Abstract

A high-efficiency broadband orange laser is demonstrated by use of double-pass sum-frequency mixing in a step-chirped MgO-doped periodically poled lithium niobate (MgO:PPLN) crystal (ᴧ = 10.1-10.4 µm). The temperature-gradient technique is used to enhance the bandwidth of the output spectrum. A maximum orange output power of 129 mW (~65% conversion efficiency) was achieved at room temperature operation, and up to ~7.2 nm bandwidth at a temperature difference of 20 ᵒC was realized. This scheme presents an attractive approach for the generation of high power and broadband short-wavelength lasers from a single crystal, which may extend the potential biomedical and spectroscopic applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadening of the sum-frequency phase-matching bandwidth by temperature gradient in MgO:PPLN

Dismas K. Choge, Huai-Xi Chen, Yi-Bin Xu, Lei Guo, Guang-Wei Li, and Wan-Guo Liang
Appl. Opt. 57(19) 5459-5463 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Karrer, W. Bäumler, C. Abels, U. Hohenleutner, M. Landthaler, and R. M. Szeimies, “Long-pulse dye laser for photodynamic therapy: Investigations in vitro and in vivo,” Lasers Surg. Med. 25(1), 51–59 (1999).
    [Crossref] [PubMed]
  2. D.-T. Marzahl, P. W. Metz, C. Kränkel, and G. Huber, “Spectroscopy and laser operation of Sm3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19),” Opt. Express 23(16), 21118–21127 (2015).
    [Crossref] [PubMed]
  3. Z. Y. Xu and Y. Bi, “Large laser projection displays utilizing all-solid-state RGB lasers,” In Light-Emitting Diode Materials and Devices, Proceedings of Photonics Asia, China, 8–11 November 2004 (SPIE Proceedings; John Wiley &Sons Ltd, 2005), Vol. 5632, pp. 115–122.
    [Crossref]
  4. J. N. Farahani, M. J. Schibler, and L. A. Bentolila, “Stimulated Emission Depletion (STED) Microscopy: from Theory to Practice,” In Microscopy: Science, Technology, Applications and Education (Formatex Research Center, 2010), Vol. 2, pp. 1539–1547.
  5. K. A. Fedorova, M. A. Cataluna, P. R. Battle, C. M. Kaleva, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode,” Appl. Phys. B Lasers Opt. 103(1), 41–43 (2011).
    [Crossref]
  6. L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
    [Crossref]
  7. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22(12), 865–867 (1997).
    [Crossref] [PubMed]
  8. G. Imeshev, M. Arbore, S. Kasriel, and M. M. Fejer, “Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,” J. Opt. Soc. Am. B 17(8), 1420–1437 (2000).
    [Crossref]
  9. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
    [Crossref]
  10. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
    [Crossref]
  11. X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure,” Opt. Express 17(19), 16877–16884 (2009).
    [Crossref] [PubMed]
  12. H. M. Kretschmann, F. Heine, G. Huber, and T. Halldórsson, “All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer,” Opt. Lett. 22(19), 1461–1463 (1997).
    [Crossref] [PubMed]
  13. J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. Mortensen, P. Buchhave, and F. Laurell, “Efficient all solid-state continuous-wave yellow-orange light source,” Opt. Express 13(4), 1188–1192 (2005).
    [Crossref] [PubMed]
  14. H. M. Pask and J. A. Piper, “Efficient all-solid-state yellow laser source producing 1.2-W average power,” Opt. Lett. 24(21), 1490–1492 (1999).
    [Crossref] [PubMed]
  15. A. Sennaroglu, “Broadly tunable continuous-wave orange-red source based on intracavity-doubled Cr4+:forsterite laser,” Appl. Opt. 41(21), 4356–4359 (2002).
    [Crossref] [PubMed]
  16. T. H. My, Ph. Golder, O. Guillot, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42(2), 121–124 (2008).
    [Crossref]
  17. A. Bostani, A. Tehranchi, and R. Kashyap, “Super-tunable, broadband up-conversion of a high-power CW laser in an engineered nonlinear crystal,” Sci. Rep. 7(1), 883 (2017).
    [Crossref] [PubMed]
  18. S. D. Pan, X. Q. Yu, Z. Yan, Y. Shen, X. J. Lv, and S. N. Zhu, “Efficient generation of orange light in a quasi-periodically poled LiTaO3 crystal,” Appl. Phys. B Lasers Opt. 93(4), 749–752 (2008).
    [Crossref]
  19. S. Mieth, A. Henderson, and T. Halfmann, “Tunable, continuous-wave optical parametric oscillator with more than 1W output power in the orange visible spectrum,” Opt. Express 22(9), 11182–11191 (2014).
    [Crossref] [PubMed]
  20. S. E. Bisson, K. M. Armstrong, T. J. Kulp, and M. Hartings, “Broadly Tunable, Mode-Hop-Tuned cw Optical Parametric Oscillator Based on Periodically Poled Lithium Niobate,” Appl. Opt. 40(33), 6049–6055 (2001).
    [Crossref] [PubMed]
  21. H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, and J. Capmany, “IR-to-visible image upconverter under nonlinear crystal thermal gradient operation,” Opt. Express 26(2), 1133–1144 (2018).
    [Crossref] [PubMed]
  22. G. Li, D. Choge, H. Chen, Y. Xu, L. Guo, and W. Liang, “Broadband and Triple-Wavelength Continuous Wave Orange Laser by Single-Pass Sum-Frequency Generation in Step-Chirped MgO:PPLN,” Appl. Sci. (Basel) 8(9), 1657 (2018).
    [Crossref]
  23. G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23(3), 165–167 (1998).
    [Crossref] [PubMed]
  24. Y. L. Lee, Y. C. Noh, C. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
    [Crossref] [PubMed]
  25. N. Nikogosyan David, Nonlinear Optical Crystals:A Complete Survey (Springer, 2005).
  26. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B Lasers Opt. 91(2), 343–348 (2008).
    [Crossref]
  27. Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
    [Crossref]
  28. A. Markov, A. Mazhorova, H. Breitenborn, A. Bruhacs, M. Clerici, D. Modotto, O. Jedrkiewicz, P. di Trapani, A. Major, F. Vidal, and R. Morandotti, “Broadband and efficient adiabatic three-wave-mixing in a temperature-controlled bulk crystal,” Opt. Express 26(4), 4448–4458 (2018).
    [Crossref] [PubMed]
  29. B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
    [Crossref]
  30. A. K. Hansen, P. E. Andersen, O. B. Jensen, B. Sumpf, G. Erbert, and P. M. Petersen, “Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals,” Opt. Lett. 40(23), 5526–5529 (2015).
    [Crossref] [PubMed]

2018 (3)

2017 (1)

A. Bostani, A. Tehranchi, and R. Kashyap, “Super-tunable, broadband up-conversion of a high-power CW laser in an engineered nonlinear crystal,” Sci. Rep. 7(1), 883 (2017).
[Crossref] [PubMed]

2015 (2)

2014 (3)

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

S. Mieth, A. Henderson, and T. Halfmann, “Tunable, continuous-wave optical parametric oscillator with more than 1W output power in the orange visible spectrum,” Opt. Express 22(9), 11182–11191 (2014).
[Crossref] [PubMed]

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

2011 (1)

K. A. Fedorova, M. A. Cataluna, P. R. Battle, C. M. Kaleva, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode,” Appl. Phys. B Lasers Opt. 103(1), 41–43 (2011).
[Crossref]

2009 (1)

2008 (3)

S. D. Pan, X. Q. Yu, Z. Yan, Y. Shen, X. J. Lv, and S. N. Zhu, “Efficient generation of orange light in a quasi-periodically poled LiTaO3 crystal,” Appl. Phys. B Lasers Opt. 93(4), 749–752 (2008).
[Crossref]

T. H. My, Ph. Golder, O. Guillot, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42(2), 121–124 (2008).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

2005 (2)

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[Crossref]

J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. Mortensen, P. Buchhave, and F. Laurell, “Efficient all solid-state continuous-wave yellow-orange light source,” Opt. Express 13(4), 1188–1192 (2005).
[Crossref] [PubMed]

2003 (1)

2002 (1)

2001 (1)

2000 (1)

1999 (2)

S. Karrer, W. Bäumler, C. Abels, U. Hohenleutner, M. Landthaler, and R. M. Szeimies, “Long-pulse dye laser for photodynamic therapy: Investigations in vitro and in vivo,” Lasers Surg. Med. 25(1), 51–59 (1999).
[Crossref] [PubMed]

H. M. Pask and J. A. Piper, “Efficient all-solid-state yellow laser source producing 1.2-W average power,” Opt. Lett. 24(21), 1490–1492 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (3)

1994 (1)

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

Abels, C.

S. Karrer, W. Bäumler, C. Abels, U. Hohenleutner, M. Landthaler, and R. M. Szeimies, “Long-pulse dye laser for photodynamic therapy: Investigations in vitro and in vivo,” Lasers Surg. Med. 25(1), 51–59 (1999).
[Crossref] [PubMed]

Andersen, P. E.

Arbore, M.

Arbore, M. A.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

Armstrong, K. M.

Ashihara, S.

Battle, P. R.

K. A. Fedorova, M. A. Cataluna, P. R. Battle, C. M. Kaleva, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode,” Appl. Phys. B Lasers Opt. 103(1), 41–43 (2011).
[Crossref]

Bäumler, W.

S. Karrer, W. Bäumler, C. Abels, U. Hohenleutner, M. Landthaler, and R. M. Szeimies, “Long-pulse dye laser for photodynamic therapy: Investigations in vitro and in vivo,” Lasers Surg. Med. 25(1), 51–59 (1999).
[Crossref] [PubMed]

Bisson, S. E.

Bister, M.

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

Bostani, A.

A. Bostani, A. Tehranchi, and R. Kashyap, “Super-tunable, broadband up-conversion of a high-power CW laser in an engineered nonlinear crystal,” Sci. Rep. 7(1), 883 (2017).
[Crossref] [PubMed]

Breitenborn, H.

Bretenaker, F.

T. H. My, Ph. Golder, O. Guillot, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42(2), 121–124 (2008).
[Crossref]

Bruhacs, A.

Buchhave, P.

Capmany, J.

Cataluna, M. A.

K. A. Fedorova, M. A. Cataluna, P. R. Battle, C. M. Kaleva, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode,” Appl. Phys. B Lasers Opt. 103(1), 41–43 (2011).
[Crossref]

Cha, M.

Chen, B. Q.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Chen, H.

G. Li, D. Choge, H. Chen, Y. Xu, L. Guo, and W. Liang, “Broadband and Triple-Wavelength Continuous Wave Orange Laser by Single-Pass Sum-Frequency Generation in Step-Chirped MgO:PPLN,” Appl. Sci. (Basel) 8(9), 1657 (2018).
[Crossref]

Chen, Y.

Choge, D.

G. Li, D. Choge, H. Chen, Y. Xu, L. Guo, and W. Liang, “Broadband and Triple-Wavelength Continuous Wave Orange Laser by Single-Pass Sum-Frequency Generation in Step-Chirped MgO:PPLN,” Appl. Sci. (Basel) 8(9), 1657 (2018).
[Crossref]

Clerici, M.

di Trapani, P.

Erbert, G.

Fedorova, K. A.

K. A. Fedorova, M. A. Cataluna, P. R. Battle, C. M. Kaleva, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode,” Appl. Phys. B Lasers Opt. 103(1), 41–43 (2011).
[Crossref]

Fejer, M. M.

Fernández-Pousa, C. R.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

Golder, Ph.

T. H. My, Ph. Golder, O. Guillot, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42(2), 121–124 (2008).
[Crossref]

Guillot, O.

T. H. My, Ph. Golder, O. Guillot, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42(2), 121–124 (2008).
[Crossref]

Guina, M.

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

Guo, L.

G. Li, D. Choge, H. Chen, Y. Xu, L. Guo, and W. Liang, “Broadband and Triple-Wavelength Continuous Wave Orange Laser by Single-Pass Sum-Frequency Generation in Step-Chirped MgO:PPLN,” Appl. Sci. (Basel) 8(9), 1657 (2018).
[Crossref]

Halfmann, T.

Halldórsson, T.

Hansen, A. K.

Harkonen, A.

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

Hartings, M.

Heine, F.

Henderson, A.

Hohenleutner, U.

S. Karrer, W. Bäumler, C. Abels, U. Hohenleutner, M. Landthaler, and R. M. Szeimies, “Long-pulse dye laser for photodynamic therapy: Investigations in vitro and in vivo,” Lasers Surg. Med. 25(1), 51–59 (1999).
[Crossref] [PubMed]

Huber, G.

Imeshev, G.

Janousek, J.

Jedrkiewicz, O.

Jensen, O. B.

Johansson, S.

Jung, C.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[Crossref]

Y. L. Lee, Y. C. Noh, C. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
[Crossref] [PubMed]

Kaleva, C. M.

K. A. Fedorova, M. A. Cataluna, P. R. Battle, C. M. Kaleva, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode,” Appl. Phys. B Lasers Opt. 103(1), 41–43 (2011).
[Crossref]

Karrer, S.

S. Karrer, W. Bäumler, C. Abels, U. Hohenleutner, M. Landthaler, and R. M. Szeimies, “Long-pulse dye laser for photodynamic therapy: Investigations in vitro and in vivo,” Lasers Surg. Med. 25(1), 51–59 (1999).
[Crossref] [PubMed]

Kashyap, R.

A. Bostani, A. Tehranchi, and R. Kashyap, “Super-tunable, broadband up-conversion of a high-power CW laser in an engineered nonlinear crystal,” Sci. Rep. 7(1), 883 (2017).
[Crossref] [PubMed]

Kasriel, S.

Kato, M.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

Ko, D. K.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[Crossref]

Y. L. Lee, Y. C. Noh, C. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
[Crossref] [PubMed]

Kränkel, C.

Krestnikov, I. L.

K. A. Fedorova, M. A. Cataluna, P. R. Battle, C. M. Kaleva, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode,” Appl. Phys. B Lasers Opt. 103(1), 41–43 (2011).
[Crossref]

Kretschmann, H. M.

Kulp, T. J.

Laakso, A.

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

Landthaler, M.

S. Karrer, W. Bäumler, C. Abels, U. Hohenleutner, M. Landthaler, and R. M. Szeimies, “Long-pulse dye laser for photodynamic therapy: Investigations in vitro and in vivo,” Lasers Surg. Med. 25(1), 51–59 (1999).
[Crossref] [PubMed]

Laurell, F.

Lee, J.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[Crossref]

Y. L. Lee, Y. C. Noh, C. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
[Crossref] [PubMed]

Lee, Y. L.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[Crossref]

Y. L. Lee, Y. C. Noh, C. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
[Crossref] [PubMed]

Leinonen, T.

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

Li, G.

G. Li, D. Choge, H. Chen, Y. Xu, L. Guo, and W. Liang, “Broadband and Triple-Wavelength Continuous Wave Orange Laser by Single-Pass Sum-Frequency Generation in Step-Chirped MgO:PPLN,” Appl. Sci. (Basel) 8(9), 1657 (2018).
[Crossref]

Li, Z. Y.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Liang, W.

G. Li, D. Choge, H. Chen, Y. Xu, L. Guo, and W. Liang, “Broadband and Triple-Wavelength Continuous Wave Orange Laser by Single-Pass Sum-Frequency Generation in Step-Chirped MgO:PPLN,” Appl. Sci. (Basel) 8(9), 1657 (2018).
[Crossref]

Liu, R. J.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Livshits, D. A.

K. A. Fedorova, M. A. Cataluna, P. R. Battle, C. M. Kaleva, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode,” Appl. Phys. B Lasers Opt. 103(1), 41–43 (2011).
[Crossref]

Lv, X. J.

S. D. Pan, X. Q. Yu, Z. Yan, Y. Shen, X. J. Lv, and S. N. Zhu, “Efficient generation of orange light in a quasi-periodically poled LiTaO3 crystal,” Appl. Phys. B Lasers Opt. 93(4), 749–752 (2008).
[Crossref]

Lyytikainen, J.

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

Ma, B. Q.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Maestre, H.

Major, A.

Marco, O.

Markov, A.

Marzahl, D.-T.

Mazhorova, A.

Metz, P. W.

Mieth, S.

Ming, N. B.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[Crossref]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

Modotto, D.

Morandotti, R.

Mortensen, J.

My, T. H.

T. H. My, Ph. Golder, O. Guillot, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42(2), 121–124 (2008).
[Crossref]

Noh, Y. C.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[Crossref]

Y. L. Lee, Y. C. Noh, C. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
[Crossref] [PubMed]

Oh, K.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[Crossref]

Pan, S. D.

S. D. Pan, X. Q. Yu, Z. Yan, Y. Shen, X. J. Lv, and S. N. Zhu, “Efficient generation of orange light in a quasi-periodically poled LiTaO3 crystal,” Appl. Phys. B Lasers Opt. 93(4), 749–752 (2008).
[Crossref]

Pask, H. M.

Petersen, P. M.

Piper, J. A.

Proctor, M.

Rafailov, E. U.

K. A. Fedorova, M. A. Cataluna, P. R. Battle, C. M. Kaleva, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode,” Appl. Phys. B Lasers Opt. 103(1), 41–43 (2011).
[Crossref]

Ren, M. L.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

Sato, H.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

Sennaroglu, A.

Shen, Y.

S. D. Pan, X. Q. Yu, Z. Yan, Y. Shen, X. J. Lv, and S. N. Zhu, “Efficient generation of orange light in a quasi-periodically poled LiTaO3 crystal,” Appl. Phys. B Lasers Opt. 93(4), 749–752 (2008).
[Crossref]

Sheng, Y.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Sumpf, B.

Szeimies, R. M.

S. Karrer, W. Bäumler, C. Abels, U. Hohenleutner, M. Landthaler, and R. M. Szeimies, “Long-pulse dye laser for photodynamic therapy: Investigations in vitro and in vivo,” Lasers Surg. Med. 25(1), 51–59 (1999).
[Crossref] [PubMed]

Tehranchi, A.

A. Bostani, A. Tehranchi, and R. Kashyap, “Super-tunable, broadband up-conversion of a high-power CW laser in an engineered nonlinear crystal,” Sci. Rep. 7(1), 883 (2017).
[Crossref] [PubMed]

Tidemand-Lichtenberg, P.

Toikkanen, L.

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

Tonelli, M.

T. H. My, Ph. Golder, O. Guillot, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42(2), 121–124 (2008).
[Crossref]

Torregrosa, A. J.

Tukiainen, A.

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

Vidal, F.

Viheriala, J.

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

Wang, S.

Wang, T.

Wang, Z.

Xu, Y.

G. Li, D. Choge, H. Chen, Y. Xu, L. Guo, and W. Liang, “Broadband and Triple-Wavelength Continuous Wave Orange Laser by Single-Pass Sum-Frequency Generation in Step-Chirped MgO:PPLN,” Appl. Sci. (Basel) 8(9), 1657 (2018).
[Crossref]

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

Yan, Z.

S. D. Pan, X. Q. Yu, Z. Yan, Y. Shen, X. J. Lv, and S. N. Zhu, “Efficient generation of orange light in a quasi-periodically poled LiTaO3 crystal,” Appl. Phys. B Lasers Opt. 93(4), 749–752 (2008).
[Crossref]

Yu, B. A.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[Crossref]

Yu, T.

Yu, T. J.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[Crossref]

Yu, X. Q.

S. D. Pan, X. Q. Yu, Z. Yan, Y. Shen, X. J. Lv, and S. N. Zhu, “Efficient generation of orange light in a quasi-periodically poled LiTaO3 crystal,” Appl. Phys. B Lasers Opt. 93(4), 749–752 (2008).
[Crossref]

Zeng, X.

Zhang, C.

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Zhu, S. N.

S. D. Pan, X. Q. Yu, Z. Yan, Y. Shen, X. J. Lv, and S. N. Zhu, “Efficient generation of orange light in a quasi-periodically poled LiTaO3 crystal,” Appl. Phys. B Lasers Opt. 93(4), 749–752 (2008).
[Crossref]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[Crossref]

Zhu, Y. Y.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B Lasers Opt. (3)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B Lasers Opt. 91(2), 343–348 (2008).
[Crossref]

S. D. Pan, X. Q. Yu, Z. Yan, Y. Shen, X. J. Lv, and S. N. Zhu, “Efficient generation of orange light in a quasi-periodically poled LiTaO3 crystal,” Appl. Phys. B Lasers Opt. 93(4), 749–752 (2008).
[Crossref]

K. A. Fedorova, M. A. Cataluna, P. R. Battle, C. M. Kaleva, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, “Orange light generation from a PPKTP waveguide end pumped by a cw quantum-dot tunable laser diode,” Appl. Phys. B Lasers Opt. 103(1), 41–43 (2011).
[Crossref]

Appl. Phys. Lett. (1)

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[Crossref]

Appl. Sci. (Basel) (1)

G. Li, D. Choge, H. Chen, Y. Xu, L. Guo, and W. Liang, “Broadband and Triple-Wavelength Continuous Wave Orange Laser by Single-Pass Sum-Frequency Generation in Step-Chirped MgO:PPLN,” Appl. Sci. (Basel) 8(9), 1657 (2018).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

T. H. My, Ph. Golder, O. Guillot, M. Tonelli, and F. Bretenaker, “Single-frequency operation of an orange avalanche upconversion laser for high-resolution laser spectroscopy,” Eur. Phys. J. Appl. Phys. 42(2), 121–124 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the Phase-Matching Bandwidth in Quasi-Phase-Matched Second-Harmonic Generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Toikkanen, A. Harkonen, J. Lyytikainen, T. Leinonen, A. Laakso, A. Tukiainen, J. Viheriala, M. Bister, and M. Guina, “Optically pumped edge-emitting GaAs-based laser with direct orange emission,” IEEE Photonics Technol. Lett. 26(4), 384–386 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Lasers Surg. Med. (1)

S. Karrer, W. Bäumler, C. Abels, U. Hohenleutner, M. Landthaler, and R. M. Szeimies, “Long-pulse dye laser for photodynamic therapy: Investigations in vitro and in vivo,” Lasers Surg. Med. 25(1), 51–59 (1999).
[Crossref] [PubMed]

Light Sci. Appl. (1)

B. Q. Chen, M. L. Ren, R. J. Liu, C. Zhang, Y. Sheng, B. Q. Ma, and Z. Y. Li, “Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals,” Light Sci. Appl. 3(7), e189 (2014).
[Crossref]

Opt. Express (7)

H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, and J. Capmany, “IR-to-visible image upconverter under nonlinear crystal thermal gradient operation,” Opt. Express 26(2), 1133–1144 (2018).
[Crossref] [PubMed]

A. Markov, A. Mazhorova, H. Breitenborn, A. Bruhacs, M. Clerici, D. Modotto, O. Jedrkiewicz, P. di Trapani, A. Major, F. Vidal, and R. Morandotti, “Broadband and efficient adiabatic three-wave-mixing in a temperature-controlled bulk crystal,” Opt. Express 26(4), 4448–4458 (2018).
[Crossref] [PubMed]

Y. L. Lee, Y. C. Noh, C. Jung, T. Yu, D. K. Ko, and J. Lee, “Broadening of the second-harmonic phase-matching bandwidth in a temperature-gradient-controlled periodically poled Ti:LiNbO3 channel waveguide,” Opt. Express 11(22), 2813–2819 (2003).
[Crossref] [PubMed]

D.-T. Marzahl, P. W. Metz, C. Kränkel, and G. Huber, “Spectroscopy and laser operation of Sm3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19),” Opt. Express 23(16), 21118–21127 (2015).
[Crossref] [PubMed]

S. Mieth, A. Henderson, and T. Halfmann, “Tunable, continuous-wave optical parametric oscillator with more than 1W output power in the orange visible spectrum,” Opt. Express 22(9), 11182–11191 (2014).
[Crossref] [PubMed]

X. Zeng, S. Ashihara, Z. Wang, T. Wang, Y. Chen, and M. Cha, “Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure,” Opt. Express 17(19), 16877–16884 (2009).
[Crossref] [PubMed]

J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. Mortensen, P. Buchhave, and F. Laurell, “Efficient all solid-state continuous-wave yellow-orange light source,” Opt. Express 13(4), 1188–1192 (2005).
[Crossref] [PubMed]

Opt. Lett. (5)

Sci. Rep. (1)

A. Bostani, A. Tehranchi, and R. Kashyap, “Super-tunable, broadband up-conversion of a high-power CW laser in an engineered nonlinear crystal,” Sci. Rep. 7(1), 883 (2017).
[Crossref] [PubMed]

Science (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[Crossref]

Other (3)

Z. Y. Xu and Y. Bi, “Large laser projection displays utilizing all-solid-state RGB lasers,” In Light-Emitting Diode Materials and Devices, Proceedings of Photonics Asia, China, 8–11 November 2004 (SPIE Proceedings; John Wiley &Sons Ltd, 2005), Vol. 5632, pp. 115–122.
[Crossref]

J. N. Farahani, M. J. Schibler, and L. A. Bentolila, “Stimulated Emission Depletion (STED) Microscopy: from Theory to Practice,” In Microscopy: Science, Technology, Applications and Education (Formatex Research Center, 2010), Vol. 2, pp. 1539–1547.

N. Nikogosyan David, Nonlinear Optical Crystals:A Complete Survey (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simulated output spectra for different temperature gradients in the MgO:PPLN crystal.
Fig. 2
Fig. 2 Schematic of the experimental setup. ASE, amplified spontaneous emission; LD, laser diode; WDM, wave division multiplexer; CL, collimator lens; L, lens; GP, glass plate; M1: concave mirror; M2, plano mirror; θ, angle between first and second pass; O1 and O2, ovens; T1 and T2, temperatures at crystal ends.
Fig. 3
Fig. 3 Measured sum-frequency generation (SFG) spectra for MgO:PPLN crystal at (a) room temperature, (b) ΔT = 10 ᵒC, and (c) ΔT = 20 ᵒC.
Fig. 4
Fig. 4 Measured sum-frequency generation (SFG) output power versus the product of input fundamental power at ΔT = 0 ᵒC.
Fig. 5
Fig. 5 Measured output sum-frequency generation (SFG) spectra for higher temperature gradients.
Fig. 6
Fig. 6 Fluctuation of the generated orange light measured at maximum output power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T(z)=T(0)+[ T(L)T(0) ](z/ L)
Δk(z)= k 1 + k 2 k 3 + 2π/ Λ(z)
Λ n = Λ 0 [ 1+α( T n 25 C )+β ( T n 25 C ) 2 ]

Metrics