Abstract

Eu3+ doped transparent germanate glass ceramics containing LaF3 nanocrystals have been prepared by the conventional melt quenching technique with subsequent heat treatment. XRD, TEM and HRTEM were used to verify the formation of LaF3 nanocrystals. Emission spectra, fluorescence decay and X-ray excited luminescence (XEL) were employed to elucidate the optical properties of Eu3+ doped germanate glasses and glass ceramics. The maximum integrated XEL intensity of the glass ceramic is about 20% of that of the commercial Bi4Ge3O12 (BGO) scintillating crystal. The results indicate that Eu3+ doped germanate glass ceramic could be a promising scintillating material used in X-ray detection field.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals

JiangKun Cao, LiPing Chen, WeiPing Chen, DengKe Xu, XinYuan Sun, and Hai Guo
Opt. Mater. Express 6(7) 2201-2206 (2016)

Highly efficient Na5Gd9F32:Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging

WeiPing Chen, JiangKun Cao, FangFang Hu, RongFei Wei, LiPing Chen, XinYuan Sun, and Hai Guo
Opt. Mater. Express 8(1) 41-49 (2018)

Enhanced emission and spectroscopic properties in oxyfluoride glass ceramics containing LaOF:Er3+ nanocrystals

S. L. Kang, X. Q. Song, X. J. Huang, J. R. Qiu, and G. P. Dong
Opt. Mater. Express 6(7) 2351-2359 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8 µm mission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108(8), 083504 (2010).
    [Crossref]
  2. M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, and Z. Ji, “Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5372–5376 (2015).
    [Crossref]
  3. D. Chen, W. Xu, Y. Zhou, J. Zhong, and S. Li, “Color tunable dual-phase transparent glass ceramics for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(3), 738–746 (2017).
    [Crossref]
  4. R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
    [Crossref]
  5. D. Chen, Z. Wan, and Y. Zhou, “Dual-phase nano-glass-ceramics for optical thermometry,” Sens. Actuators B Chem. 226, 14–23 (2016).
    [Crossref]
  6. X. Li, X. Chen, S. Yuan, S. Liu, C. Wang, and D. Chen, “Eu3+-Doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(39), 10201–10210 (2017).
    [Crossref]
  7. J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
    [Crossref]
  8. M. A. Ali, X. Liu, and J. Qiu, “A comparative investigation on upconversion luminescence in glass–ceramics containing LaF3 and CaF2 nanocrystals,” J. Mater. Sci. Mater. Electron. 29(10), 8701–8709 (2018).
    [Crossref]
  9. C. Lin, C. Bocker, and C. Rüssel, “Nanocrystallization in Oxyfluoride Glasses Controlled by Amorphous Phase Separation,” Nano Lett. 15(10), 6764–6769 (2015).
    [Crossref] [PubMed]
  10. L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90(13), 131116 (2007).
    [Crossref]
  11. L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
    [Crossref]
  12. L. Q. Xvsheng, F. Xianping, and W. Minquam, “Local vibration around rare earth ions in alkaline earth fluorosilicate transparent glass and glass ceramics using Eu3+ probe,” J. Rare Earths 26(6), 883–888 (2008).
    [Crossref]
  13. C. Bocker, S. Bhattacharyya, T. Höche, and C. Rüssel, “Size distribution of BaF2 nanocrystallites in transparent glass ceramics,” Acta Mater. 57(20), 5956–5963 (2009).
    [Crossref]
  14. Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Luminescence Properties of Eu2+-Doped Glass Ceramics Containing SrF2 Nanocrystals,” J. Am. Ceram. Soc. 93(9), 2684–2688 (2010).
    [Crossref]
  15. Q. Luo, X. Qiao, X. Fan, S. Liu, H. Yang, and X. Zhang, “Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids 354(40-41), 4691–4694 (2008).
    [Crossref]
  16. L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
    [Crossref]
  17. Y. W. Daqin Chen, Y. Yu, and P. Huang, “Structure and Optical Spectroscopy of Eu-Doped Glass Ceramics Containing GdF3 Nanocrystals,” J. Phys. Chem. C 112(48), 18943–18947 (2008).
    [Crossref]
  18. Y. Y. Daqin Chen, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
    [Crossref]
  19. D. Chen, S. Liu, X. Li, S. Yuan, and P. Huang, “Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+:YF3 nanocrystals embedded glass ceramic,” J. Eur. Ceram. Soc. 37(15), 4939–4945 (2017).
    [Crossref]
  20. J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
    [Crossref]
  21. M. B. Beckert, S. Gallego, Y. Ding, E. Elder, and J. H. Nadler, “Medical imaging scintillators from glass-ceramics using mixed rare-earth halides,” Opt. Mater. 60, 513–520 (2016).
    [Crossref]
  22. X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
    [Crossref]
  23. J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
    [Crossref]
  24. X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
    [Crossref]
  25. J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+in Nanocrystallized Glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
    [Crossref]
  26. J. Cao, L. Chen, W. Chen, D. Xu, X. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals,” Opt. Mater. Express 6(7), 2201 (2016).
    [Crossref]
  27. J. Cao, W. Chen, L. Chen, X. Sun, and H. Guo, “Synthesis and characterization of BaLuF5:Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging,” Ceram. Int. 42(15), 17834–17838 (2016).
    [Crossref]
  28. G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
    [Crossref] [PubMed]
  29. B. Zhu, S. Zhang, S. Zhou, N. Jiang, and J. Qiu, “Enhanced upconversion luminescence of transparent Eu3+-doped glass-ceramics containing nonlinear optical microcrystals,” Opt. Lett. 32(6), 653–655 (2007).
    [Crossref] [PubMed]
  30. J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Eu3+-activated heavy scintillating glasses,” Mater. Res. Bull. 43(6), 1502–1508 (2008).
    [Crossref]
  31. D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, and Y. Wang, “Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode,” Acta Mater. 58(8), 3035–3041 (2010).
    [Crossref]
  32. Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater. 31(1), 87–93 (2008).
    [Crossref]
  33. J. E. Muñoz-Santiuste, U. R. Rodríguez-Mendoza, J. González-Platas, and V. Lavín, “Structural study of the Eu3+ environments in fluorozirconate glasses: role of the temperature-induced and the pressure-induced phase transition processes in the development of a rare earth’s local structure model,” J. Chem. Phys. 130(15), 154501 (2009).
    [Crossref] [PubMed]
  34. X. Y. Sun, D. G. Jiang, Y. Z. Sun, X. Zhang, Q. L. Hu, Y. Huang, and Y. Tao, “Eu3+-activated B2O3–GeO2–RE2O3 (RE=Y3+, La3+ and Gd3+) borogermanate scintillating glasses,” J. Non-Cryst. Solids 389, 72–77 (2014).
    [Crossref]
  35. X. Y. Sun, X. Zhang, H. H. Chen, Q. L. Hu, W. F. Wang, Z. J. Zhang, and J. T. Zhao, “Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses,” J. Non-Cryst. Solids 404, 162–166 (2014).
    [Crossref]
  36. U. Holzwarth and N. Gibson, “The Scherrer equation versus the ‘Debye-Scherrer equation’,” Nat. Nanotechnol. 6(9), 534 (2011).
    [Crossref] [PubMed]

2018 (2)

M. A. Ali, X. Liu, and J. Qiu, “A comparative investigation on upconversion luminescence in glass–ceramics containing LaF3 and CaF2 nanocrystals,” J. Mater. Sci. Mater. Electron. 29(10), 8701–8709 (2018).
[Crossref]

J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
[Crossref]

2017 (3)

D. Chen, S. Liu, X. Li, S. Yuan, and P. Huang, “Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+:YF3 nanocrystals embedded glass ceramic,” J. Eur. Ceram. Soc. 37(15), 4939–4945 (2017).
[Crossref]

X. Li, X. Chen, S. Yuan, S. Liu, C. Wang, and D. Chen, “Eu3+-Doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(39), 10201–10210 (2017).
[Crossref]

D. Chen, W. Xu, Y. Zhou, J. Zhong, and S. Li, “Color tunable dual-phase transparent glass ceramics for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(3), 738–746 (2017).
[Crossref]

2016 (5)

D. Chen, Z. Wan, and Y. Zhou, “Dual-phase nano-glass-ceramics for optical thermometry,” Sens. Actuators B Chem. 226, 14–23 (2016).
[Crossref]

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

M. B. Beckert, S. Gallego, Y. Ding, E. Elder, and J. H. Nadler, “Medical imaging scintillators from glass-ceramics using mixed rare-earth halides,” Opt. Mater. 60, 513–520 (2016).
[Crossref]

J. Cao, L. Chen, W. Chen, D. Xu, X. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals,” Opt. Mater. Express 6(7), 2201 (2016).
[Crossref]

J. Cao, W. Chen, L. Chen, X. Sun, and H. Guo, “Synthesis and characterization of BaLuF5:Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging,” Ceram. Int. 42(15), 17834–17838 (2016).
[Crossref]

2015 (4)

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, and Z. Ji, “Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5372–5376 (2015).
[Crossref]

C. Lin, C. Bocker, and C. Rüssel, “Nanocrystallization in Oxyfluoride Glasses Controlled by Amorphous Phase Separation,” Nano Lett. 15(10), 6764–6769 (2015).
[Crossref] [PubMed]

2014 (4)

X. Y. Sun, D. G. Jiang, Y. Z. Sun, X. Zhang, Q. L. Hu, Y. Huang, and Y. Tao, “Eu3+-activated B2O3–GeO2–RE2O3 (RE=Y3+, La3+ and Gd3+) borogermanate scintillating glasses,” J. Non-Cryst. Solids 389, 72–77 (2014).
[Crossref]

X. Y. Sun, X. Zhang, H. H. Chen, Q. L. Hu, W. F. Wang, Z. J. Zhang, and J. T. Zhao, “Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses,” J. Non-Cryst. Solids 404, 162–166 (2014).
[Crossref]

G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
[Crossref] [PubMed]

X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

2013 (1)

J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
[Crossref]

2011 (2)

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

U. Holzwarth and N. Gibson, “The Scherrer equation versus the ‘Debye-Scherrer equation’,” Nat. Nanotechnol. 6(9), 534 (2011).
[Crossref] [PubMed]

2010 (3)

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, and Y. Wang, “Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode,” Acta Mater. 58(8), 3035–3041 (2010).
[Crossref]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8 µm mission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108(8), 083504 (2010).
[Crossref]

Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Luminescence Properties of Eu2+-Doped Glass Ceramics Containing SrF2 Nanocrystals,” J. Am. Ceram. Soc. 93(9), 2684–2688 (2010).
[Crossref]

2009 (4)

C. Bocker, S. Bhattacharyya, T. Höche, and C. Rüssel, “Size distribution of BaF2 nanocrystallites in transparent glass ceramics,” Acta Mater. 57(20), 5956–5963 (2009).
[Crossref]

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+in Nanocrystallized Glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

Y. Y. Daqin Chen, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

J. E. Muñoz-Santiuste, U. R. Rodríguez-Mendoza, J. González-Platas, and V. Lavín, “Structural study of the Eu3+ environments in fluorozirconate glasses: role of the temperature-induced and the pressure-induced phase transition processes in the development of a rare earth’s local structure model,” J. Chem. Phys. 130(15), 154501 (2009).
[Crossref] [PubMed]

2008 (6)

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Eu3+-activated heavy scintillating glasses,” Mater. Res. Bull. 43(6), 1502–1508 (2008).
[Crossref]

Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater. 31(1), 87–93 (2008).
[Crossref]

L. Q. Xvsheng, F. Xianping, and W. Minquam, “Local vibration around rare earth ions in alkaline earth fluorosilicate transparent glass and glass ceramics using Eu3+ probe,” J. Rare Earths 26(6), 883–888 (2008).
[Crossref]

Q. Luo, X. Qiao, X. Fan, S. Liu, H. Yang, and X. Zhang, “Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids 354(40-41), 4691–4694 (2008).
[Crossref]

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

Y. W. Daqin Chen, Y. Yu, and P. Huang, “Structure and Optical Spectroscopy of Eu-Doped Glass Ceramics Containing GdF3 Nanocrystals,” J. Phys. Chem. C 112(48), 18943–18947 (2008).
[Crossref]

2007 (2)

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90(13), 131116 (2007).
[Crossref]

B. Zhu, S. Zhang, S. Zhou, N. Jiang, and J. Qiu, “Enhanced upconversion luminescence of transparent Eu3+-doped glass-ceramics containing nonlinear optical microcrystals,” Opt. Lett. 32(6), 653–655 (2007).
[Crossref] [PubMed]

Ali, M. A.

M. A. Ali, X. Liu, and J. Qiu, “A comparative investigation on upconversion luminescence in glass–ceramics containing LaF3 and CaF2 nanocrystals,” J. Mater. Sci. Mater. Electron. 29(10), 8701–8709 (2018).
[Crossref]

Arai, Y.

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90(13), 131116 (2007).
[Crossref]

Beckert, M. B.

M. B. Beckert, S. Gallego, Y. Ding, E. Elder, and J. H. Nadler, “Medical imaging scintillators from glass-ceramics using mixed rare-earth halides,” Opt. Mater. 60, 513–520 (2016).
[Crossref]

Bhattacharyya, S.

C. Bocker, S. Bhattacharyya, T. Höche, and C. Rüssel, “Size distribution of BaF2 nanocrystallites in transparent glass ceramics,” Acta Mater. 57(20), 5956–5963 (2009).
[Crossref]

Bocker, C.

C. Lin, C. Bocker, and C. Rüssel, “Nanocrystallization in Oxyfluoride Glasses Controlled by Amorphous Phase Separation,” Nano Lett. 15(10), 6764–6769 (2015).
[Crossref] [PubMed]

C. Bocker, S. Bhattacharyya, T. Höche, and C. Rüssel, “Size distribution of BaF2 nanocrystallites in transparent glass ceramics,” Acta Mater. 57(20), 5956–5963 (2009).
[Crossref]

Bueno, L. A.

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

Cao, J.

J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
[Crossref]

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

J. Cao, W. Chen, L. Chen, X. Sun, and H. Guo, “Synthesis and characterization of BaLuF5:Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging,” Ceram. Int. 42(15), 17834–17838 (2016).
[Crossref]

J. Cao, L. Chen, W. Chen, D. Xu, X. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals,” Opt. Mater. Express 6(7), 2201 (2016).
[Crossref]

Chen, D.

D. Chen, S. Liu, X. Li, S. Yuan, and P. Huang, “Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+:YF3 nanocrystals embedded glass ceramic,” J. Eur. Ceram. Soc. 37(15), 4939–4945 (2017).
[Crossref]

D. Chen, W. Xu, Y. Zhou, J. Zhong, and S. Li, “Color tunable dual-phase transparent glass ceramics for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(3), 738–746 (2017).
[Crossref]

X. Li, X. Chen, S. Yuan, S. Liu, C. Wang, and D. Chen, “Eu3+-Doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(39), 10201–10210 (2017).
[Crossref]

D. Chen, Z. Wan, and Y. Zhou, “Dual-phase nano-glass-ceramics for optical thermometry,” Sens. Actuators B Chem. 226, 14–23 (2016).
[Crossref]

M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, and Z. Ji, “Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5372–5376 (2015).
[Crossref]

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, and Y. Wang, “Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode,” Acta Mater. 58(8), 3035–3041 (2010).
[Crossref]

Chen, H. H.

X. Y. Sun, X. Zhang, H. H. Chen, Q. L. Hu, W. F. Wang, Z. J. Zhang, and J. T. Zhao, “Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses,” J. Non-Cryst. Solids 404, 162–166 (2014).
[Crossref]

Chen, L.

J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
[Crossref]

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

J. Cao, W. Chen, L. Chen, X. Sun, and H. Guo, “Synthesis and characterization of BaLuF5:Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging,” Ceram. Int. 42(15), 17834–17838 (2016).
[Crossref]

J. Cao, L. Chen, W. Chen, D. Xu, X. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals,” Opt. Mater. Express 6(7), 2201 (2016).
[Crossref]

Chen, W.

J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
[Crossref]

J. Cao, L. Chen, W. Chen, D. Xu, X. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals,” Opt. Mater. Express 6(7), 2201 (2016).
[Crossref]

J. Cao, W. Chen, L. Chen, X. Sun, and H. Guo, “Synthesis and characterization of BaLuF5:Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging,” Ceram. Int. 42(15), 17834–17838 (2016).
[Crossref]

Chen, X.

X. Li, X. Chen, S. Yuan, S. Liu, C. Wang, and D. Chen, “Eu3+-Doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(39), 10201–10210 (2017).
[Crossref]

Cui, Z.

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

da Costa, E. B.

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

Daqin Chen, Y. W.

Y. W. Daqin Chen, Y. Yu, and P. Huang, “Structure and Optical Spectroscopy of Eu-Doped Glass Ceramics Containing GdF3 Nanocrystals,” J. Phys. Chem. C 112(48), 18943–18947 (2008).
[Crossref]

Daqin Chen, Y. Y.

Y. Y. Daqin Chen, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Deng, D.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

Ding, M.

M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, and Z. Ji, “Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5372–5376 (2015).
[Crossref]

Ding, Y.

M. B. Beckert, S. Gallego, Y. Ding, E. Elder, and J. H. Nadler, “Medical imaging scintillators from glass-ceramics using mixed rare-earth halides,” Opt. Mater. 60, 513–520 (2016).
[Crossref]

Dwivedi, Y.

Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater. 31(1), 87–93 (2008).
[Crossref]

Elder, E.

M. B. Beckert, S. Gallego, Y. Ding, E. Elder, and J. H. Nadler, “Medical imaging scintillators from glass-ceramics using mixed rare-earth halides,” Opt. Mater. 60, 513–520 (2016).
[Crossref]

Fan, J.

J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
[Crossref]

Fan, X.

Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Luminescence Properties of Eu2+-Doped Glass Ceramics Containing SrF2 Nanocrystals,” J. Am. Ceram. Soc. 93(9), 2684–2688 (2010).
[Crossref]

Q. Luo, X. Qiao, X. Fan, S. Liu, H. Yang, and X. Zhang, “Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids 354(40-41), 4691–4694 (2008).
[Crossref]

Fu, J.

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+in Nanocrystallized Glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Eu3+-activated heavy scintillating glasses,” Mater. Res. Bull. 43(6), 1502–1508 (2008).
[Crossref]

Gallego, S.

M. B. Beckert, S. Gallego, Y. Ding, E. Elder, and J. H. Nadler, “Medical imaging scintillators from glass-ceramics using mixed rare-earth halides,” Opt. Mater. 60, 513–520 (2016).
[Crossref]

Gao, P.

X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Gibson, N.

U. Holzwarth and N. Gibson, “The Scherrer equation versus the ‘Debye-Scherrer equation’,” Nat. Nanotechnol. 6(9), 534 (2011).
[Crossref] [PubMed]

González-Platas, J.

J. E. Muñoz-Santiuste, U. R. Rodríguez-Mendoza, J. González-Platas, and V. Lavín, “Structural study of the Eu3+ environments in fluorozirconate glasses: role of the temperature-induced and the pressure-induced phase transition processes in the development of a rare earth’s local structure model,” J. Chem. Phys. 130(15), 154501 (2009).
[Crossref] [PubMed]

Gouveia-Neto, A. S.

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

Guo, H.

J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
[Crossref]

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

J. Cao, W. Chen, L. Chen, X. Sun, and H. Guo, “Synthesis and characterization of BaLuF5:Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging,” Ceram. Int. 42(15), 17834–17838 (2016).
[Crossref]

J. Cao, L. Chen, W. Chen, D. Xu, X. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals,” Opt. Mater. Express 6(7), 2201 (2016).
[Crossref]

He, J.

J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
[Crossref]

Höche, T.

C. Bocker, S. Bhattacharyya, T. Höche, and C. Rüssel, “Size distribution of BaF2 nanocrystallites in transparent glass ceramics,” Acta Mater. 57(20), 5956–5963 (2009).
[Crossref]

Holzwarth, U.

U. Holzwarth and N. Gibson, “The Scherrer equation versus the ‘Debye-Scherrer equation’,” Nat. Nanotechnol. 6(9), 534 (2011).
[Crossref] [PubMed]

Hu, L.

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8 µm mission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108(8), 083504 (2010).
[Crossref]

Hu, Q. L.

X. Y. Sun, X. Zhang, H. H. Chen, Q. L. Hu, W. F. Wang, Z. J. Zhang, and J. T. Zhao, “Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses,” J. Non-Cryst. Solids 404, 162–166 (2014).
[Crossref]

X. Y. Sun, D. G. Jiang, Y. Z. Sun, X. Zhang, Q. L. Hu, Y. Huang, and Y. Tao, “Eu3+-activated B2O3–GeO2–RE2O3 (RE=Y3+, La3+ and Gd3+) borogermanate scintillating glasses,” J. Non-Cryst. Solids 389, 72–77 (2014).
[Crossref]

Hua, Y.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

Huang, L.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90(13), 131116 (2007).
[Crossref]

Huang, P.

D. Chen, S. Liu, X. Li, S. Yuan, and P. Huang, “Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+:YF3 nanocrystals embedded glass ceramic,” J. Eur. Ceram. Soc. 37(15), 4939–4945 (2017).
[Crossref]

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, and Y. Wang, “Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode,” Acta Mater. 58(8), 3035–3041 (2010).
[Crossref]

Y. Y. Daqin Chen, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Y. W. Daqin Chen, Y. Yu, and P. Huang, “Structure and Optical Spectroscopy of Eu-Doped Glass Ceramics Containing GdF3 Nanocrystals,” J. Phys. Chem. C 112(48), 18943–18947 (2008).
[Crossref]

Huang, Y.

X. Y. Sun, D. G. Jiang, Y. Z. Sun, X. Zhang, Q. L. Hu, Y. Huang, and Y. Tao, “Eu3+-activated B2O3–GeO2–RE2O3 (RE=Y3+, La3+ and Gd3+) borogermanate scintillating glasses,” J. Non-Cryst. Solids 389, 72–77 (2014).
[Crossref]

Jacobs, B.

G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
[Crossref] [PubMed]

Ji, Z.

M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, and Z. Ji, “Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5372–5376 (2015).
[Crossref]

Jia, G.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

Jia, S.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

Jiang, D. G.

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

X. Y. Sun, D. G. Jiang, Y. Z. Sun, X. Zhang, Q. L. Hu, Y. Huang, and Y. Tao, “Eu3+-activated B2O3–GeO2–RE2O3 (RE=Y3+, La3+ and Gd3+) borogermanate scintillating glasses,” J. Non-Cryst. Solids 389, 72–77 (2014).
[Crossref]

Jiang, N.

Jose, R.

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90(13), 131116 (2007).
[Crossref]

Kang, Z.

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
[Crossref] [PubMed]

Kasap, S.

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

Kobayashi, M.

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+in Nanocrystallized Glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Eu3+-activated heavy scintillating glasses,” Mater. Res. Bull. 43(6), 1502–1508 (2008).
[Crossref]

Lavín, V.

J. E. Muñoz-Santiuste, U. R. Rodríguez-Mendoza, J. González-Platas, and V. Lavín, “Structural study of the Eu3+ environments in fluorozirconate glasses: role of the temperature-induced and the pressure-induced phase transition processes in the development of a rare earth’s local structure model,” J. Chem. Phys. 130(15), 154501 (2009).
[Crossref] [PubMed]

Lee, G.

G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
[Crossref] [PubMed]

Li, C.

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

Li, R.

J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
[Crossref]

Li, S.

D. Chen, W. Xu, Y. Zhou, J. Zhong, and S. Li, “Color tunable dual-phase transparent glass ceramics for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(3), 738–746 (2017).
[Crossref]

Li, X.

J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
[Crossref]

D. Chen, S. Liu, X. Li, S. Yuan, and P. Huang, “Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+:YF3 nanocrystals embedded glass ceramic,” J. Eur. Ceram. Soc. 37(15), 4939–4945 (2017).
[Crossref]

X. Li, X. Chen, S. Yuan, S. Liu, C. Wang, and D. Chen, “Eu3+-Doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(39), 10201–10210 (2017).
[Crossref]

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

Li, Y.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

Lin, C.

C. Lin, C. Bocker, and C. Rüssel, “Nanocrystallization in Oxyfluoride Glasses Controlled by Amorphous Phase Separation,” Nano Lett. 15(10), 6764–6769 (2015).
[Crossref] [PubMed]

Lin, H.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, and Y. Wang, “Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode,” Acta Mater. 58(8), 3035–3041 (2010).
[Crossref]

Liu, S.

X. Li, X. Chen, S. Yuan, S. Liu, C. Wang, and D. Chen, “Eu3+-Doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(39), 10201–10210 (2017).
[Crossref]

D. Chen, S. Liu, X. Li, S. Yuan, and P. Huang, “Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+:YF3 nanocrystals embedded glass ceramic,” J. Eur. Ceram. Soc. 37(15), 4939–4945 (2017).
[Crossref]

Q. Luo, X. Qiao, X. Fan, S. Liu, H. Yang, and X. Zhang, “Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids 354(40-41), 4691–4694 (2008).
[Crossref]

Liu, X.

M. A. Ali, X. Liu, and J. Qiu, “A comparative investigation on upconversion luminescence in glass–ceramics containing LaF3 and CaF2 nanocrystals,” J. Mater. Sci. Mater. Electron. 29(10), 8701–8709 (2018).
[Crossref]

Liu, Y.

J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
[Crossref]

Luo, Q.

Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Luminescence Properties of Eu2+-Doped Glass Ceramics Containing SrF2 Nanocrystals,” J. Am. Ceram. Soc. 93(9), 2684–2688 (2010).
[Crossref]

Q. Luo, X. Qiao, X. Fan, S. Liu, H. Yang, and X. Zhang, “Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids 354(40-41), 4691–4694 (2008).
[Crossref]

Mao, R. H.

X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Menkara, H.

G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
[Crossref] [PubMed]

Messaddeq, Y.

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

Minquam, W.

L. Q. Xvsheng, F. Xianping, and W. Minquam, “Local vibration around rare earth ions in alkaline earth fluorosilicate transparent glass and glass ceramics using Eu3+ probe,” J. Rare Earths 26(6), 883–888 (2008).
[Crossref]

Muñoz-Santiuste, J. E.

J. E. Muñoz-Santiuste, U. R. Rodríguez-Mendoza, J. González-Platas, and V. Lavín, “Structural study of the Eu3+ environments in fluorozirconate glasses: role of the temperature-induced and the pressure-induced phase transition processes in the development of a rare earth’s local structure model,” J. Chem. Phys. 130(15), 154501 (2009).
[Crossref] [PubMed]

Nadler, J. H.

M. B. Beckert, S. Gallego, Y. Ding, E. Elder, and J. H. Nadler, “Medical imaging scintillators from glass-ceramics using mixed rare-earth halides,” Opt. Mater. 60, 513–520 (2016).
[Crossref]

Ohishi, Y.

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90(13), 131116 (2007).
[Crossref]

Parker, J. M.

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+in Nanocrystallized Glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Eu3+-activated heavy scintillating glasses,” Mater. Res. Bull. 43(6), 1502–1508 (2008).
[Crossref]

Qiao, X.

Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Luminescence Properties of Eu2+-Doped Glass Ceramics Containing SrF2 Nanocrystals,” J. Am. Ceram. Soc. 93(9), 2684–2688 (2010).
[Crossref]

Q. Luo, X. Qiao, X. Fan, S. Liu, H. Yang, and X. Zhang, “Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids 354(40-41), 4691–4694 (2008).
[Crossref]

Qiu, J.

M. A. Ali, X. Liu, and J. Qiu, “A comparative investigation on upconversion luminescence in glass–ceramics containing LaF3 and CaF2 nanocrystals,” J. Mater. Sci. Mater. Electron. 29(10), 8701–8709 (2018).
[Crossref]

B. Zhu, S. Zhang, S. Zhou, N. Jiang, and J. Qiu, “Enhanced upconversion luminescence of transparent Eu3+-doped glass-ceramics containing nonlinear optical microcrystals,” Opt. Lett. 32(6), 653–655 (2007).
[Crossref] [PubMed]

Rai, S. B.

Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater. 31(1), 87–93 (2008).
[Crossref]

Ribeiro, S. J. L.

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

Rodríguez-Mendoza, U. R.

J. E. Muñoz-Santiuste, U. R. Rodríguez-Mendoza, J. González-Platas, and V. Lavín, “Structural study of the Eu3+ environments in fluorozirconate glasses: role of the temperature-induced and the pressure-induced phase transition processes in the development of a rare earth’s local structure model,” J. Chem. Phys. 130(15), 154501 (2009).
[Crossref] [PubMed]

Rüssel, C.

C. Lin, C. Bocker, and C. Rüssel, “Nanocrystallization in Oxyfluoride Glasses Controlled by Amorphous Phase Separation,” Nano Lett. 15(10), 6764–6769 (2015).
[Crossref] [PubMed]

C. Bocker, S. Bhattacharyya, T. Höche, and C. Rüssel, “Size distribution of BaF2 nanocrystallites in transparent glass ceramics,” Acta Mater. 57(20), 5956–5963 (2009).
[Crossref]

Savage, N.

G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
[Crossref] [PubMed]

Shan, Z.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, and Y. Wang, “Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode,” Acta Mater. 58(8), 3035–3041 (2010).
[Crossref]

Sugimoto, S.

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+in Nanocrystallized Glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Eu3+-activated heavy scintillating glasses,” Mater. Res. Bull. 43(6), 1502–1508 (2008).
[Crossref]

Summers, C.

G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
[Crossref] [PubMed]

Sun, X.

J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
[Crossref]

J. Cao, L. Chen, W. Chen, D. Xu, X. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals,” Opt. Mater. Express 6(7), 2201 (2016).
[Crossref]

J. Cao, W. Chen, L. Chen, X. Sun, and H. Guo, “Synthesis and characterization of BaLuF5:Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging,” Ceram. Int. 42(15), 17834–17838 (2016).
[Crossref]

Sun, X. Y.

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

X. Y. Sun, X. Zhang, H. H. Chen, Q. L. Hu, W. F. Wang, Z. J. Zhang, and J. T. Zhao, “Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses,” J. Non-Cryst. Solids 404, 162–166 (2014).
[Crossref]

X. Y. Sun, D. G. Jiang, Y. Z. Sun, X. Zhang, Q. L. Hu, Y. Huang, and Y. Tao, “Eu3+-activated B2O3–GeO2–RE2O3 (RE=Y3+, La3+ and Gd3+) borogermanate scintillating glasses,” J. Non-Cryst. Solids 389, 72–77 (2014).
[Crossref]

Sun, Y. Z.

X. Y. Sun, D. G. Jiang, Y. Z. Sun, X. Zhang, Q. L. Hu, Y. Huang, and Y. Tao, “Eu3+-activated B2O3–GeO2–RE2O3 (RE=Y3+, La3+ and Gd3+) borogermanate scintillating glasses,” J. Non-Cryst. Solids 389, 72–77 (2014).
[Crossref]

Suzuki, T.

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90(13), 131116 (2007).
[Crossref]

Tao, Y.

X. Y. Sun, D. G. Jiang, Y. Z. Sun, X. Zhang, Q. L. Hu, Y. Huang, and Y. Tao, “Eu3+-activated B2O3–GeO2–RE2O3 (RE=Y3+, La3+ and Gd3+) borogermanate scintillating glasses,” J. Non-Cryst. Solids 389, 72–77 (2014).
[Crossref]

Tian, Y.

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8 µm mission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108(8), 083504 (2010).
[Crossref]

Villalobos, G.

X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Wagner, B.

G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
[Crossref] [PubMed]

Wan, Z.

D. Chen, Z. Wan, and Y. Zhou, “Dual-phase nano-glass-ceramics for optical thermometry,” Sens. Actuators B Chem. 226, 14–23 (2016).
[Crossref]

M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, and Z. Ji, “Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5372–5376 (2015).
[Crossref]

Wang, C.

X. Li, X. Chen, S. Yuan, S. Liu, C. Wang, and D. Chen, “Eu3+-Doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(39), 10201–10210 (2017).
[Crossref]

Wang, H.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

Wang, K.

J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
[Crossref]

Wang, W. F.

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

X. Y. Sun, X. Zhang, H. H. Chen, Q. L. Hu, W. F. Wang, Z. J. Zhang, and J. T. Zhao, “Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses,” J. Non-Cryst. Solids 404, 162–166 (2014).
[Crossref]

Wang, X.

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

Wang, Y.

J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
[Crossref]

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, and Y. Wang, “Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode,” Acta Mater. 58(8), 3035–3041 (2010).
[Crossref]

Y. Y. Daqin Chen, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Wei, R.

J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
[Crossref]

Wei, Y.

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

Weng, F.

Y. Y. Daqin Chen, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Wu, Y. T.

X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Xi, J.

M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, and Z. Ji, “Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5372–5376 (2015).
[Crossref]

Xianping, F.

L. Q. Xvsheng, F. Xianping, and W. Minquam, “Local vibration around rare earth ions in alkaline earth fluorosilicate transparent glass and glass ceramics using Eu3+ probe,” J. Rare Earths 26(6), 883–888 (2008).
[Crossref]

Xiao, Z. H.

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

Xu, D.

J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
[Crossref]

J. Cao, L. Chen, W. Chen, D. Xu, X. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals,” Opt. Mater. Express 6(7), 2201 (2016).
[Crossref]

Xu, R.

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8 µm mission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108(8), 083504 (2010).
[Crossref]

Xu, S.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
[Crossref]

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

Xu, W.

D. Chen, W. Xu, Y. Zhou, J. Zhong, and S. Li, “Color tunable dual-phase transparent glass ceramics for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(3), 738–746 (2017).
[Crossref]

Xvsheng, L. Q.

L. Q. Xvsheng, F. Xianping, and W. Minquam, “Local vibration around rare earth ions in alkaline earth fluorosilicate transparent glass and glass ceramics using Eu3+ probe,” J. Rare Earths 26(6), 883–888 (2008).
[Crossref]

Yamashita, T.

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90(13), 131116 (2007).
[Crossref]

Yang, H.

Q. Luo, X. Qiao, X. Fan, S. Liu, H. Yang, and X. Zhang, “Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids 354(40-41), 4691–4694 (2008).
[Crossref]

Ye, R.

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

Ye, Z. P.

X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Yu, X. G.

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

Yu, Y.

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, and Y. Wang, “Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode,” Acta Mater. 58(8), 3035–3041 (2010).
[Crossref]

Y. W. Daqin Chen, Y. Yu, and P. Huang, “Structure and Optical Spectroscopy of Eu-Doped Glass Ceramics Containing GdF3 Nanocrystals,” J. Phys. Chem. C 112(48), 18943–18947 (2008).
[Crossref]

Yuan, S.

D. Chen, S. Liu, X. Li, S. Yuan, and P. Huang, “Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+:YF3 nanocrystals embedded glass ceramic,” J. Eur. Ceram. Soc. 37(15), 4939–4945 (2017).
[Crossref]

X. Li, X. Chen, S. Yuan, S. Liu, C. Wang, and D. Chen, “Eu3+-Doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(39), 10201–10210 (2017).
[Crossref]

Yuan, Y.

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

Zhang, J.

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8 µm mission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108(8), 083504 (2010).
[Crossref]

Zhang, L.

J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
[Crossref]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8 µm mission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108(8), 083504 (2010).
[Crossref]

Zhang, S.

Zhang, X.

X. Y. Sun, D. G. Jiang, Y. Z. Sun, X. Zhang, Q. L. Hu, Y. Huang, and Y. Tao, “Eu3+-activated B2O3–GeO2–RE2O3 (RE=Y3+, La3+ and Gd3+) borogermanate scintillating glasses,” J. Non-Cryst. Solids 389, 72–77 (2014).
[Crossref]

X. Y. Sun, X. Zhang, H. H. Chen, Q. L. Hu, W. F. Wang, Z. J. Zhang, and J. T. Zhao, “Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses,” J. Non-Cryst. Solids 404, 162–166 (2014).
[Crossref]

Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Luminescence Properties of Eu2+-Doped Glass Ceramics Containing SrF2 Nanocrystals,” J. Am. Ceram. Soc. 93(9), 2684–2688 (2010).
[Crossref]

Q. Luo, X. Qiao, X. Fan, S. Liu, H. Yang, and X. Zhang, “Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids 354(40-41), 4691–4694 (2008).
[Crossref]

Zhang, Y.

G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
[Crossref] [PubMed]

Zhang, Z. J.

X. Y. Sun, X. Zhang, H. H. Chen, Q. L. Hu, W. F. Wang, Z. J. Zhang, and J. T. Zhao, “Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses,” J. Non-Cryst. Solids 404, 162–166 (2014).
[Crossref]

X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

Zhao, J. T.

X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

X. Y. Sun, X. Zhang, H. H. Chen, Q. L. Hu, W. F. Wang, Z. J. Zhang, and J. T. Zhao, “Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses,” J. Non-Cryst. Solids 404, 162–166 (2014).
[Crossref]

Zhao, S.

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

Zheng, G. T.

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

Zhong, J.

D. Chen, W. Xu, Y. Zhou, J. Zhong, and S. Li, “Color tunable dual-phase transparent glass ceramics for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(3), 738–746 (2017).
[Crossref]

M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, and Z. Ji, “Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5372–5376 (2015).
[Crossref]

Zhou, S.

Zhou, Y.

D. Chen, W. Xu, Y. Zhou, J. Zhong, and S. Li, “Color tunable dual-phase transparent glass ceramics for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(3), 738–746 (2017).
[Crossref]

D. Chen, Z. Wan, and Y. Zhou, “Dual-phase nano-glass-ceramics for optical thermometry,” Sens. Actuators B Chem. 226, 14–23 (2016).
[Crossref]

M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, and Z. Ji, “Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5372–5376 (2015).
[Crossref]

Zhu, B.

Acta Mater. (2)

C. Bocker, S. Bhattacharyya, T. Höche, and C. Rüssel, “Size distribution of BaF2 nanocrystallites in transparent glass ceramics,” Acta Mater. 57(20), 5956–5963 (2009).
[Crossref]

D. Chen, Y. Yu, P. Huang, H. Lin, Z. Shan, and Y. Wang, “Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode,” Acta Mater. 58(8), 3035–3041 (2010).
[Crossref]

Appl. Phys. Lett. (1)

L. Huang, T. Yamashita, R. Jose, Y. Arai, T. Suzuki, and Y. Ohishi, “Intense ultraviolet emission from Tb3+ and Yb3+ codoped glass ceramic containing CaF2 nanocrystals,” Appl. Phys. Lett. 90(13), 131116 (2007).
[Crossref]

Ceram. Int. (1)

J. Cao, W. Chen, L. Chen, X. Sun, and H. Guo, “Synthesis and characterization of BaLuF5:Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging,” Ceram. Int. 42(15), 17834–17838 (2016).
[Crossref]

J. Am. Ceram. Soc. (5)

X. Y. Sun, Z. P. Ye, Y. T. Wu, P. Gao, R. H. Mao, Z. J. Zhang, J. T. Zhao, and G. Villalobos, “A Simple and Highly Efficient Method for Synthesis of Ce3+-Activated Borogermanate Scintillating Glasses in Air,” J. Am. Ceram. Soc. 97(11), 3388–3391 (2014).
[Crossref]

J. Cao, W. Chen, D. Xu, X. Li, R. Wei, L. Chen, X. Sun, and H. Guo, “Transparent glass ceramics containing Lu6O5F8:Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence,” J. Am. Ceram. Soc. 101(4), 1585–1591 (2018).
[Crossref]

X. Y. Sun, Y. Yuan, Z. H. Xiao, X. G. Yu, W. F. Wang, D. G. Jiang, G. T. Zheng, Z. Kang, and S. Kasap, “Optical Investigation of Ce3+-Activated Borogermanate Glass Induced by Substitution of BaF2 for BaO,” J. Am. Ceram. Soc. 98(12), 3655–3658 (2015).
[Crossref]

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Scintillation from Eu2+in Nanocrystallized Glass,” J. Am. Ceram. Soc. 92(9), 2119–2121 (2009).
[Crossref]

Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Luminescence Properties of Eu2+-Doped Glass Ceramics Containing SrF2 Nanocrystals,” J. Am. Ceram. Soc. 93(9), 2684–2688 (2010).
[Crossref]

J. Appl. Phys. (1)

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8 µm mission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108(8), 083504 (2010).
[Crossref]

J. Chem. Phys. (1)

J. E. Muñoz-Santiuste, U. R. Rodríguez-Mendoza, J. González-Platas, and V. Lavín, “Structural study of the Eu3+ environments in fluorozirconate glasses: role of the temperature-induced and the pressure-induced phase transition processes in the development of a rare earth’s local structure model,” J. Chem. Phys. 130(15), 154501 (2009).
[Crossref] [PubMed]

J. Eur. Ceram. Soc. (1)

D. Chen, S. Liu, X. Li, S. Yuan, and P. Huang, “Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+:YF3 nanocrystals embedded glass ceramic,” J. Eur. Ceram. Soc. 37(15), 4939–4945 (2017).
[Crossref]

J. Lumin. (2)

J. Cao, X. Wang, X. Li, Y. Wei, L. Chen, and H. Guo, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals,” J. Lumin. 170, 207–211 (2016).
[Crossref]

G. Lee, N. Savage, B. Wagner, Y. Zhang, B. Jacobs, H. Menkara, C. Summers, and Z. Kang, “Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator,” J. Lumin. 147, 363–366 (2014).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, and Z. Ji, “Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core–shell nanoarchitecture,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5372–5376 (2015).
[Crossref]

D. Chen, W. Xu, Y. Zhou, J. Zhong, and S. Li, “Color tunable dual-phase transparent glass ceramics for warm white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(3), 738–746 (2017).
[Crossref]

X. Li, X. Chen, S. Yuan, S. Liu, C. Wang, and D. Chen, “Eu3+-Doped glass ceramics containing NaTbF4 nanocrystals: controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(39), 10201–10210 (2017).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

M. A. Ali, X. Liu, and J. Qiu, “A comparative investigation on upconversion luminescence in glass–ceramics containing LaF3 and CaF2 nanocrystals,” J. Mater. Sci. Mater. Electron. 29(10), 8701–8709 (2018).
[Crossref]

J. Non-Cryst. Solids (3)

Q. Luo, X. Qiao, X. Fan, S. Liu, H. Yang, and X. Zhang, “Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids 354(40-41), 4691–4694 (2008).
[Crossref]

X. Y. Sun, D. G. Jiang, Y. Z. Sun, X. Zhang, Q. L. Hu, Y. Huang, and Y. Tao, “Eu3+-activated B2O3–GeO2–RE2O3 (RE=Y3+, La3+ and Gd3+) borogermanate scintillating glasses,” J. Non-Cryst. Solids 389, 72–77 (2014).
[Crossref]

X. Y. Sun, X. Zhang, H. H. Chen, Q. L. Hu, W. F. Wang, Z. J. Zhang, and J. T. Zhao, “Investigation on the luminescent properties of Eu3+-activated dense oxyfluoride borogermanate scintillating glasses,” J. Non-Cryst. Solids 404, 162–166 (2014).
[Crossref]

J. Phys. Chem. C (4)

Y. W. Daqin Chen, Y. Yu, and P. Huang, “Structure and Optical Spectroscopy of Eu-Doped Glass Ceramics Containing GdF3 Nanocrystals,” J. Phys. Chem. C 112(48), 18943–18947 (2008).
[Crossref]

Y. Y. Daqin Chen, Y. Wang, P. Huang, and F. Weng, “Cooperative Energy Transfer Up-Conversion and Quantum Cutting Down-Conversion in Yb3+:TbF3 Nanocrystals Embedded Glass Ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

J. He, Y. Wang, Y. Liu, K. Wang, R. Li, J. Fan, S. Xu, and L. Zhang, “Tailoring the Luminescence of Europium Ions in Mesoporous AlPO4 Monolithic Glass,” J. Phys. Chem. C 117(42), 21916–21922 (2013).
[Crossref]

R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, and S. Xu, “Controllable Synthesis and Tunable Colors of α- and β-Zn2SiO4:Mn2+ Nanocrystals for UV and Blue Chip Excited White LEDs,” J. Phys. Chem. C 115(21), 10851–10858 (2011).
[Crossref]

J. Phys. Condens. Matter (1)

L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” J. Phys. Condens. Matter 20(14), 145201 (2008).
[Crossref]

J. Rare Earths (1)

L. Q. Xvsheng, F. Xianping, and W. Minquam, “Local vibration around rare earth ions in alkaline earth fluorosilicate transparent glass and glass ceramics using Eu3+ probe,” J. Rare Earths 26(6), 883–888 (2008).
[Crossref]

Mater. Res. Bull. (1)

J. Fu, M. Kobayashi, S. Sugimoto, and J. M. Parker, “Eu3+-activated heavy scintillating glasses,” Mater. Res. Bull. 43(6), 1502–1508 (2008).
[Crossref]

Nano Lett. (1)

C. Lin, C. Bocker, and C. Rüssel, “Nanocrystallization in Oxyfluoride Glasses Controlled by Amorphous Phase Separation,” Nano Lett. 15(10), 6764–6769 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

U. Holzwarth and N. Gibson, “The Scherrer equation versus the ‘Debye-Scherrer equation’,” Nat. Nanotechnol. 6(9), 534 (2011).
[Crossref] [PubMed]

Nucl. Instrum. Methods. Phys. Res. Sect. A (1)

L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua, and S. Xu, “Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals,” Nucl. Instrum. Methods. Phys. Res. Sect. A 788, 111–115 (2015).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (2)

M. B. Beckert, S. Gallego, Y. Ding, E. Elder, and J. H. Nadler, “Medical imaging scintillators from glass-ceramics using mixed rare-earth halides,” Opt. Mater. 60, 513–520 (2016).
[Crossref]

Y. Dwivedi and S. B. Rai, “Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass,” Opt. Mater. 31(1), 87–93 (2008).
[Crossref]

Opt. Mater. Express (1)

Sens. Actuators B Chem. (1)

D. Chen, Z. Wan, and Y. Zhou, “Dual-phase nano-glass-ceramics for optical thermometry,” Sens. Actuators B Chem. 226, 14–23 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 DTA curve of 4 mol% Eu3+ doped PG.
Fig. 2
Fig. 2 (a) XRD patterns; (b) partial enlargement of XRD patterns in the range of 27° to 29°; (c) experimental and calculated XRD patterns of the Rietveld refinement of GC640°C-6h; (d) Transmittance spectra; (e) Photographs of PG, GC620°C-3h, GC640°C-3h and GC640°C-6h (All samples are 2 mm thick).
Fig. 3
Fig. 3 TEM image (a) and HRTEM image (b) of GC640°C-6h.
Fig. 4
Fig. 4 (a) Emission spectra of different Eu3+ doped PGs under excitation at 393 nm; (b) Emission spectra of 0.1% mol Eu3+ doped PG and GC620°C-3h under excitation at 393 nm.
Fig. 5
Fig. 5 (a) Excitation spectra monitored at 617 nm emission; (b) Emission spectra under excitation at 393nm; (c) Fluorescence decay curves for 5D07F0 (617 nm) transition under excitation at 393 nm; (d) XEL spectra of PG, GC620°C-3h, GC640°C-3h, GC640°C-6h and BGO.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D= Kλ βcosθ
I= A 1 exp( t τ 1 )+ A 2 exp( t τ 2 )
τ * = A 1 τ 1 2 + A 2 τ 2 2 A 1 τ 1 + A 2 τ 2

Metrics