Abstract

Using the ultrafast laser inscription technique, buried channel waveguides have been fabricated in gallium lanthanum sulfide and gallium lanthanum sulfide selenide glasses to demonstrate the suitability of the materials for supercontinuum generation in the mid-IR. Supercontinuum generation was performed using 100 femtosecond pump pulses with micro-Joule pulse energies and a center wavelength of 4.6 µm, which is in the anomalous dispersion regime for these waveguides. Under such pump conditions, supercontinuum was obtained covering a 25-dB-bandwidth of up to 6.1 um with a long-wavelength edge of 8 µm. To our knowledge, this represents the broadest and the longest-wavelength IR supercontinuum generated from an ultrafast laser inscribed waveguide to date.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2

Helen L. Butcher, David G. MacLachlan, David Lee, Robert R. Thomson, and Damien Weidmann
Opt. Express 26(8) 10930-10943 (2018)

Ultrafast laser inscription in chalcogenide glass: thermal versus athermal fabrication

Thomas Gretzinger, Simon Gross, Martin Ams, Alexander Arriola, and Michael J. Withford
Opt. Mater. Express 5(12) 2862-2877 (2015)

Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications

Giorgos Demetriou, Jean-Philippe Bérubé, Réal Vallée, Younès Messaddeq, Christian R. Petersen, Deepak Jain, Ole Bang, Chris Craig, Daniel W. Hewak, and Ajoy K Kar
Opt. Express 24(6) 6350-6358 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express 17(3), 1963–1969 (2009).
    [Crossref] [PubMed]
  2. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  3. D. W. Hewak, “Chalcogenide glasses for photonics device applications,” in Photonic glasses and glass-ceramics (Ed. GS Murugan) (Research Signpost, 2010).
  4. C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  5. A. Ravagli, C. Craig, G. A. Alzaidy, P. Bastock, and D. W. Hewak, “Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass,” Adv. Mater. 29(27), 1606329 (2017).
    [Crossref] [PubMed]
  6. A. Ravagli, C. Craig, J. Lincoln, and D. W. Hewak, “Ga-La-S-Se glass for visible and thermal imaging,” Adv. Opt. Technol. 6, 131–136 (2017).
  7. J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
    [Crossref]
  8. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
    [Crossref] [PubMed]
  9. J. M. Morris, M. D. Mackenzie, C. R. Petersen, G. Demetriou, A. K. Kar, O. Bang, and H. T. Bookey, “Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics,” Opt. Mater. Express 8(4), 1001–1011 (2018).
    [Crossref]
  10. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  11. J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J. M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9 µm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25(13), 14910–14917 (2017).
    [Crossref] [PubMed]
  12. A. A. S. Ph. Bado, and Mark Dugan, “Manufacturing of high quality integrated optical components by laser direct-write ” Journal of Laser Applications (2003).
  13. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41(5), 958–961 (2016).
    [Crossref] [PubMed]
  14. H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
    [Crossref]
  15. P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 7 (2010).
    [Crossref]
  16. G. Demetriou, J. P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
    [Crossref] [PubMed]
  17. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

A. Ravagli, C. Craig, G. A. Alzaidy, P. Bastock, and D. W. Hewak, “Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass,” Adv. Mater. 29(27), 1606329 (2017).
[Crossref] [PubMed]

A. Ravagli, C. Craig, J. Lincoln, and D. W. Hewak, “Ga-La-S-Se glass for visible and thermal imaging,” Adv. Opt. Technol. 6, 131–136 (2017).

J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J. M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9 µm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25(13), 14910–14917 (2017).
[Crossref] [PubMed]

2016 (2)

2014 (3)

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

2013 (1)

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2010 (1)

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 7 (2010).
[Crossref]

2009 (1)

2007 (2)

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Agger, C. S.

Allington-Smith, J.

Alzaidy, G. A.

A. Ravagli, C. Craig, G. A. Alzaidy, P. Bastock, and D. W. Hewak, “Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass,” Adv. Mater. 29(27), 1606329 (2017).
[Crossref] [PubMed]

Bang, O.

Bastock, P.

A. Ravagli, C. Craig, G. A. Alzaidy, P. Bastock, and D. W. Hewak, “Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass,” Adv. Mater. 29(27), 1606329 (2017).
[Crossref] [PubMed]

Beecher, S.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Benson, T.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

Bérubé, J. P.

Bookey, H.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Bookey, H. T.

Brown, C. T. A.

Cerullo, G.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

Chiodo, N.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

Choi, D.-Y.

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Ciprian, D.

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 7 (2010).
[Crossref]

Craig, C.

A. Ravagli, C. Craig, G. A. Alzaidy, P. Bastock, and D. W. Hewak, “Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass,” Adv. Mater. 29(27), 1606329 (2017).
[Crossref] [PubMed]

A. Ravagli, C. Craig, J. Lincoln, and D. W. Hewak, “Ga-La-S-Se glass for visible and thermal imaging,” Adv. Opt. Technol. 6, 131–136 (2017).

G. Demetriou, J. P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
[Crossref] [PubMed]

Dawson, M. D.

Demetriou, G.

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Elder, I.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Farries, M.

Fuhrberg, P.

Furniss, D.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

Gai, X.

Hewak, D. W.

A. Ravagli, C. Craig, J. Lincoln, and D. W. Hewak, “Ga-La-S-Se glass for visible and thermal imaging,” Adv. Opt. Technol. 6, 131–136 (2017).

A. Ravagli, C. Craig, G. A. Alzaidy, P. Bastock, and D. W. Hewak, “Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass,” Adv. Mater. 29(27), 1606329 (2017).
[Crossref] [PubMed]

G. Demetriou, J. P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
[Crossref] [PubMed]

Hlubina, P.

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 7 (2010).
[Crossref]

Hopkins, J. M.

Jain, D.

Jha, A.

Kadulova, M.

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 7 (2010).
[Crossref]

Kar, A. K.

J. M. Morris, M. D. Mackenzie, C. R. Petersen, G. Demetriou, A. K. Kar, O. Bang, and H. T. Bookey, “Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics,” Opt. Mater. Express 8(4), 1001–1011 (2018).
[Crossref]

J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J. M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9 µm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25(13), 14910–14917 (2017).
[Crossref] [PubMed]

G. Demetriou, J. P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24(6), 6350–6358 (2016).
[Crossref] [PubMed]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express 17(3), 1963–1969 (2009).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

Kubat, I.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Lagatsky, A. A.

Lamb, R.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Lamrini, S.

Lincoln, J.

A. Ravagli, C. Craig, J. Lincoln, and D. W. Hewak, “Ga-La-S-Se glass for visible and thermal imaging,” Adv. Opt. Technol. 6, 131–136 (2017).

Luther-Davies, B.

Ma, P.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Mackenzie, M. D.

Madden, S.

McCarthy, J.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Messaddeq, Y.

Moller, U.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Møller, U.

Morris, J.

Morris, J. M.

Moselund, P. M.

Napier, B.

Osellame, R.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

Petersen, C. R.

Psaila, N. D.

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ravagli, A.

A. Ravagli, C. Craig, G. A. Alzaidy, P. Bastock, and D. W. Hewak, “Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass,” Adv. Mater. 29(27), 1606329 (2017).
[Crossref] [PubMed]

A. Ravagli, C. Craig, J. Lincoln, and D. W. Hewak, “Ga-La-S-Se glass for visible and thermal imaging,” Adv. Opt. Technol. 6, 131–136 (2017).

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Scholle, K.

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

Shen, S.

Stevenson, N. K.

Sujecki, S.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tang, Z.

Tang, Z. Q.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Thomson, R. R.

Vallée, R.

Vu, K.

Wang, R.

Ward, J.

Yang, Z.

Yu, Y.

Zhou, B. B.

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Adv. Mater. (1)

A. Ravagli, C. Craig, G. A. Alzaidy, P. Bastock, and D. W. Hewak, “Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass,” Adv. Mater. 29(27), 1606329 (2017).
[Crossref] [PubMed]

Adv. Opt. Technol. (1)

A. Ravagli, C. Craig, J. Lincoln, and D. W. Hewak, “Ga-La-S-Se glass for visible and thermal imaging,” Adv. Opt. Technol. 6, 131–136 (2017).

Appl. Phys. Lett. (1)

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Laser Photonics Rev. (1)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Meas. Sci. Technol. (1)

P. Hlubina, D. Ciprian, and M. Kadulova, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 7 (2010).
[Crossref]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 mu m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Other (2)

D. W. Hewak, “Chalcogenide glasses for photonics device applications,” in Photonic glasses and glass-ceramics (Ed. GS Murugan) (Research Signpost, 2010).

A. A. S. Ph. Bado, and Mark Dugan, “Manufacturing of high quality integrated optical components by laser direct-write ” Journal of Laser Applications (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Transmission spectrum of 1 mm thick GLS and GLSSe samples as given by Ravagli, A., et al. (2017) [6].
Fig. 2
Fig. 2 Diagram of the ULI fabrication setup showing the inscription laser and optics for power control, POW; polarization control, POL; beam shaping, TEL; imaging, IMG; and beam delivery, INS. The translation stage, where samples are mounted, moves the samples through the focal region defined by the beam delivery optics for waveguide writing. HWP - half wave plate, PBS - polarising beam splitter, BD - beam dump, QWP - quarter wave plate, PS - periscope, OT – optics turret.
Fig. 3
Fig. 3 Bright-field transmission microscopy images of waveguide end facets in GLSSe. (a) all waveguides with inscription power increasing from left to right. (b) subset showing size variation based on an increasing number of scans. In all instances the laser used for inscription was incident from top of image. The shape of GLSSe-2 is either due to an inscription error or non-uniform sample surface.
Fig. 4
Fig. 4 GLS and GLSSe bulk and waveguide dispersion. a) Bulk and waveguide dispersion in GLS waveguides inscribed with different focusing optics and pulse energy. b) The intercept point showing the ZDW for a range of waveguides with increasing width. Bulk GLS ZDW is 3.61 µm with the waveguides being slightly higher in the range of 3.66-7.1 µm [16]. c) GLSSe dispersion in bulk and waveguide samples. d) The intercept point showing the ZDW for a range of waveguides with differing height and widths. Bulk GLSSe ZDW is seen to be 3.72 and waveguide ZDW is in the range of ~3.8-4.1 µm, again a slight increase.
Fig. 5
Fig. 5 Coupling setup for generating SC in GLS and GLSSe waveguide samples.
Fig. 6
Fig. 6 SC spectra generated in GLS and GLSSe waveguides pumping at 4.6µm with 100fs pulses. (a) Typical evolution of the SC as the pulse energy is increased for 14 µm waveguide GLS-2, (b) 18 µm waveguide GLS-1 at high and low pulse energy, (c) 20 µm waveguide GLSSe-1 at high and low pulse energy and d) comparison between GLS-1 and GLSSe-1 from (b) and (c) showing the similarity between them.

Tables (2)

Tables Icon

Table 1 Inscription properties for waveguides used in SCG

Tables Icon

Table 2 Inscription properties for GLS waveguides dispersion measurementsa

Metrics