Abstract

Vertically aligned tellurium-nitrogen co-doped ZnO micro-/nano-rods with a hexagonal symmetry were fabricated via the chemical vapor transport method. The as-grown samples exhibited excellent crystalline. The incorporation of tellurium and nitrogen was confirmed by X-ray photoelectron spectra, and we found tellurium is beneficial to reinforce the nitrogen doping efficiency. Combining with Raman and variable temperature photoluminescence characterizations, we have demonstrated the suppression of zinc interstitial related shallow donor defects due to tellurium incorporation. Meanwhile, the intensity of the emission at 3.311 eV, which was ascribed to the radiative recombination of the free electron to the zinc vacancy related shallow acceptor states, was enhanced in the photoluminescence spectra of the sample with higher tellurium and nitrogen concentration. Our results show that tellurium-nitrogen co-doping might be a possible path for realizing reliable p-type one-dimensional ZnO nanostructures.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Identification and control of native defects in N-doped ZnO microrods

Zhengrong Yao, Kun Tang, Jiandong Ye, Zhonghua Xu, Shunming Zhu, and Shulin Gu
Opt. Mater. Express 6(9) 2847-2856 (2016)

Optical fingerprints of donors and acceptors in high-quality NH3-doped ZnO films

Kun Tang, Ran Gu, Shunming Zhu, Zhonghua Xu, Yang Shen, Jiandong Ye, and Shulin Gu
Opt. Mater. Express 7(4) 1169-1179 (2017)

Growth of arsenic doped ZnO films using a finite surface doping source by metal organic chemical vapor deposition

Tian-Hong Feng and Xiao-Chuan Xia
Opt. Mater. Express 6(12) 3733-3740 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
    [Crossref]
  2. C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
    [Crossref]
  3. Z. Zang, “Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films,” Appl. Phys. Lett. 112(4), 042106 (2018).
    [Crossref]
  4. Z. Zang and X. Tang, “Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method,” J. Alloys Compd. 619, 98–101 (2015).
    [Crossref]
  5. W. Zheng, R. Lin, D. Zhang, L. Jia, X. Ji, and F. Huang, “Vacuum‐Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism,” Adv. Opt. Mater. 6(21), 1800697 (2018).
    [Crossref]
  6. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
    [Crossref]
  7. K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
    [Crossref]
  8. J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
    [Crossref]
  9. M. C. Tarun, M. Z. Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
    [Crossref]
  10. L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
    [Crossref] [PubMed]
  11. F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
    [Crossref]
  12. H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
    [Crossref]
  13. L. X. Zhang, Y. F. Yan, and S. H. Wei, “Enhancing dopant solubility via epitaxial surfactant growth,” Phys. Rev. B Condens. Matter Mater. Phys. 80(7), 073305 (2009).
    [Crossref]
  14. H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
    [Crossref]
  15. S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
    [Crossref]
  16. S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
    [Crossref]
  17. K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
    [Crossref]
  18. G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).
  19. K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
    [Crossref]
  20. A. B. Djurisic, X. Chen, Y. H. Leung, and A. M. C. Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
    [Crossref]
  21. Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
    [Crossref]
  22. Z. R. Yao, K. Tang, Z. H. Xu, J. R. Ma, J. D. Ye, S. M. Zhu, and S. L. Gu, “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods,” J. Alloys Compd. 735, 1232–1238 (2018).
    [Crossref]
  23. J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of uniform hexagonal prismatic ZnO whiskers,” Chem. Mater. 14(3), 1216–1219 (2002).
    [Crossref]
  24. F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi, and N. M. Huang, “Facile synthesis of different morphologies of Te-doped ZnO nanostructures,” Ceram. Int. 40, 7737–7743 (2014).
    [Crossref]
  25. K. Tang, S. Zhu, Z. Xu, Y. Shen, J. Ye, and S. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
    [Crossref]
  26. S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
    [Crossref]
  27. M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
    [Crossref]
  28. W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
    [Crossref]
  29. L. S. Vlasenko and G. D. Watkins, “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 035203 (2005).
    [Crossref]
  30. P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett. 88(20), 201918 (2006).
    [Crossref]
  31. D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
    [Crossref] [PubMed]
  32. Y. S. Kim and C. H. Park, “Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping,” Phys. Rev. Lett. 102(8), 086403 (2009).
    [Crossref] [PubMed]
  33. M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 88(24), 245201 (2013).
    [Crossref]
  34. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
    [Crossref]
  35. S. Limpijumnong, X. Li, S. H. Wei, and S. B. Zhang, “Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO,” Appl. Phys. Lett. 86(21), 211910 (2005).
    [Crossref]
  36. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
    [Crossref]
  37. F. J. Manjon, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
    [Crossref]
  38. P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
    [Crossref]
  39. K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
    [Crossref]
  40. K. Kodama and T. Uchino, “Thermally activated below-band-gap excitation behind green photoluminescence in ZnO,” J. Appl. Phys. 111(9), 093525 (2012).
    [Crossref]
  41. M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
    [Crossref]
  42. S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
    [Crossref]

2018 (3)

Z. Zang, “Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films,” Appl. Phys. Lett. 112(4), 042106 (2018).
[Crossref]

W. Zheng, R. Lin, D. Zhang, L. Jia, X. Ji, and F. Huang, “Vacuum‐Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism,” Adv. Opt. Mater. 6(21), 1800697 (2018).
[Crossref]

Z. R. Yao, K. Tang, Z. H. Xu, J. R. Ma, J. D. Ye, S. M. Zhu, and S. L. Gu, “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods,” J. Alloys Compd. 735, 1232–1238 (2018).
[Crossref]

2017 (3)

K. Tang, S. Zhu, Z. Xu, Y. Shen, J. Ye, and S. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

2015 (5)

Z. Zang and X. Tang, “Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method,” J. Alloys Compd. 619, 98–101 (2015).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

2014 (1)

F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi, and N. M. Huang, “Facile synthesis of different morphologies of Te-doped ZnO nanostructures,” Ceram. Int. 40, 7737–7743 (2014).
[Crossref]

2013 (2)

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 88(24), 245201 (2013).
[Crossref]

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

2012 (5)

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

A. B. Djurisic, X. Chen, Y. H. Leung, and A. M. C. Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

K. Kodama and T. Uchino, “Thermally activated below-band-gap excitation behind green photoluminescence in ZnO,” J. Appl. Phys. 111(9), 093525 (2012).
[Crossref]

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

2011 (1)

M. C. Tarun, M. Z. Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
[Crossref]

2010 (5)

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

2009 (3)

Y. S. Kim and C. H. Park, “Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping,” Phys. Rev. Lett. 102(8), 086403 (2009).
[Crossref] [PubMed]

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

L. X. Zhang, Y. F. Yan, and S. H. Wei, “Enhancing dopant solubility via epitaxial surfactant growth,” Phys. Rev. B Condens. Matter Mater. Phys. 80(7), 073305 (2009).
[Crossref]

2008 (1)

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

2006 (1)

P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett. 88(20), 201918 (2006).
[Crossref]

2005 (5)

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

L. S. Vlasenko and G. D. Watkins, “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 035203 (2005).
[Crossref]

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

F. J. Manjon, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

S. Limpijumnong, X. Li, S. H. Wei, and S. B. Zhang, “Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO,” Appl. Phys. Lett. 86(21), 211910 (2005).
[Crossref]

2003 (1)

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

2002 (3)

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of uniform hexagonal prismatic ZnO whiskers,” Chem. Mater. 14(3), 1216–1219 (2002).
[Crossref]

2000 (1)

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

1997 (1)

H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
[Crossref]

1986 (1)

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

Akasaka, S.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Albe, K.

P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett. 88(20), 201918 (2006).
[Crossref]

Alves, H. R.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Amaike, H.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Arai, K.

H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
[Crossref]

Ashkenov, N.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Bai, X. D.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Bakr, N. A.

F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi, and N. M. Huang, “Facile synthesis of different morphologies of Te-doped ZnO nanostructures,” Ceram. Int. 40, 7737–7743 (2014).
[Crossref]

Bhatnagar, M.

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

Biskupek, J.

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

Bornwasser, V.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Bundesmann, C.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Butz, T.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Cai, A. L.

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

Callsen, G.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Cantwell, G.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Chang, J.

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

Chatterjee, S.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Chen, J.

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

Chen, M.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Chen, X.

A. B. Djurisic, X. Chen, Y. H. Leung, and A. M. C. Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

Chernikov, A.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Chichibu, S. F.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Chikyow, T.

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

Chopra, K. L.

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

Cui, Y. T.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

Djurisic, A. B.

A. B. Djurisic, X. Chen, Y. H. Leung, and A. M. C. Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

Du, J.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Eason, D. B.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Eisermann, S.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Erhart, P.

P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett. 88(20), 201918 (2006).
[Crossref]

Fan, G. H.

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

Fang, L.

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

Farlow, G. C.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Feneberg, M.

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

Fujii, T.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Gluba, M. A.

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 88(24), 245201 (2013).
[Crossref]

Grundmann, M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Gu, R.

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Gu, S.

K. Tang, S. Zhu, Z. Xu, Y. Shen, J. Ye, and S. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

Gu, S. L.

Z. R. Yao, K. Tang, Z. H. Xu, J. R. Ma, J. D. Ye, S. M. Zhu, and S. L. Gu, “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods,” J. Alloys Compd. 735, 1232–1238 (2018).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

Ha, J.

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

Haas, G.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Haboeck, U.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Han, C.

C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Hoffmann, A.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Hofmann, D. M.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Hofmann, M. N.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Hong, S.

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

Hu, J. Q.

J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of uniform hexagonal prismatic ZnO whiskers,” Chem. Mater. 14(3), 1216–1219 (2002).
[Crossref]

Hu, Z.

C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Huang, F.

W. Zheng, R. Lin, D. Zhang, L. Jia, X. Ji, and F. Huang, “Vacuum‐Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism,” Adv. Opt. Mater. 6(21), 1800697 (2018).
[Crossref]

Huang, N. M.

F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi, and N. M. Huang, “Facile synthesis of different morphologies of Te-doped ZnO nanostructures,” Ceram. Int. 40, 7737–7743 (2014).
[Crossref]

Huang, R. F.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Im, I.

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

Iqbal, M. Z.

M. C. Tarun, M. Z. Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
[Crossref]

Jamali-Sheini, F.

F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi, and N. M. Huang, “Facile synthesis of different morphologies of Te-doped ZnO nanostructures,” Ceram. Int. 40, 7737–7743 (2014).
[Crossref]

Janotti, A.

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

Ji, X.

W. Zheng, R. Lin, D. Zhang, L. Jia, X. Ji, and F. Huang, “Vacuum‐Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism,” Adv. Opt. Mater. 6(21), 1800697 (2018).
[Crossref]

Jia, L.

W. Zheng, R. Lin, D. Zhang, L. Jia, X. Ji, and F. Huang, “Vacuum‐Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism,” Adv. Opt. Mater. 6(21), 1800697 (2018).
[Crossref]

Jiang, M.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Jones, R. L.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Jung, H. D.

H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
[Crossref]

Jung, M.

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

Kaczmarczyk, G.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Kaidashev, E. M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Kaiser, U.

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

Karpensky, N.

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 88(24), 245201 (2013).
[Crossref]

Kaschner, A.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Katayama-Yoshida, H.

H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
[Crossref]

Kawasaki, M.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Kilanski, L.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Kim, Y. S.

Y. S. Kim and C. H. Park, “Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping,” Phys. Rev. Lett. 102(8), 086403 (2009).
[Crossref] [PubMed]

Koch, M.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Kodama, K.

K. Kodama and T. Uchino, “Thermally activated below-band-gap excitation behind green photoluminescence in ZnO,” J. Appl. Phys. 111(9), 093525 (2012).
[Crossref]

Kong, C. Y.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Krill, C. E.

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

Kumar, S.

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

Laufer, A.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Lautenschlaeger, S.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Lee, C. S.

J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of uniform hexagonal prismatic ZnO whiskers,” Chem. Mater. 14(3), 1216–1219 (2002).
[Crossref]

Lee, H.

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

Lee, S. T.

J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of uniform hexagonal prismatic ZnO whiskers,” Chem. Mater. 14(3), 1216–1219 (2002).
[Crossref]

Leng, Y.

C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Leung, Y. H.

A. B. Djurisic, X. Chen, Y. H. Leung, and A. M. C. Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

Li, B.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Li, C.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Li, Q.

J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of uniform hexagonal prismatic ZnO whiskers,” Chem. Mater. 14(3), 1216–1219 (2002).
[Crossref]

Li, S. T.

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

Li, W. J.

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

Li, X.

S. Limpijumnong, X. Li, S. H. Wei, and S. B. Zhang, “Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO,” Appl. Phys. Lett. 86(21), 211910 (2005).
[Crossref]

Limpijumnong, S.

S. Limpijumnong, X. Li, S. H. Wei, and S. B. Zhang, “Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO,” Appl. Phys. Lett. 86(21), 211910 (2005).
[Crossref]

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Lin, R.

W. Zheng, R. Lin, D. Zhang, L. Jia, X. Ji, and F. Huang, “Vacuum‐Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism,” Adv. Opt. Mater. 6(21), 1800697 (2018).
[Crossref]

Litton, C. W.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Liu, L.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Look, D. C.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Lorenz, M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Lyons, J. L.

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

Ma, J. H.

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

Ma, J. R.

Z. R. Yao, K. Tang, Z. H. Xu, J. R. Ma, J. D. Ye, S. M. Zhu, and S. L. Gu, “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods,” J. Alloys Compd. 735, 1232–1238 (2018).
[Crossref]

Mahmoudian, M. R.

F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi, and N. M. Huang, “Facile synthesis of different morphologies of Te-doped ZnO nanostructures,” Ceram. Int. 40, 7737–7743 (2014).
[Crossref]

Major, S.

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

Manjon, F. J.

F. J. Manjon, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

Mari, B.

F. J. Manjon, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

McCluskey, M. D.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

M. C. Tarun, M. Z. Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
[Crossref]

Meyer, B. K.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Minegishi, T.

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

Muth, J. F.

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

Nakahara, K.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Narayan, J.

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

Ng, A. M. C.

A. B. Djurisic, X. Chen, Y. H. Leung, and A. M. C. Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

Nickel, N. H.

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 88(24), 245201 (2013).
[Crossref]

Nishimoto, Y.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Nordlund, K.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Oh, D.

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

Ohtomo, A.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Onuma, T.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Park, C. H.

Y. S. Kim and C. H. Park, “Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping,” Phys. Rev. Lett. 102(8), 086403 (2009).
[Crossref] [PubMed]

Park, J.

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

Park, S.

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

Pei, Z. L.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Pinnisch, M.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Porter, H. L.

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

Prinz, G. M.

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

Qin, G. P.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Rauch, C.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Reiser, A.

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

Reparaz, J. S.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Reunchan, P.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Reynolds, D. C.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Romero, A. H.

F. J. Manjon, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

Ruan, H. B.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Saaedi, A.

F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi, and N. M. Huang, “Facile synthesis of different morphologies of Te-doped ZnO nanostructures,” Ceram. Int. 40, 7737–7743 (2014).
[Crossref]

Sasaki, A.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Sauer, R.

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

Schirra, M.

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

Schneider, R.

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

Schubert, M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Serrano, J.

F. J. Manjon, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

Shan, C. X.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Shen, D. Z.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Shen, Y.

K. Tang, S. Zhu, Z. Xu, Y. Shen, J. Ye, and S. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

Song, C. D.

H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
[Crossref]

Spemann, D.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Strassburg, M.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Su, S. C.

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

Sun, C.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Sun, K.

C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Taishi, T.

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

Takamizu, D.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Takasu, H.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Tamura, K.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Tanabe, T.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Tang, K.

Z. R. Yao, K. Tang, Z. H. Xu, J. R. Ma, J. D. Ye, S. M. Zhu, and S. L. Gu, “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods,” J. Alloys Compd. 735, 1232–1238 (2018).
[Crossref]

K. Tang, S. Zhu, Z. Xu, Y. Shen, J. Ye, and S. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

Tang, X.

C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Z. Zang and X. Tang, “Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method,” J. Alloys Compd. 619, 98–101 (2015).
[Crossref]

Tarun, M. C.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

M. C. Tarun, M. Z. Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
[Crossref]

Thomsen, C.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Thonke, K.

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

Tsukazaki, A.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Tuomisto, F.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Uchino, T.

K. Kodama and T. Uchino, “Thermally activated below-band-gap excitation behind green photoluminescence in ZnO,” J. Appl. Phys. 111(9), 093525 (2012).
[Crossref]

Van de Walle, C. G.

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

Vlasenko, L. S.

L. S. Vlasenko and G. D. Watkins, “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 035203 (2005).
[Crossref]

Wagner, M. R.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Wang, D.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Wang, M.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Wang, S.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Wang, S. Q.

H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
[Crossref]

Wang, X.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Watkins, G. D.

L. S. Vlasenko and G. D. Watkins, “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 035203 (2005).
[Crossref]

Wei, S. H.

L. X. Zhang, Y. F. Yan, and S. H. Wei, “Enhancing dopant solubility via epitaxial surfactant growth,” Phys. Rev. B Condens. Matter Mater. Phys. 80(7), 073305 (2009).
[Crossref]

S. Limpijumnong, X. Li, S. H. Wei, and S. B. Zhang, “Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO,” Appl. Phys. Lett. 86(21), 211910 (2005).
[Crossref]

Wen, L. S.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Wong, N. B.

J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of uniform hexagonal prismatic ZnO whiskers,” Chem. Mater. 14(3), 1216–1219 (2002).
[Crossref]

Wu, F.

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Wu, K. P.

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

Wu, Y. H.

H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
[Crossref]

Xu, J.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Xu, Q.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

Xu, Z.

K. Tang, S. Zhu, Z. Xu, Y. Shen, J. Ye, and S. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

Xu, Z. H.

Z. R. Yao, K. Tang, Z. H. Xu, J. R. Ma, J. D. Ye, S. M. Zhu, and S. L. Gu, “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods,” J. Alloys Compd. 735, 1232–1238 (2018).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Yan, Y. F.

L. X. Zhang, Y. F. Yan, and S. H. Wei, “Enhancing dopant solubility via epitaxial surfactant growth,” Phys. Rev. B Condens. Matter Mater. Phys. 80(7), 073305 (2009).
[Crossref]

Yao, B.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Yao, G. R.

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

Yao, T.

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
[Crossref]

Yao, Z. R.

Z. R. Yao, K. Tang, Z. H. Xu, J. R. Ma, J. D. Ye, S. M. Zhu, and S. L. Gu, “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods,” J. Alloys Compd. 735, 1232–1238 (2018).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Ye, J.

K. Tang, S. Zhu, Z. Xu, Y. Shen, J. Ye, and S. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

Ye, J. D.

Z. R. Yao, K. Tang, Z. H. Xu, J. R. Ma, J. D. Ye, S. M. Zhu, and S. L. Gu, “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods,” J. Alloys Compd. 735, 1232–1238 (2018).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

Ye, L. J.

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Yonenaga, I.

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

Yousefi, R.

F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi, and N. M. Huang, “Facile synthesis of different morphologies of Te-doped ZnO nanostructures,” Ceram. Int. 40, 7737–7743 (2014).
[Crossref]

Yu, Y. H.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Yuji, H.

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

Zang, Z.

Z. Zang, “Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films,” Appl. Phys. Lett. 112(4), 042106 (2018).
[Crossref]

C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Z. Zang and X. Tang, “Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method,” J. Alloys Compd. 619, 98–101 (2015).
[Crossref]

Zeuner, A.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Zhang, D.

W. Zheng, R. Lin, D. Zhang, L. Jia, X. Ji, and F. Huang, “Vacuum‐Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism,” Adv. Opt. Mater. 6(21), 1800697 (2018).
[Crossref]

Zhang, H.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Zhang, L. X.

L. X. Zhang, Y. F. Yan, and S. H. Wei, “Enhancing dopant solubility via epitaxial surfactant growth,” Phys. Rev. B Condens. Matter Mater. Phys. 80(7), 073305 (2009).
[Crossref]

Zhang, P.

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

Zhang, R.

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

Zhang, S. B.

S. Limpijumnong, X. Li, S. H. Wei, and S. B. Zhang, “Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO,” Appl. Phys. Lett. 86(21), 211910 (2005).
[Crossref]

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Zhang, T.

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

Zhang, Y.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

Zhang, Z.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Zhao, D.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Zheng, S. W.

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

Zheng, W.

W. Zheng, R. Lin, D. Zhang, L. Jia, X. Ji, and F. Huang, “Vacuum‐Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism,” Adv. Opt. Mater. 6(21), 1800697 (2018).
[Crossref]

Zheng, Y. D.

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

Zhu, S.

K. Tang, S. Zhu, Z. Xu, Y. Shen, J. Ye, and S. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

Zhu, S. M.

Z. R. Yao, K. Tang, Z. H. Xu, J. R. Ma, J. D. Ye, S. M. Zhu, and S. L. Gu, “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods,” J. Alloys Compd. 735, 1232–1238 (2018).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

Zhu, Z.

H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
[Crossref]

Zolnowski, E. A.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

Adv. Opt. Mater. (1)

W. Zheng, R. Lin, D. Zhang, L. Jia, X. Ji, and F. Huang, “Vacuum‐Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism,” Adv. Opt. Mater. 6(21), 1800697 (2018).
[Crossref]

AIP Adv. (1)

M. C. Tarun, M. Z. Iqbal, and M. D. McCluskey, “Nitrogen is a deep acceptor in ZnO,” AIP Adv. 1(2), 022105 (2011).
[Crossref]

Appl. Phys. Express (1)

S. Park, T. Minegishi, D. Oh, H. Lee, T. Taishi, J. Park, M. Jung, J. Chang, I. Im, J. Ha, S. Hong, I. Yonenaga, T. Chikyow, and T. Yao, “High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates,” Appl. Phys. Express 3(3), 031103 (2010).
[Crossref]

Appl. Phys. Lett. (12)

K. Tang, S. L. Gu, K. P. Wu, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Tellurium assisted realization of p-type N-doped ZnO,” Appl. Phys. Lett. 96(24), 242101 (2010).
[Crossref]

H. L. Porter, A. L. Cai, J. F. Muth, and J. Narayan, “Enhanced photoconductivity of ZnO films Co-doped with nitrogen and tellurium,” Appl. Phys. Lett. 86(21), 211918 (2005).
[Crossref]

H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, “Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a δ-doping technique,” Appl. Phys. Lett. 70(9), 1143–1145 (1997).
[Crossref]

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, “Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates,” Appl. Phys. Lett. 97(1), 013501 (2010).
[Crossref]

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

Z. Zang, “Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films,” Appl. Phys. Lett. 112(4), 042106 (2018).
[Crossref]

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

S. Limpijumnong, X. Li, S. H. Wei, and S. B. Zhang, “Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO,” Appl. Phys. Lett. 86(21), 211910 (2005).
[Crossref]

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett. 88(20), 201918 (2006).
[Crossref]

Appl. Surf. Sci. (2)

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Ceram. Int. (1)

F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi, and N. M. Huang, “Facile synthesis of different morphologies of Te-doped ZnO nanostructures,” Ceram. Int. 40, 7737–7743 (2014).
[Crossref]

Chem. Mater. (1)

J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of uniform hexagonal prismatic ZnO whiskers,” Chem. Mater. 14(3), 1216–1219 (2002).
[Crossref]

J. Alloys Compd. (3)

Z. R. Yao, K. Tang, Z. H. Xu, J. R. Ma, J. D. Ye, S. M. Zhu, and S. L. Gu, “The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods,” J. Alloys Compd. 735, 1232–1238 (2018).
[Crossref]

K. Tang, S. Zhu, Z. Xu, Y. Shen, J. Ye, and S. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

Z. Zang and X. Tang, “Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method,” J. Alloys Compd. 619, 98–101 (2015).
[Crossref]

J. Appl. Phys. (5)

S. Park, T. Minegishi, H. Lee, J. Park, I. Im, T. Yao, D. Oh, T. Taishi, I. Yonenaga, and J. Chang, “Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys. 108(9), 093518 (2010).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

F. J. Manjon, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

K. Kodama and T. Uchino, “Thermally activated below-band-gap excitation behind green photoluminescence in ZnO,” J. Appl. Phys. 111(9), 093525 (2012).
[Crossref]

J. Lumin. (1)

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

J. Mater. Chem. (1)

A. B. Djurisic, X. Chen, Y. H. Leung, and A. M. C. Ng, “ZnO nanostructures: growth, properties and applications,” J. Mater. Chem. 22(14), 6526–6535 (2012).
[Crossref]

J. Mater. Res. (1)

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Nano Energy (1)

C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (5)

L. X. Zhang, Y. F. Yan, and S. H. Wei, “Enhancing dopant solubility via epitaxial surfactant growth,” Phys. Rev. B Condens. Matter Mater. Phys. 80(7), 073305 (2009).
[Crossref]

L. S. Vlasenko and G. D. Watkins, “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K,” Phys. Rev. B Condens. Matter Mater. Phys. 72(3), 035203 (2005).
[Crossref]

M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, “Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125215 (2008).
[Crossref]

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann, A. Laufer, M. Pinnisch, B. K. Meyer, M. R. Wagner, J. S. Reparaz, G. Callsen, A. Hoffmann, A. Chernikov, S. Chatterjee, V. Bornwasser, and M. Koch, “Optical signatures of nitrogen acceptors in ZnO,” Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235204 (2012).
[Crossref]

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B Condens. Matter Mater. Phys. 88(24), 245201 (2013).
[Crossref]

Phys. Rev. Lett. (3)

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Y. S. Kim and C. H. Park, “Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping,” Phys. Rev. Lett. 102(8), 086403 (2009).
[Crossref] [PubMed]

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, R. Sauer, J. Biskupek, and U. Kaiser, “The role of stacking faults and their associated 0.13 eV acceptor state in doped and undoped ZnO layers and nanostructures,” Phys. Status Solidi, B Basic Res. 247(6), 1464–1468 (2010).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Wuli Xuebao (1)

G. R. Yao, G. H. Fan, S. W. Zheng, J. H. Ma, J. Chen, Y. Zhang, S. T. Li, S. C. Su, and T. Zhang, “First-principles study of p-type ZnO by Te-N codoping,” Wuli Xuebao 61, 176105 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SEM image of the vertically aligned Te-N co-doped ZnO micro-/nano-rods array (top view).
Fig. 2
Fig. 2 The XRD patterns of three Te-N co-doped ZnO micro-/0nano-rods samples.
Fig. 3
Fig. 3 XPS lines of Te-N co-doped ZnO micro-/nano-rods. (a) Te 3d spectra. (b) O 1s spectra. (c) Zn LMM auger lines. (d) N 1s spectra. (e) Intensity ratio of Te 3d lines and Zn LMM auger lines in (a) and intensity ratio of Zni and lattice Zn in (c).
Fig. 4
Fig. 4 Raman spectra of N-doped and Te-N co-doped ZnO micro-/nano-rods recorded at RT. The inset is the intensity ratio of additional mode at 276 cm−1 and E2(high) mode at 438 cm−1 as a function of Te concentration in the samples.
Fig. 5
Fig. 5 (a) PL spectra of N-doped and Te-N co-doped ZnO micro-/nano-rods recorded at 13 K. (b) The exciton related emissions in the range of 3.35 and 3.38 eV.
Fig. 6
Fig. 6 (a) TD-PL spectra of Te-N co-doped sample C in the range of 13 and 120 K. (b) The energy positions of the NBE emissions as a function of temperature. (c) The integrated intensity of the emission at 3.372 eV (normalized to the value at 13 K) as a function of temperature and its fitting curve.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ZnO+CZn+CO,
2Zn+TeO 2 2ZnO+Te,
ZnO+xTe ZnTe x O 1x +x/2 O 2 .
I( T )= I( 13K ) 1+Cexp( E loc / k B T ) ,

Metrics