Abstract

The photoluminescence properties of the phosphor (Sr,Mg)3(PO4)2:Sn2+ were investigated for luminescence thermometry in fluids. The luminescence emission intensity at 300 K is on the order of 106 photons per particle and the lifetime is 26 μs. With increasing temperature, the wide emission band exhibits a pronounced blue shift, which can be exploited for temperature imaging using a two-colour ratiometric approach. The measured temperature sensitivity in an imaging configuration is 0.6%/K at 300 K. The T50 quenching temperature is 650 K, similar to the phosphor BaMgAl10O17:Eu2+, but the estimated temperature sensitivity at 700 K is a factor 7 higher (0.36%/K). Moreover, the excitation laser fluence has a negligible effect on the measured temperature (0.6 K for a 10% change in the fluence), a five-to-tenfold improvement over phosphors previously investigated for fluid thermometry. The phosphor (Sr,Mg)3(PO4)2:Sn2+ therefore offers significant improvements for thermometry applications in turbulent flows in the 300–900 K range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles

Christopher Abram, Benoit Fond, and Frank Beyrau
Opt. Express 23(15) 19453-19468 (2015)

Thermographic laser Doppler velocimetry using the phase-shifted luminescence of BAM:Eu2+ phosphor particles for thermometry

Anthony O. Ojo, Benoit Fond, Christopher Abram, Berend G. M. Van Wachem, Andrew L. Heyes, and Frank Beyrau
Opt. Express 25(10) 11833-11843 (2017)

Single-phase tunable white-light-emitting Sr3 La(PO4)3 : Eu2+, Mn2+ phosphor for white LEDs

Zhijun Wang, Shuqin Lou, Panlai Li, and Zhenggang Lian
Appl. Opt. 56(4) 1167-1172 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Abram, B. Fond, and F. Beyrau, “Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles,” Progress in Energy and Combustion Science 64, 93–156 (2018).
    [Crossref]
  2. A. O. Ojo, B. Fond, B. G. M. V. Wachem, A. L. Heyes, and F. Beyrau, “Thermographic laser doppler velocimetry,” Opt. Lett. 40, 4759–4762 (2015).
    [Crossref] [PubMed]
  3. B. Fond, C. Abram, A. Heyes, A. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20, 22118–22133 (2012).
    [Crossref] [PubMed]
  4. W. A. Miller and M. Keyhani, “The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vectical falling film absorption,” Journal of Solar Energy Engineering 123, 30–42 (2001).
    [Crossref]
  5. N. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6, 19 (2013).
    [Crossref]
  6. P. Schreivogel, C. Abram, B. Fond, M. Straußwald, F. Beyrau, and M. Pfitzner, “Simultaneous khz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes,” International Journal of Heat and Mass Transfer pp. 390–400 (2016).
    [Crossref]
  7. J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39, 37–60 (2013).
    [Crossref]
  8. B. Fond, C. Abram, M. Pougin, and F. Beyrau, “Characterisation of dispersed phosphor particles for quantitative luminescence measurements,” Optical Materials (in revisions).
  9. C. Abram, B. Fond, and F. Beyrau, “High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles,” Opt. Express 23, 19453–19468 (2015).
    [Crossref] [PubMed]
  10. G. Blasse and B. Grabmaier, Luminescent Materials(Springer, 1994), 2nd ed.
    [Crossref]
  11. H. Koelmans and A. P. M. Cox, “Luminescence of modified tin activated strontium orthophosphate,” Journal of The Electrochemical Society 104, 442–445 (1957).
    [Crossref]
  12. J. F. Sarver, M. V. Hoffman, and F. A. Hummel, “Phase equilibria and tin activated luminescence in strontium orthophosphate systems,” J. Electrochem. Soc. 108, 1103–1110 (1961).
    [Crossref]
  13. A. Bril and W. Hoekstra, “Efficiencies of phosphors for short-wave ultra-violet excitation,” Philips Res. Repts 16, 356–370 (1961).
  14. S. Parke and R. S. Webb, “Optical properties of sn 2+ and sb 3+ in calcium metaphosphate glass,” Journal of Physics D: Applied Physics 4, 825 (1971).
    [Crossref]
  15. M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr 1−xMnxB6O10,” Journal of Solid State Chemistry 59, 272–279 (1985).
    [Crossref]
  16. W. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, 2007), 2nd ed.
  17. G. Bizarri and B. Moine, “On phosphor degradation mechanism: thermal treatment effects,” Journal of Luminescence 113, 199–213 (2005).
    [Crossref]
  18. A. Yánez-González, B. van Wachem, S. Skinner, F. Beyrau, and A. Heyes, “On the kinetics of thermal oxidation of the thermographic phosphor BaMgAl10O17:Eu,” Materials and Design 108, 145–150 (2016).
    [Crossref]
  19. Z. Yin, B. Fond, G. Eckel, C. Abram, W. Meier, I. Boxx, and F. Beyrau, “Investigation of BAM:Eu2+ particles as a tracer for temperature imaging in flames,” Combustion and Flame 184, 249–251 (2017).
    [Crossref]
  20. B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 118, 393–399 (2015).
    [Crossref]
  21. C. Abram, M. Pougin, and F. Beyrau, “Temperature field measurements in liquids using zno thermographic phosphor tracer particles,” Experiments in Fluids 57, 1–14 (2016).
    [Crossref]
  22. B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 121, 495–509 (2015).
    [Crossref]
  23. F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in nayf4:er3+, yb3+ upconversion nanocrystals,” ACS Nano 12, 4812–4823 (2018).
    [Crossref] [PubMed]
  24. D. Witkowski and D. A. Rothamer, “Investigation of aerosol phosphor thermometry (apt) measurement biases for eu:bam,” Applied Physics B 124, 202 (2018).
    [Crossref]
  25. J. Grafmeyer, J. Bourcet, J. Janin, J. Denis, and J. Loriers, “Luminescence properties of Sb3+ in yttrium phosphates,” Journal of Luminescence 11, 369–380 (1976).
    [Crossref]
  26. D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Oscillator strengths, Huang-Rhys parameters, and vibrational quantum energies of cerium-doped gadolinium oxyorthosilicate,” Journal of Applied Physics 87, 7793–7797 (2000).
    [Crossref]
  27. H. Donker, W. M. A. Smit, and G. Blasse, “On the luminescence of some tin-activated alkaline-earth orthophosphates,” J. Electrochem. Soc. 136, 3130–3135 (1989).
    [Crossref]
  28. A. Mendieta, B. Fond, P. Dragomirov, and F. Beyrau, “A time-gated approach for improved ratio-based phosphor thermometry of fast heat transfer phenomena,” submitted to Measurement Science and Technology.
  29. C. Abram, B. Fond, A. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B-Lasers O 111, 155–160 (2013).
    [Crossref]
  30. E. Hertle, S. Will, and L. Zigan, “Characterization of yag:dy, er for thermographic particle image velocimetry in a calibration cell,” Measurement Science and Technology 28, 025013 (2017).
    [Crossref]

2018 (3)

C. Abram, B. Fond, and F. Beyrau, “Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles,” Progress in Energy and Combustion Science 64, 93–156 (2018).
[Crossref]

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in nayf4:er3+, yb3+ upconversion nanocrystals,” ACS Nano 12, 4812–4823 (2018).
[Crossref] [PubMed]

D. Witkowski and D. A. Rothamer, “Investigation of aerosol phosphor thermometry (apt) measurement biases for eu:bam,” Applied Physics B 124, 202 (2018).
[Crossref]

2017 (2)

E. Hertle, S. Will, and L. Zigan, “Characterization of yag:dy, er for thermographic particle image velocimetry in a calibration cell,” Measurement Science and Technology 28, 025013 (2017).
[Crossref]

Z. Yin, B. Fond, G. Eckel, C. Abram, W. Meier, I. Boxx, and F. Beyrau, “Investigation of BAM:Eu2+ particles as a tracer for temperature imaging in flames,” Combustion and Flame 184, 249–251 (2017).
[Crossref]

2016 (2)

A. Yánez-González, B. van Wachem, S. Skinner, F. Beyrau, and A. Heyes, “On the kinetics of thermal oxidation of the thermographic phosphor BaMgAl10O17:Eu,” Materials and Design 108, 145–150 (2016).
[Crossref]

C. Abram, M. Pougin, and F. Beyrau, “Temperature field measurements in liquids using zno thermographic phosphor tracer particles,” Experiments in Fluids 57, 1–14 (2016).
[Crossref]

2015 (4)

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 121, 495–509 (2015).
[Crossref]

B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 118, 393–399 (2015).
[Crossref]

A. O. Ojo, B. Fond, B. G. M. V. Wachem, A. L. Heyes, and F. Beyrau, “Thermographic laser doppler velocimetry,” Opt. Lett. 40, 4759–4762 (2015).
[Crossref] [PubMed]

C. Abram, B. Fond, and F. Beyrau, “High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles,” Opt. Express 23, 19453–19468 (2015).
[Crossref] [PubMed]

2013 (3)

N. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6, 19 (2013).
[Crossref]

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39, 37–60 (2013).
[Crossref]

C. Abram, B. Fond, A. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B-Lasers O 111, 155–160 (2013).
[Crossref]

2012 (1)

2005 (1)

G. Bizarri and B. Moine, “On phosphor degradation mechanism: thermal treatment effects,” Journal of Luminescence 113, 199–213 (2005).
[Crossref]

2001 (1)

W. A. Miller and M. Keyhani, “The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vectical falling film absorption,” Journal of Solar Energy Engineering 123, 30–42 (2001).
[Crossref]

2000 (1)

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Oscillator strengths, Huang-Rhys parameters, and vibrational quantum energies of cerium-doped gadolinium oxyorthosilicate,” Journal of Applied Physics 87, 7793–7797 (2000).
[Crossref]

1989 (1)

H. Donker, W. M. A. Smit, and G. Blasse, “On the luminescence of some tin-activated alkaline-earth orthophosphates,” J. Electrochem. Soc. 136, 3130–3135 (1989).
[Crossref]

1985 (1)

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr 1−xMnxB6O10,” Journal of Solid State Chemistry 59, 272–279 (1985).
[Crossref]

1976 (1)

J. Grafmeyer, J. Bourcet, J. Janin, J. Denis, and J. Loriers, “Luminescence properties of Sb3+ in yttrium phosphates,” Journal of Luminescence 11, 369–380 (1976).
[Crossref]

1971 (1)

S. Parke and R. S. Webb, “Optical properties of sn 2+ and sb 3+ in calcium metaphosphate glass,” Journal of Physics D: Applied Physics 4, 825 (1971).
[Crossref]

1961 (2)

J. F. Sarver, M. V. Hoffman, and F. A. Hummel, “Phase equilibria and tin activated luminescence in strontium orthophosphate systems,” J. Electrochem. Soc. 108, 1103–1110 (1961).
[Crossref]

A. Bril and W. Hoekstra, “Efficiencies of phosphors for short-wave ultra-violet excitation,” Philips Res. Repts 16, 356–370 (1961).

1957 (1)

H. Koelmans and A. P. M. Cox, “Luminescence of modified tin activated strontium orthophosphate,” Journal of The Electrochemical Society 104, 442–445 (1957).
[Crossref]

Abram, C.

C. Abram, B. Fond, and F. Beyrau, “Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles,” Progress in Energy and Combustion Science 64, 93–156 (2018).
[Crossref]

Z. Yin, B. Fond, G. Eckel, C. Abram, W. Meier, I. Boxx, and F. Beyrau, “Investigation of BAM:Eu2+ particles as a tracer for temperature imaging in flames,” Combustion and Flame 184, 249–251 (2017).
[Crossref]

C. Abram, M. Pougin, and F. Beyrau, “Temperature field measurements in liquids using zno thermographic phosphor tracer particles,” Experiments in Fluids 57, 1–14 (2016).
[Crossref]

B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 118, 393–399 (2015).
[Crossref]

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 121, 495–509 (2015).
[Crossref]

C. Abram, B. Fond, and F. Beyrau, “High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles,” Opt. Express 23, 19453–19468 (2015).
[Crossref] [PubMed]

C. Abram, B. Fond, A. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B-Lasers O 111, 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. Heyes, A. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20, 22118–22133 (2012).
[Crossref] [PubMed]

B. Fond, C. Abram, M. Pougin, and F. Beyrau, “Characterisation of dispersed phosphor particles for quantitative luminescence measurements,” Optical Materials (in revisions).

P. Schreivogel, C. Abram, B. Fond, M. Straußwald, F. Beyrau, and M. Pfitzner, “Simultaneous khz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes,” International Journal of Heat and Mass Transfer pp. 390–400 (2016).
[Crossref]

Atakan, B.

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39, 37–60 (2013).
[Crossref]

Bennett, B. L.

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Oscillator strengths, Huang-Rhys parameters, and vibrational quantum energies of cerium-doped gadolinium oxyorthosilicate,” Journal of Applied Physics 87, 7793–7797 (2000).
[Crossref]

Beyrau, F.

C. Abram, B. Fond, and F. Beyrau, “Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles,” Progress in Energy and Combustion Science 64, 93–156 (2018).
[Crossref]

Z. Yin, B. Fond, G. Eckel, C. Abram, W. Meier, I. Boxx, and F. Beyrau, “Investigation of BAM:Eu2+ particles as a tracer for temperature imaging in flames,” Combustion and Flame 184, 249–251 (2017).
[Crossref]

A. Yánez-González, B. van Wachem, S. Skinner, F. Beyrau, and A. Heyes, “On the kinetics of thermal oxidation of the thermographic phosphor BaMgAl10O17:Eu,” Materials and Design 108, 145–150 (2016).
[Crossref]

C. Abram, M. Pougin, and F. Beyrau, “Temperature field measurements in liquids using zno thermographic phosphor tracer particles,” Experiments in Fluids 57, 1–14 (2016).
[Crossref]

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 121, 495–509 (2015).
[Crossref]

B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 118, 393–399 (2015).
[Crossref]

C. Abram, B. Fond, and F. Beyrau, “High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles,” Opt. Express 23, 19453–19468 (2015).
[Crossref] [PubMed]

A. O. Ojo, B. Fond, B. G. M. V. Wachem, A. L. Heyes, and F. Beyrau, “Thermographic laser doppler velocimetry,” Opt. Lett. 40, 4759–4762 (2015).
[Crossref] [PubMed]

C. Abram, B. Fond, A. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B-Lasers O 111, 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. Heyes, A. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20, 22118–22133 (2012).
[Crossref] [PubMed]

B. Fond, C. Abram, M. Pougin, and F. Beyrau, “Characterisation of dispersed phosphor particles for quantitative luminescence measurements,” Optical Materials (in revisions).

P. Schreivogel, C. Abram, B. Fond, M. Straußwald, F. Beyrau, and M. Pfitzner, “Simultaneous khz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes,” International Journal of Heat and Mass Transfer pp. 390–400 (2016).
[Crossref]

A. Mendieta, B. Fond, P. Dragomirov, and F. Beyrau, “A time-gated approach for improved ratio-based phosphor thermometry of fast heat transfer phenomena,” submitted to Measurement Science and Technology.

Bizarri, G.

G. Bizarri and B. Moine, “On phosphor degradation mechanism: thermal treatment effects,” Journal of Luminescence 113, 199–213 (2005).
[Crossref]

Blasse, G.

H. Donker, W. M. A. Smit, and G. Blasse, “On the luminescence of some tin-activated alkaline-earth orthophosphates,” J. Electrochem. Soc. 136, 3130–3135 (1989).
[Crossref]

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr 1−xMnxB6O10,” Journal of Solid State Chemistry 59, 272–279 (1985).
[Crossref]

G. Blasse and B. Grabmaier, Luminescent Materials(Springer, 1994), 2nd ed.
[Crossref]

Bourcet, J.

J. Grafmeyer, J. Bourcet, J. Janin, J. Denis, and J. Loriers, “Luminescence properties of Sb3+ in yttrium phosphates,” Journal of Luminescence 11, 369–380 (1976).
[Crossref]

Boxx, I.

Z. Yin, B. Fond, G. Eckel, C. Abram, W. Meier, I. Boxx, and F. Beyrau, “Investigation of BAM:Eu2+ particles as a tracer for temperature imaging in flames,” Combustion and Flame 184, 249–251 (2017).
[Crossref]

Bril, A.

A. Bril and W. Hoekstra, “Efficiencies of phosphors for short-wave ultra-violet excitation,” Philips Res. Repts 16, 356–370 (1961).

Brübach, J.

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39, 37–60 (2013).
[Crossref]

Castelijns, M.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in nayf4:er3+, yb3+ upconversion nanocrystals,” ACS Nano 12, 4812–4823 (2018).
[Crossref] [PubMed]

Cooke, D. W.

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Oscillator strengths, Huang-Rhys parameters, and vibrational quantum energies of cerium-doped gadolinium oxyorthosilicate,” Journal of Applied Physics 87, 7793–7797 (2000).
[Crossref]

Cox, A. P. M.

H. Koelmans and A. P. M. Cox, “Luminescence of modified tin activated strontium orthophosphate,” Journal of The Electrochemical Society 104, 442–445 (1957).
[Crossref]

Denis, J.

J. Grafmeyer, J. Bourcet, J. Janin, J. Denis, and J. Loriers, “Luminescence properties of Sb3+ in yttrium phosphates,” Journal of Luminescence 11, 369–380 (1976).
[Crossref]

Donker, H.

H. Donker, W. M. A. Smit, and G. Blasse, “On the luminescence of some tin-activated alkaline-earth orthophosphates,” J. Electrochem. Soc. 136, 3130–3135 (1989).
[Crossref]

Dragomirov, P.

A. Mendieta, B. Fond, P. Dragomirov, and F. Beyrau, “A time-gated approach for improved ratio-based phosphor thermometry of fast heat transfer phenomena,” submitted to Measurement Science and Technology.

Dreizler, A.

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39, 37–60 (2013).
[Crossref]

Eckel, G.

Z. Yin, B. Fond, G. Eckel, C. Abram, W. Meier, I. Boxx, and F. Beyrau, “Investigation of BAM:Eu2+ particles as a tracer for temperature imaging in flames,” Combustion and Flame 184, 249–251 (2017).
[Crossref]

Fond, B.

C. Abram, B. Fond, and F. Beyrau, “Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles,” Progress in Energy and Combustion Science 64, 93–156 (2018).
[Crossref]

Z. Yin, B. Fond, G. Eckel, C. Abram, W. Meier, I. Boxx, and F. Beyrau, “Investigation of BAM:Eu2+ particles as a tracer for temperature imaging in flames,” Combustion and Flame 184, 249–251 (2017).
[Crossref]

B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 118, 393–399 (2015).
[Crossref]

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 121, 495–509 (2015).
[Crossref]

A. O. Ojo, B. Fond, B. G. M. V. Wachem, A. L. Heyes, and F. Beyrau, “Thermographic laser doppler velocimetry,” Opt. Lett. 40, 4759–4762 (2015).
[Crossref] [PubMed]

C. Abram, B. Fond, and F. Beyrau, “High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles,” Opt. Express 23, 19453–19468 (2015).
[Crossref] [PubMed]

C. Abram, B. Fond, A. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B-Lasers O 111, 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. Heyes, A. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20, 22118–22133 (2012).
[Crossref] [PubMed]

B. Fond, C. Abram, M. Pougin, and F. Beyrau, “Characterisation of dispersed phosphor particles for quantitative luminescence measurements,” Optical Materials (in revisions).

P. Schreivogel, C. Abram, B. Fond, M. Straußwald, F. Beyrau, and M. Pfitzner, “Simultaneous khz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes,” International Journal of Heat and Mass Transfer pp. 390–400 (2016).
[Crossref]

A. Mendieta, B. Fond, P. Dragomirov, and F. Beyrau, “A time-gated approach for improved ratio-based phosphor thermometry of fast heat transfer phenomena,” submitted to Measurement Science and Technology.

Geitenbeek, R. G.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in nayf4:er3+, yb3+ upconversion nanocrystals,” ACS Nano 12, 4812–4823 (2018).
[Crossref] [PubMed]

Grabmaier, B.

G. Blasse and B. Grabmaier, Luminescent Materials(Springer, 1994), 2nd ed.
[Crossref]

Grafmeyer, J.

J. Grafmeyer, J. Bourcet, J. Janin, J. Denis, and J. Loriers, “Luminescence properties of Sb3+ in yttrium phosphates,” Journal of Luminescence 11, 369–380 (1976).
[Crossref]

Hertle, E.

E. Hertle, S. Will, and L. Zigan, “Characterization of yag:dy, er for thermographic particle image velocimetry in a calibration cell,” Measurement Science and Technology 28, 025013 (2017).
[Crossref]

Heyes, A.

A. Yánez-González, B. van Wachem, S. Skinner, F. Beyrau, and A. Heyes, “On the kinetics of thermal oxidation of the thermographic phosphor BaMgAl10O17:Eu,” Materials and Design 108, 145–150 (2016).
[Crossref]

C. Abram, B. Fond, A. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B-Lasers O 111, 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. Heyes, A. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20, 22118–22133 (2012).
[Crossref] [PubMed]

Heyes, A. L.

Hoekstra, W.

A. Bril and W. Hoekstra, “Efficiencies of phosphors for short-wave ultra-violet excitation,” Philips Res. Repts 16, 356–370 (1961).

Hoffman, M. V.

J. F. Sarver, M. V. Hoffman, and F. A. Hummel, “Phase equilibria and tin activated luminescence in strontium orthophosphate systems,” J. Electrochem. Soc. 108, 1103–1110 (1961).
[Crossref]

Hummel, F. A.

J. F. Sarver, M. V. Hoffman, and F. A. Hummel, “Phase equilibria and tin activated luminescence in strontium orthophosphate systems,” J. Electrochem. Soc. 108, 1103–1110 (1961).
[Crossref]

Janin, J.

J. Grafmeyer, J. Bourcet, J. Janin, J. Denis, and J. Loriers, “Luminescence properties of Sb3+ in yttrium phosphates,” Journal of Luminescence 11, 369–380 (1976).
[Crossref]

Jordan, J.

N. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6, 19 (2013).
[Crossref]

Kempf, A.

Keyhani, M.

W. A. Miller and M. Keyhani, “The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vectical falling film absorption,” Journal of Solar Energy Engineering 123, 30–42 (2001).
[Crossref]

Koelmans, H.

H. Koelmans and A. P. M. Cox, “Luminescence of modified tin activated strontium orthophosphate,” Journal of The Electrochemical Society 104, 442–445 (1957).
[Crossref]

Koskentalo, T.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr 1−xMnxB6O10,” Journal of Solid State Chemistry 59, 272–279 (1985).
[Crossref]

Leskelä, M.

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr 1−xMnxB6O10,” Journal of Solid State Chemistry 59, 272–279 (1985).
[Crossref]

Loriers, J.

J. Grafmeyer, J. Bourcet, J. Janin, J. Denis, and J. Loriers, “Luminescence properties of Sb3+ in yttrium phosphates,” Journal of Luminescence 11, 369–380 (1976).
[Crossref]

McClellan, K. J.

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Oscillator strengths, Huang-Rhys parameters, and vibrational quantum energies of cerium-doped gadolinium oxyorthosilicate,” Journal of Applied Physics 87, 7793–7797 (2000).
[Crossref]

Meier, W.

Z. Yin, B. Fond, G. Eckel, C. Abram, W. Meier, I. Boxx, and F. Beyrau, “Investigation of BAM:Eu2+ particles as a tracer for temperature imaging in flames,” Combustion and Flame 184, 249–251 (2017).
[Crossref]

Meijerink, A.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in nayf4:er3+, yb3+ upconversion nanocrystals,” ACS Nano 12, 4812–4823 (2018).
[Crossref] [PubMed]

Mendieta, A.

A. Mendieta, B. Fond, P. Dragomirov, and F. Beyrau, “A time-gated approach for improved ratio-based phosphor thermometry of fast heat transfer phenomena,” submitted to Measurement Science and Technology.

Miller, W. A.

W. A. Miller and M. Keyhani, “The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vectical falling film absorption,” Journal of Solar Energy Engineering 123, 30–42 (2001).
[Crossref]

Moine, B.

G. Bizarri and B. Moine, “On phosphor degradation mechanism: thermal treatment effects,” Journal of Luminescence 113, 199–213 (2005).
[Crossref]

Neal, N.

N. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6, 19 (2013).
[Crossref]

Ojo, A. O.

Parke, S.

S. Parke and R. S. Webb, “Optical properties of sn 2+ and sb 3+ in calcium metaphosphate glass,” Journal of Physics D: Applied Physics 4, 825 (1971).
[Crossref]

Pfitzner, M.

P. Schreivogel, C. Abram, B. Fond, M. Straußwald, F. Beyrau, and M. Pfitzner, “Simultaneous khz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes,” International Journal of Heat and Mass Transfer pp. 390–400 (2016).
[Crossref]

Pflitsch, C.

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39, 37–60 (2013).
[Crossref]

Pougin, M.

C. Abram, M. Pougin, and F. Beyrau, “Temperature field measurements in liquids using zno thermographic phosphor tracer particles,” Experiments in Fluids 57, 1–14 (2016).
[Crossref]

B. Fond, C. Abram, M. Pougin, and F. Beyrau, “Characterisation of dispersed phosphor particles for quantitative luminescence measurements,” Optical Materials (in revisions).

Prins, P. T.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in nayf4:er3+, yb3+ upconversion nanocrystals,” ACS Nano 12, 4812–4823 (2018).
[Crossref] [PubMed]

Rabouw, F. T.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in nayf4:er3+, yb3+ upconversion nanocrystals,” ACS Nano 12, 4812–4823 (2018).
[Crossref] [PubMed]

Roper, J. M.

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Oscillator strengths, Huang-Rhys parameters, and vibrational quantum energies of cerium-doped gadolinium oxyorthosilicate,” Journal of Applied Physics 87, 7793–7797 (2000).
[Crossref]

Rothamer, D.

N. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6, 19 (2013).
[Crossref]

Rothamer, D. A.

D. Witkowski and D. A. Rothamer, “Investigation of aerosol phosphor thermometry (apt) measurement biases for eu:bam,” Applied Physics B 124, 202 (2018).
[Crossref]

Sarver, J. F.

J. F. Sarver, M. V. Hoffman, and F. A. Hummel, “Phase equilibria and tin activated luminescence in strontium orthophosphate systems,” J. Electrochem. Soc. 108, 1103–1110 (1961).
[Crossref]

Schreivogel, P.

P. Schreivogel, C. Abram, B. Fond, M. Straußwald, F. Beyrau, and M. Pfitzner, “Simultaneous khz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes,” International Journal of Heat and Mass Transfer pp. 390–400 (2016).
[Crossref]

Shionoya, S.

W. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, 2007), 2nd ed.

Skinner, S.

A. Yánez-González, B. van Wachem, S. Skinner, F. Beyrau, and A. Heyes, “On the kinetics of thermal oxidation of the thermographic phosphor BaMgAl10O17:Eu,” Materials and Design 108, 145–150 (2016).
[Crossref]

Smit, W. M. A.

H. Donker, W. M. A. Smit, and G. Blasse, “On the luminescence of some tin-activated alkaline-earth orthophosphates,” J. Electrochem. Soc. 136, 3130–3135 (1989).
[Crossref]

Straußwald, M.

P. Schreivogel, C. Abram, B. Fond, M. Straußwald, F. Beyrau, and M. Pfitzner, “Simultaneous khz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes,” International Journal of Heat and Mass Transfer pp. 390–400 (2016).
[Crossref]

van Wachem, B.

A. Yánez-González, B. van Wachem, S. Skinner, F. Beyrau, and A. Heyes, “On the kinetics of thermal oxidation of the thermographic phosphor BaMgAl10O17:Eu,” Materials and Design 108, 145–150 (2016).
[Crossref]

Villanueva-Delgado, P.

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in nayf4:er3+, yb3+ upconversion nanocrystals,” ACS Nano 12, 4812–4823 (2018).
[Crossref] [PubMed]

Wachem, B. G. M. V.

Webb, R. S.

S. Parke and R. S. Webb, “Optical properties of sn 2+ and sb 3+ in calcium metaphosphate glass,” Journal of Physics D: Applied Physics 4, 825 (1971).
[Crossref]

Whittaker, M. T.

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Oscillator strengths, Huang-Rhys parameters, and vibrational quantum energies of cerium-doped gadolinium oxyorthosilicate,” Journal of Applied Physics 87, 7793–7797 (2000).
[Crossref]

Will, S.

E. Hertle, S. Will, and L. Zigan, “Characterization of yag:dy, er for thermographic particle image velocimetry in a calibration cell,” Measurement Science and Technology 28, 025013 (2017).
[Crossref]

Witkowski, D.

D. Witkowski and D. A. Rothamer, “Investigation of aerosol phosphor thermometry (apt) measurement biases for eu:bam,” Applied Physics B 124, 202 (2018).
[Crossref]

Yamamoto, H.

W. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, 2007), 2nd ed.

Yánez-González, A.

A. Yánez-González, B. van Wachem, S. Skinner, F. Beyrau, and A. Heyes, “On the kinetics of thermal oxidation of the thermographic phosphor BaMgAl10O17:Eu,” Materials and Design 108, 145–150 (2016).
[Crossref]

Yen, W.

W. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, 2007), 2nd ed.

Yin, Z.

Z. Yin, B. Fond, G. Eckel, C. Abram, W. Meier, I. Boxx, and F. Beyrau, “Investigation of BAM:Eu2+ particles as a tracer for temperature imaging in flames,” Combustion and Flame 184, 249–251 (2017).
[Crossref]

Zigan, L.

E. Hertle, S. Will, and L. Zigan, “Characterization of yag:dy, er for thermographic particle image velocimetry in a calibration cell,” Measurement Science and Technology 28, 025013 (2017).
[Crossref]

ACS Nano (1)

F. T. Rabouw, P. T. Prins, P. Villanueva-Delgado, M. Castelijns, R. G. Geitenbeek, and A. Meijerink, “Quenching pathways in nayf4:er3+, yb3+ upconversion nanocrystals,” ACS Nano 12, 4812–4823 (2018).
[Crossref] [PubMed]

Appl. Phys. B-Lasers O (3)

B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 118, 393–399 (2015).
[Crossref]

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for thermographic particle image velocimetry,” Appl. Phys. B-Lasers O 121, 495–509 (2015).
[Crossref]

C. Abram, B. Fond, A. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B-Lasers O 111, 155–160 (2013).
[Crossref]

Applied Physics B (1)

D. Witkowski and D. A. Rothamer, “Investigation of aerosol phosphor thermometry (apt) measurement biases for eu:bam,” Applied Physics B 124, 202 (2018).
[Crossref]

Combustion and Flame (1)

Z. Yin, B. Fond, G. Eckel, C. Abram, W. Meier, I. Boxx, and F. Beyrau, “Investigation of BAM:Eu2+ particles as a tracer for temperature imaging in flames,” Combustion and Flame 184, 249–251 (2017).
[Crossref]

Experiments in Fluids (1)

C. Abram, M. Pougin, and F. Beyrau, “Temperature field measurements in liquids using zno thermographic phosphor tracer particles,” Experiments in Fluids 57, 1–14 (2016).
[Crossref]

J. Electrochem. Soc. (2)

H. Donker, W. M. A. Smit, and G. Blasse, “On the luminescence of some tin-activated alkaline-earth orthophosphates,” J. Electrochem. Soc. 136, 3130–3135 (1989).
[Crossref]

J. F. Sarver, M. V. Hoffman, and F. A. Hummel, “Phase equilibria and tin activated luminescence in strontium orthophosphate systems,” J. Electrochem. Soc. 108, 1103–1110 (1961).
[Crossref]

Journal of Applied Physics (1)

D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker, “Oscillator strengths, Huang-Rhys parameters, and vibrational quantum energies of cerium-doped gadolinium oxyorthosilicate,” Journal of Applied Physics 87, 7793–7797 (2000).
[Crossref]

Journal of Luminescence (2)

J. Grafmeyer, J. Bourcet, J. Janin, J. Denis, and J. Loriers, “Luminescence properties of Sb3+ in yttrium phosphates,” Journal of Luminescence 11, 369–380 (1976).
[Crossref]

G. Bizarri and B. Moine, “On phosphor degradation mechanism: thermal treatment effects,” Journal of Luminescence 113, 199–213 (2005).
[Crossref]

Journal of Physics D: Applied Physics (1)

S. Parke and R. S. Webb, “Optical properties of sn 2+ and sb 3+ in calcium metaphosphate glass,” Journal of Physics D: Applied Physics 4, 825 (1971).
[Crossref]

Journal of Solar Energy Engineering (1)

W. A. Miller and M. Keyhani, “The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vectical falling film absorption,” Journal of Solar Energy Engineering 123, 30–42 (2001).
[Crossref]

Journal of Solid State Chemistry (1)

M. Leskelä, T. Koskentalo, and G. Blasse, “Luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 and Sr 1−xMnxB6O10,” Journal of Solid State Chemistry 59, 272–279 (1985).
[Crossref]

Journal of The Electrochemical Society (1)

H. Koelmans and A. P. M. Cox, “Luminescence of modified tin activated strontium orthophosphate,” Journal of The Electrochemical Society 104, 442–445 (1957).
[Crossref]

Materials and Design (1)

A. Yánez-González, B. van Wachem, S. Skinner, F. Beyrau, and A. Heyes, “On the kinetics of thermal oxidation of the thermographic phosphor BaMgAl10O17:Eu,” Materials and Design 108, 145–150 (2016).
[Crossref]

Measurement Science and Technology (1)

E. Hertle, S. Will, and L. Zigan, “Characterization of yag:dy, er for thermographic particle image velocimetry in a calibration cell,” Measurement Science and Technology 28, 025013 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Philips Res. Repts (1)

A. Bril and W. Hoekstra, “Efficiencies of phosphors for short-wave ultra-violet excitation,” Philips Res. Repts 16, 356–370 (1961).

Prog. Energ. Combust. (1)

J. Brübach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: A review,” Prog. Energ. Combust. 39, 37–60 (2013).
[Crossref]

Progress in Energy and Combustion Science (1)

C. Abram, B. Fond, and F. Beyrau, “Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles,” Progress in Energy and Combustion Science 64, 93–156 (2018).
[Crossref]

SAE Int. J. Engines (1)

N. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6, 19 (2013).
[Crossref]

Other (5)

P. Schreivogel, C. Abram, B. Fond, M. Straußwald, F. Beyrau, and M. Pfitzner, “Simultaneous khz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes,” International Journal of Heat and Mass Transfer pp. 390–400 (2016).
[Crossref]

B. Fond, C. Abram, M. Pougin, and F. Beyrau, “Characterisation of dispersed phosphor particles for quantitative luminescence measurements,” Optical Materials (in revisions).

G. Blasse and B. Grabmaier, Luminescent Materials(Springer, 1994), 2nd ed.
[Crossref]

W. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC Press, 2007), 2nd ed.

A. Mendieta, B. Fond, P. Dragomirov, and F. Beyrau, “A time-gated approach for improved ratio-based phosphor thermometry of fast heat transfer phenomena,” submitted to Measurement Science and Technology.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Setup for two colour imaging system including particle counting and 2-colour intensity ratio imaging system. The abbreviations used in the sketch are: EM-energy monitor, L-lens, M-mirror, cv-concave, cx-convex, cyl-cylindrical. Note that counting and two colour detection were not performed simultaneously.
Fig. 2
Fig. 2 Scanning electron microscope of the powder before and after grinding.
Fig. 3
Fig. 3 Differential scanning calorimetry of (Sr,Mg)3(PO4)2:Sn2+ powder and measured heat capacity.
Fig. 4
Fig. 4 Spectrally-resolved number of photons emitted per particle of 2 μm (Sr,Mg)3(PO4)2:Sn2+ particles following each laser pulse at a fluence of 20 mJ/cm2 at 266 nm at fluid temperatures of 23 and 62°C. The filter curves used in section 2.4 are also shown.
Fig. 5
Fig. 5 Luminescence decay curve of (Sr,Mg)3(PO4)2:Sn2+ bulk powder including mono-exponential fit. The inset curve is a linear plot corresponding to early times (t<1μs).
Fig. 6
Fig. 6 Emission intensity per particle as function of the excitation fluence.
Fig. 7
Fig. 7 Temperature dependence of the intensitiy ratio from suspended (Sr,Mg)3(PO4)2:Sn2+ and derived temperature sensitivity.
Fig. 8
Fig. 8 Indicated temperature difference as a function of excitation fluence for (Sr,Mg)3(PO4)2:Sn2+ at 300 K, including exponential fit, and sensitivity derived from the fit.
Fig. 9
Fig. 9 Normalised luminescence emission spectra recorded from 300 to 900 K in furnace. The filters used in section 3.5 are also shown.
Fig. 10
Fig. 10 Intensity ratio derived from the emission spectra and filter transmission curves of Fig. 9.
Fig. 11
Fig. 11 Spectrally integrated luminescence emission intensity as a function of temperature for (Sr,Mg)3(PO4)2:Sn2+, for BAM:Eu2+ in powder form [22], and from dispersed ZnO particles[9].
Fig. 12
Fig. 12 Emission decay time (1/e) of SMP:Sn2+ over the 300-900 K range.

Tables (2)

Tables Icon

Table 1 Size distribution parameters of the powder after grinding and de-agglomeration

Tables Icon

Table 2 Summary of the luminescence properties of the three phosphor characterised in the fluid phase:

Metrics