals,” J. Chem. Phys. 20(11), 1752–1760 (1952).
[Crossref]

Choi, I. H.

X. Mao, A. A. Bol’shakov, I. H. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Choi, J. J.

Choi, S. J.

Choi, S.-J.

J. H. Yang, S.-J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
[Crossref]

Delgado, T.

A. F. Bravo, T. Delgado, P. Lucena, and J. J. Laserna, “Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds,” Spectrochim. Acta B At. Spectrosc. 89, 77–83 (2013).
[Crossref]

Eliezer, N.

M. Gaft, L. Nagli, N. Eliezer, Y. Groisman, and O. Forni, “Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air,” Spectrochim. Acta B At. Spectrosc. 98, 39–47 (2014).
[Crossref]

Florescu-Mitchell, A. I.

A. I. Florescu-Mitchell and J. B. A. Mitchell, “Dissociative recombination,” Phys. Rep. 430(5-6), 277–374 (2006).
[Crossref]

Forni, O.

M. Gaft, L. Nagli, N. Eliezer, Y. Groisman, and O. Forni, “Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air,” Spectrochim. Acta B At. Spectrosc. 98, 39–47 (2014).
[Crossref]

Gaft, M.

M. Gaft, L. Nagli, N. Eliezer, Y. Groisman, and O. Forni, “Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air,” Spectrochim. Acta B At. Spectrosc. 98, 39–47 (2014).
[Crossref]

Gigi, G. P.

J. Priyadharsini, G. P. Gigi, V. Niraimathi, and A. J. Suresh, “Area under curve and second order derivative spectroscopy of metaxalone in bulk drug and tablet formulation,” International Journal of Chemical Sciences 8, 823–827 (2010).

Groisman, Y.

M. Gaft, L. Nagli, N. Eliezer, Y. Groisman, and O. Forni, “Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air,” Spectrochim. Acta B At. Spectrosc. 98, 39–47 (2014).
[Crossref]

Guo, L.

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Hou, H.

H. Hou, G. C. Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

Hübers, H. W.

D. S. Vogt, K. Rammelkamp, S. Schröder, and H. W. Hübers, “Molecular emission in laser-induced breakdown spectroscopy: An investigation of its suitability for chlorine quantification on Mars,” Icarus 302, 470–482 (2018).
[Crossref]

Jiang, M.

L. Zhang, X. Xiao, Z. Yang, M. Jiang, and X. Li, “A new method of area under the absorbance-wavelength curve for rats total metabolomic pharmacokinetics from Yangxue Injection with multi components,” J. Spectrosc. 2013, 4142–4146 (2013).
[Crossref]

Kawahara, N.

Kitazima, I.

H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
[Crossref]

Laserna, J. J.

A. F. Bravo, T. Delgado, P. Lucena, and J. J. Laserna, “Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds,” Spectrochim. Acta B At. Spectrosc. 89, 77–83 (2013).
[Crossref]

Lax, M.

M. Lax and J. Chem, “The Franck-Condon principle and its application to crystals,” J. Chem. Phys. 20(11), 1752–1760 (1952).
[Crossref]

Li, C.

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Li, J.

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Li, X.

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

L. Zhang, X. Xiao, Z. Yang, M. Jiang, and X. Li, “A new method of area under the absorbance-wavelength curve for rats total metabolomic pharmacokinetics from Yangxue Injection with multi components,” J. Spectrosc. 2013, 4142–4146 (2013).
[Crossref]

Lu, Y.

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Lucena, P.

A. F. Bravo, T. Delgado, P. Lucena, and J. J. Laserna, “Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds,” Spectrochim. Acta B At. Spectrosc. 89, 77–83 (2013).
[Crossref]

Mao, X.

H. Hou, G. C. Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

R. E. Russo, A. B. Alexander, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

X. Mao, A. A. Bol’shakov, I. H. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Masoud, K. T.

H. F. Amir, K. T. Masoud, H. K. Mohammad, K. Mehran, M. R. D. Seyyed, and H. R. Amir, “A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS),” J. Therm. Anal. Calorim. 124(1), 279–286 (2016).
[Crossref]

Matsumoto, A.

A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, T. Sakka, and I. Wakaida, “Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser,” Spectrochim. Acta B At. Spectrosc. 142, 37–49 (2018).
[Crossref]

McKay, C. P.

R. E. Russo, A. B. Alexander, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

X. Mao, A. A. Bol’shakov, I. H. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Mehran, K.

H. F. Amir, K. T. Masoud, H. K. Mohammad, K. Mehran, M. R. D. Seyyed, and H. R. Amir, “A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS),” J. Therm. Anal. Calorim. 124(1), 279–286 (2016).
[Crossref]

Mitchell, J. B. A.

A. I. Florescu-Mitchell and J. B. A. Mitchell, “Dissociative recombination,” Phys. Rep. 430(5-6), 277–374 (2006).
[Crossref]

Mohammad, H. K.

H. F. Amir, K. T. Masoud, H. K. Mohammad, K. Mehran, M. R. D. Seyyed, and H. R. Amir, “A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS),” J. Therm. Anal. Calorim. 124(1), 279–286 (2016).
[Crossref]

Mokhtar, M.

S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett. 10(1), 73–85 (2015).
[Crossref] [PubMed]

Nagli, L.

M. Gaft, L. Nagli, N. Eliezer, Y. Groisman, and O. Forni, “Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air,” Spectrochim. Acta B At. Spectrosc. 98, 39–47 (2014).
[Crossref]

Narasimharao, K.

S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett. 10(1), 73–85 (2015).
[Crossref] [PubMed]

Niki, H.

H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
[Crossref]

Niraimathi, V.

J. Priyadharsini, G. P. Gigi, V. Niraimathi, and A. J. Suresh, “Area under curve and second order derivative spectroscopy of metaxalone in bulk drug and tablet formulation,” International Journal of Chemical Sciences 8, 823–827 (2010).

Ohba, H.

A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, T. Sakka, and I. Wakaida, “Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser,” Spectrochim. Acta B At. Spectrosc. 142, 37–49 (2018).
[Crossref]

Patel, D. B.

A. B. Chauhan and D. B. Patel, “Area under the curve spectrophotometric method for determination of tigecycline in pharmaceutical formulation,” Journal of Pharmaceutical Sciences and Research 2(2), 88–91 (2012).

Perry, D. L.

X. Mao, A. A. Bol’shakov, I. H. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

R. E. Russo, A. B. Alexander, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

Priyadharsini, J.

J. Priyadharsini, G. P. Gigi, V. Niraimathi, and A. J. Suresh, “Area under curve and second order derivative spectroscopy of metaxalone in bulk drug and tablet formulation,” International Journal of Chemical Sciences 8, 823–827 (2010).

Rammelkamp, K.

D. S. Vogt, K. Rammelkamp, S. Schröder, and H. W. Hübers, “Molecular emission in laser-induced breakdown spectroscopy: An investigation of its suitability for chlorine quantification on Mars,” Icarus 302, 470–482 (2018).
[Crossref]

Rautian, S. G.

S. G. Rautian and A. S. Yatsenko, “Grotrian diagrams,” Phys. Uspekhi 169(2), 217–220 (1999).

Ruas, A.

A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, T. Sakka, and I. Wakaida, “Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser,” Spectrochim. Acta B At. Spectrosc. 142, 37–49 (2018).
[Crossref]

Russo, R. E.

H. Hou, G. C. Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

R. E. Russo, A. B. Alexander, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

X. Mao, A. A. Bol’shakov, I. H. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Sakka, T.

A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, T. Sakka, and I. Wakaida, “Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser,” Spectrochim. Acta B At. Spectrosc. 142, 37–49 (2018).
[Crossref]

Schröder, S.

D. S. Vogt, K. Rammelkamp, S. Schröder, and H. W. Hübers, “Molecular emission in laser-induced breakdown spectroscopy: An investigation of its suitability for chlorine quantification on Mars,” Icarus 302, 470–482 (2018).
[Crossref]

Seyyed, M. R. D.

H. F. Amir, K. T. Masoud, H. K. Mohammad, K. Mehran, M. R. D. Seyyed, and H. R. Amir, “A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS),” J. Therm. Anal. Calorim. 124(1), 279–286 (2016).
[Crossref]

Sorkhabi, O.

R. E. Russo, A. B. Alexander, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

X. Mao, A. A. Bol’shakov, I. H. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

Suresh, A. J.

J. Priyadharsini, G. P. Gigi, V. Niraimathi, and A. J. Suresh, “Area under curve and second order derivative spectroscopy of metaxalone in bulk drug and tablet formulation,” International Journal of Chemical Sciences 8, 823–827 (2010).

Tomita, E.

Toshimitsu, M.

A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, T. Sakka, and I. Wakaida, “Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser,” Spectrochim. Acta B At. Spectrosc. 142, 37–49 (2018).
[Crossref]

Tsuboi, K.

Vogt, D. S.

D. S. Vogt, K. Rammelkamp, S. Schröder, and H. W. Hübers, “Molecular emission in laser-induced breakdown spectroscopy: An investigation of its suitability for chlorine quantification on Mars,” Icarus 302, 470–482 (2018).
[Crossref]

Wakaida, I.

A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, T. Sakka, and I. Wakaida, “Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser,” Spectrochim. Acta B At. Spectrosc. 142, 37–49 (2018).
[Crossref]

Xiao, X.

L. Zhang, X. Xiao, Z. Yang, M. Jiang, and X. Li, “A new method of area under the absorbance-wavelength curve for rats total metabolomic pharmacokinetics from Yangxue Injection with multi components,” J. Spectrosc. 2013, 4142–4146 (2013).
[Crossref]

Yang, J. H.

J. H. Yang and J. J. Yoh, “Reconstruction of chemical fingerprints from an individual’s time-delayed, overlapped fingerprints via laser-induced breakdown spectrometry (LIBS) and raman spectroscopy,” Microchem. J. 139, 386–393 (2018).
[Crossref]

J. H. Yang, S.-J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
[Crossref]

Yang, X.

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Yang, Z.

L. Zhang, X. Xiao, Z. Yang, M. Jiang, and X. Li, “A new method of area under the absorbance-wavelength curve for rats total metabolomic pharmacokinetics from Yangxue Injection with multi components,” J. Spectrosc. 2013, 4142–4146 (2013).
[Crossref]

Yasuda, T.

H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
[Crossref]

Yatsenko, A. S.

S. G. Rautian and A. S. Yatsenko, “Grotrian diagrams,” Phys. Uspekhi 169(2), 217–220 (1999).

Yi, R.

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Yoh, J. J.

J. H. Yang and J. J. Yoh, “Reconstruction of chemical fingerprints from an individual’s time-delayed, overlapped fingerprints via laser-induced breakdown spectrometry (LIBS) and raman spectroscopy,” Microchem. J. 139, 386–393 (2018).
[Crossref]

J. H. Yang, S.-J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
[Crossref]

S. J. Choi, J. J. Choi, and J. J. Yoh, “Novel control of plasma expansion direction aimed at very low pressure laser-induced plasma spectroscopy,” Opt. Express 23(5), 6336–6344 (2015).
[Crossref] [PubMed]

Zeng, X.

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Zhang, L.

L. Zhang, X. Xiao, Z. Yang, M. Jiang, and X. Li, “A new method of area under the absorbance-wavelength curve for rats total metabolomic pharmacokinetics from Yangxue Injection with multi components,” J. Spectrosc. 2013, 4142–4146 (2013).
[Crossref]

Zheng, R.

H. Hou, G. C. Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

Zorba, V.

H. Hou, G. C. Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

H. Hou, G. C. Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87(9), 4788–4796 (2015).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Icarus (1)

D. S. Vogt, K. Rammelkamp, S. Schröder, and H. W. Hübers, “Molecular emission in laser-induced breakdown spectroscopy: An investigation of its suitability for chlorine quantification on Mars,” Icarus 302, 470–482 (2018).
[Crossref]

International Journal of Chemical Sciences (1)

J. Priyadharsini, G. P. Gigi, V. Niraimathi, and A. J. Suresh, “Area under curve and second order derivative spectroscopy of metaxalone in bulk drug and tablet formulation,” International Journal of Chemical Sciences 8, 823–827 (2010).

J. Anal. At. Spectrom. (1)

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

J. Chem. Phys. (1)

M. Lax and J. Chem, “The Franck-Condon principle and its application to crystals,” J. Chem. Phys. 20(11), 1752–1760 (1952).
[Crossref]

J. Nucl. Sci. Technol. (1)

H. Niki, T. Yasuda, and I. Kitazima, “Measurement technique of boron isotopic ratio by laser-induced breakdown spectroscopy,” J. Nucl. Sci. Technol. 35(1), 34–39 (1998).
[Crossref]

J. Spectrosc. (1)

L. Zhang, X. Xiao, Z. Yang, M. Jiang, and X. Li, “A new method of area under the absorbance-wavelength curve for rats total metabolomic pharmacokinetics from Yangxue Injection with multi components,” J. Spectrosc. 2013, 4142–4146 (2013).
[Crossref]

J. Therm. Anal. Calorim. (1)

H. F. Amir, K. T. Masoud, H. K. Mohammad, K. Mehran, M. R. D. Seyyed, and H. R. Amir, “A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS),” J. Therm. Anal. Calorim. 124(1), 279–286 (2016).
[Crossref]

Journal of Pharmaceutical Sciences and Research (1)

A. B. Chauhan and D. B. Patel, “Area under the curve spectrophotometric method for determination of tigecycline in pharmaceutical formulation,” Journal of Pharmaceutical Sciences and Research 2(2), 88–91 (2012).

Microchem. J. (1)

J. H. Yang and J. J. Yoh, “Reconstruction of chemical fingerprints from an individual’s time-delayed, overlapped fingerprints via laser-induced breakdown spectrometry (LIBS) and raman spectroscopy,” Microchem. J. 139, 386–393 (2018).
[Crossref]

Nanoscale Res. Lett. (1)

S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett. 10(1), 73–85 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rep. (1)

A. I. Florescu-Mitchell and J. B. A. Mitchell, “Dissociative recombination,” Phys. Rep. 430(5-6), 277–374 (2006).
[Crossref]

Phys. Uspekhi (1)

S. G. Rautian and A. S. Yatsenko, “Grotrian diagrams,” Phys. Uspekhi 169(2), 217–220 (1999).

Spectrochim. Acta B At. Spectrosc. (6)

M. Gaft, L. Nagli, N. Eliezer, Y. Groisman, and O. Forni, “Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air,” Spectrochim. Acta B At. Spectrosc. 98, 39–47 (2014).
[Crossref]

A. Matsumoto, H. Ohba, M. Toshimitsu, K. Akaoka, A. Ruas, T. Sakka, and I. Wakaida, “Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser,” Spectrochim. Acta B At. Spectrosc. 142, 37–49 (2018).
[Crossref]

A. F. Bravo, T. Delgado, P. Lucena, and J. J. Laserna, “Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds,” Spectrochim. Acta B At. Spectrosc. 89, 77–83 (2013).
[Crossref]

X. Mao, A. A. Bol’shakov, I. H. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and R. E. Russo, “Laser ablation molecular isotopic spectrometry: strontium and its isotopes,” Spectrochim. Acta B At. Spectrosc. 66(11-12), 767–775 (2011).
[Crossref]

J. H. Yang, S.-J. Choi, and J. J. Yoh, “Towards reconstruction of overlapping fingerprints using plasma spectroscopy,” Spectrochim. Acta B At. Spectrosc. 134, 25–32 (2017).
[Crossref]

R. E. Russo, A. B. Alexander, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 66(2), 99–104 (2011).
[Crossref]

Other (7)

N. I. S. T. Standard Reference Database Number, 69. http://webbook.nist.gov/chemistry/ (accessed from June 1, 2014).

T. E. Brown, H. E. Lemay, and B. E. Bursten, Chemistry–The Central Science (Prentice Hall, 2006.

S. Z. Musazzi and U. Perini, eds., “Laser-induced Breakdown Spectroscopy: Theory and Applications (Springer, 2014), pp. 377–410.

M. J. Witte, “Diatomic carbon measurements with laser-induced breakdown spectroscopy,” Master's Thesis, University of Tennessee, 2015.

A. B. Alexander, X. Mao, D. L. Perry, and R. E. Russo, “Laser ablation molecular isotopic spectrometry for rare isotopes of the light elements,” Spectroscopy, vol. 29 (2014).

R. H. Nielsen and G. Wilfing, “Zirconium and zirconium compounds,” in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2012), pp. 753–778.

G. H. Wagnière, Introduction to Elementary Molecular Orbital Theory and to Semiempirical Methods (Springer-Verlag, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the set up used for LIBS analysis.
Fig. 2
Fig. 2 LIBS spectra of ZrO2 mixed with different amounts of paraffin binder.
Fig. 3
Fig. 3 Calibration curve for the ZrO molecular band AUC (area under curve) according to ZrO2 concentration.
Fig. 4
Fig. 4 The emission spectra of non-aging samples mixed with ZrO2. (a) Zr/KClO4, (b) Zr/Fe2O3.
Fig. 5
Fig. 5 The emission spectra of aging samples of (a) Zr/KClO4, hygrothermally aged and (b) Zr/Fe2O3, naturally aged.
Fig. 6
Fig. 6 AUC results of the aging samples (red circles) in comparison to the calibration curve of the non-aging samples (black squares) at various concentrations. (a) Zr/KClO4, (b) Zr/Fe2O3.
Fig. 7
Fig. 7 XRD patterns for (a) Zr/KClO4, (b) Zr/Fe2O3.

Tables (5)

Tables Icon

Table 1 Sample mixture of zirconium dioxide and paraffin binder

Tables Icon

Table 2 Two types of zirconium/oxidizer pyrotechnic substances exposed to aging conditions

Tables Icon

Table 3 Experimentally and theoretically measured band origins of the ZrO transitions for ZrO2 samples

Tables Icon

Table 4 AUC results of the spectra

Tables Icon

Table 5 Prediction of ZrO2 concentration ( Zr O 2 Zr O 2 +Zr wt. %) in aging pyrotechnic substances: [ - ] indicates wt. % with respect to the whole substance

Metrics