Abstract

Plasmonic grating sensors, which can achieve ultrafast response and real-time sample detection, as well as mitigate the electromagnetic interference, is a major research area in nanooptical sensors. In this article, we propose an integrated temperature/refractive sensor based on a plasmonic periodic grating with resonance peaks that can be tuned by the structural parameters. It is composed of optical fiber substrate, InGaAsP semiconductor material, Ag periodic grating, and surface monolayer graphene from bottom to top and the temperature sensing solution is filled on the top of the grating. According to quantitative analysis, the structural parameters, and the reflectance spectrum, the sensitivity of the proposed temperature sensor can reach 0.455 nm/°C or 1625 nmRIU−1. In addition, the operating wavelength can be tuned by structural parameters in the optical communication wavelengths; as a result, the application in integrated optical fiber sensing and biological measurements can be broadened.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Application of strongly overcoupled resonant modes of long-period fiber gratings to measure the adulteration of olive oil

Palas Biswas, Nandini Basumallick, Kamal Dasgupta, Ajay Ghosh, and Somnath Bandyopadhyay
Appl. Opt. 55(19) 5118-5126 (2016)

Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab

Ying Chen, Jin Yao, Zhengyong Song, Longfang Ye, Guoxiong Cai, and Qing Huo Liu
Opt. Express 24(15) 16961-16972 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  3. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  4. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
    [Crossref] [PubMed]
  5. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  6. T. Huang, “Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength,” Plasmonics 12(3), 583–588 (2017).
    [Crossref]
  7. A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. Mahamd Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
    [Crossref] [PubMed]
  8. G. Yan, Y. Liang, H. Lee, and S. He, “Novel Knob-integrated fiber Bragg grating sensor with polyvinyl alcohol coating for simultaneous relative humidity and temperature measurement,” Opt. Express 23(12), 15624–15634 (2015).
    [Crossref] [PubMed]
  9. P. K. Sahoo, J. Joseph, R. Yukino, and A. Sandhu, 41, 2101–2104 (2016).
  10. Á. González-Vila, A. Ioannou, M. Loyez, M. Debliquy, D. Lahem, and C. Caucheteur, “Surface plasmon resonance sensing in gaseous media with optical fiber gratings,” Opt. Lett. 43(10), 2308–2311 (2018).
    [Crossref] [PubMed]
  11. P. Chen and X. Shu, “Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing,” Opt. Express 26(5), 5292–5299 (2018).
    [Crossref] [PubMed]
  12. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  13. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 26222 (2007).
    [Crossref]
  14. M. A. R. Franco, V. A. Serrao, and F. Sircilli, “Side-Polished Microstructured Optical Fiber for Temperature Sensor Application,” IEEE Photonics Technol. Lett. 19(21), 1738–1740 (2007).
    [Crossref]
  15. M. D. Baiad and R. Kashyap, “Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings,” Opt. Lett. 40(1), 115–118 (2015).
    [Crossref] [PubMed]
  16. Y. Zhang, W. Liu, Z. Li, Z. Li, H. Cheng, S. Chen, and J. Tian, “High-quality-factor multiple Fano resonances for refractive index sensing,” Opt. Lett. 43(8), 1842–1845 (2018).
    [Crossref] [PubMed]
  17. C. Li, C. Liao, J. Wang, Z. Li, Y. Wang, J. He, Z. Bai, and Y. Wang, “Femtosecond laser microprinting of a polymer fiber Bragg grating for high-sensitivity temperature measurements,” Opt. Lett. 43(14), 3409–3412 (2018).
    [Crossref] [PubMed]
  18. M. Rosenberger, S. Kefer, M. Girschikofsky, G.-L. Roth, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “High-temperature stable and sterilizable waveguide Bragg grating in planar cyclo-olefin copolymer,” Opt. Lett. 43(14), 3321–3324 (2018).
    [Crossref] [PubMed]
  19. B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
    [Crossref]

2018 (6)

2017 (1)

T. Huang, “Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength,” Plasmonics 12(3), 583–588 (2017).
[Crossref]

2016 (1)

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

2015 (2)

2013 (1)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

2011 (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

2010 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

2009 (1)

2007 (2)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 26222 (2007).
[Crossref]

M. A. R. Franco, V. A. Serrao, and F. Sircilli, “Side-Polished Microstructured Optical Fiber for Temperature Sensor Application,” IEEE Photonics Technol. Lett. 19(21), 1738–1740 (2007).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1998 (1)

Ahmed, R.

Bai, Z.

Baiad, M. D.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Belle, S.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Caballero, B.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 26222 (2007).
[Crossref]

Caucheteur, C.

Chen, H.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Chen, P.

Chen, S.

Cheng, H.

Cuevas, J. C.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Debliquy, M.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Djurišic, A. B.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Eggleton, B. J.

Elazar, J. M.

Franco, M. A. R.

M. A. R. Franco, V. A. Serrao, and F. Sircilli, “Side-Polished Microstructured Optical Fiber for Temperature Sensor Application,” IEEE Photonics Technol. Lett. 19(21), 1738–1740 (2007).
[Crossref]

García-Martín, A.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Girschikofsky, M.

González-Vila, Á.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 26222 (2007).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Haider, F.

He, J.

He, S.

Hellmann, R.

Hessler, S.

Huang, T.

T. Huang, “Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength,” Plasmonics 12(3), 583–588 (2017).
[Crossref]

Ioannou, A.

Kashyap, R.

Kefer, S.

Kuhlmey, B. T.

Lahem, D.

Lee, H.

Li, C.

Li, Q.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Li, Z.

Liang, Y.

Liao, C.

Liu, W.

Loyez, M.

Mahamd Adikan, F. R.

Mahdiraji, G. A.

Majewski, M. L.

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Miroshnichenko, A. E.

Rakic, A. D.

Rifat, A. A.

Rosenberger, M.

Roth, G.-L.

Schmauss, B.

Serrao, V. A.

M. A. R. Franco, V. A. Serrao, and F. Sircilli, “Side-Polished Microstructured Optical Fiber for Temperature Sensor Application,” IEEE Photonics Technol. Lett. 19(21), 1738–1740 (2007).
[Crossref]

Shao, L.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 26222 (2007).
[Crossref]

Shu, X.

Sircilli, F.

M. A. R. Franco, V. A. Serrao, and F. Sircilli, “Side-Polished Microstructured Optical Fiber for Temperature Sensor Application,” IEEE Photonics Technol. Lett. 19(21), 1738–1740 (2007).
[Crossref]

Tian, J.

Wang, J.

Wang, Y.

Wu, D. K. C.

Yan, G.

Zhang, Y.

ACS Photonics (1)

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors,” ACS Photonics 3(2), 203–208 (2016).
[Crossref]

Appl. Opt. (1)

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

M. A. R. Franco, V. A. Serrao, and F. Sircilli, “Side-Polished Microstructured Optical Fiber for Temperature Sensor Application,” IEEE Photonics Technol. Lett. 19(21), 1738–1740 (2007).
[Crossref]

J. Phys. Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19, 26222 (2007).
[Crossref]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (7)

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref] [PubMed]

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. R. Mahamd Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor,” Opt. Lett. 43(4), 891–894 (2018).
[Crossref] [PubMed]

Á. González-Vila, A. Ioannou, M. Loyez, M. Debliquy, D. Lahem, and C. Caucheteur, “Surface plasmon resonance sensing in gaseous media with optical fiber gratings,” Opt. Lett. 43(10), 2308–2311 (2018).
[Crossref] [PubMed]

M. D. Baiad and R. Kashyap, “Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings,” Opt. Lett. 40(1), 115–118 (2015).
[Crossref] [PubMed]

Y. Zhang, W. Liu, Z. Li, Z. Li, H. Cheng, S. Chen, and J. Tian, “High-quality-factor multiple Fano resonances for refractive index sensing,” Opt. Lett. 43(8), 1842–1845 (2018).
[Crossref] [PubMed]

C. Li, C. Liao, J. Wang, Z. Li, Y. Wang, J. He, Z. Bai, and Y. Wang, “Femtosecond laser microprinting of a polymer fiber Bragg grating for high-sensitivity temperature measurements,” Opt. Lett. 43(14), 3409–3412 (2018).
[Crossref] [PubMed]

M. Rosenberger, S. Kefer, M. Girschikofsky, G.-L. Roth, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “High-temperature stable and sterilizable waveguide Bragg grating in planar cyclo-olefin copolymer,” Opt. Lett. 43(14), 3321–3324 (2018).
[Crossref] [PubMed]

Plasmonics (1)

T. Huang, “Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength,” Plasmonics 12(3), 583–588 (2017).
[Crossref]

Other (1)

P. K. Sahoo, J. Joseph, R. Yukino, and A. Sandhu, 41, 2101–2104 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic diagram of proposed temperature sensor.
Fig. 2
Fig. 2 (a)Reflectance spectrum of the proposed sensor versus incident wavelength for different width of graphene-d. The black asterisk, blue circle, magenta diamond, and red plus sign correspond to d of 15 nm, 20nm, 30nm, and 40nm, respectively. (b) Reflectance spectrum for different thickness of grating substrate-h_d correspond to 40 nm, 80nm, 100nm, 150nm, respectively. (c) Reflectance spectrum for different thickness of Ag grating-high. (d) Reflectance spectrum of proposed plasmonic grating sensor versus incident wavelength for different temperature, where black asterisk, blue circle, and magenta diamond correspond to −100, 0, 100 degree Celsius, respectively.
Fig. 3
Fig. 3 Resonance peaks versus different temperature, where resonance wavelengths correspond to 1615 nm, 1592 nm, 1569.5 nm, 1546.5 nm, and 1524 nm, respectively.

Tables (1)

Tables Icon

Table 1 The sensitivity reported in other article

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ g = δ intra (ω,T,τ,μc)+ δ inter (ω,T,τ,μc).
n= n solution +( dn/dT )( TT0 ).

Metrics