Abstract

A novel white compound material with spectral band pass filtering was proposed and demonstrated in the UV region for wavelengths smaller than 310 nm. This compound material can be obtained by dispersing CaF2 in polydimethylsiloxane (PDMS). Refractive index matching (RIM) of the compound material resulted in transmittance of up to 80% at RIM wavelength. In no-RIM wavelength region, refractive index difference about 0.005 could result in transmittance of down to 30% due to intense Rayleigh isotropic scattering. A good reproducibility of the transparent wavelength can be obtained with the specific CaF2 particle and PDMS matrix in this study. Meanwhile, simple calculation based on Rayleigh-Gans-Debye approximation [J. Am. Ceram. Soc. 86(3), 480 (2003)] in the soft diffusion model can explain the CaF2: PDMS compound film transmittance spectrum in the UV region, and the bandwidth narrowing condition.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Complex refractive index of nonspherical particles in the visible near infrared region--application to Bacillus subtilis spores

Maria A. Velazco-Roa, Elitsa Dzhongova, and Suresh N. Thennadil
Appl. Opt. 47(33) 6183-6189 (2008)

On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres.

Carlos Pecharromán, Gustavo Mata-Osoro, L. Antonio Díaz, R. Torrecillas, and J. S. Moya
Opt. Express 17(8) 6899-6912 (2009)

References

  • View by:
  • |
  • |
  • |

  1. P. Brescia, “Micro-volume purity assessment of nucleic acids using A260/A280 ratio and spectral scanning.” BioTek Instruments, Winooski, VT, Tech. Rep. AN060112–12, Rev, 06–04 (2012).
  2. A. Evilevitch, L. Lavelle, C. M. Knobler, E. Raspaud, and W. M. Gelbart, “Osmotic pressure inhibition of DNA ejection from phage,” Proc. Natl. Acad. Sci. U.S.A. 100(16), 9292–9295 (2003).
    [Crossref] [PubMed]
  3. R. F. Itzhaki and D. M. Gill, “A micro-biuret method for estimating proteins,” Anal. Biochem. 9(4), 401–410 (1964).
    [Crossref] [PubMed]
  4. F. Crapulli, D. Santoro, C. N. Haas, M. Notarnicola, and L. Liberti, “Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using Computational Fluid Dynamics,” Chem. Eng. J. 161(1–2), 9–18 (2010).
    [Crossref]
  5. A. Malherbe, “Interference filters for the far ultraviolet,” Appl. Opt. 13(6), 1275–1276 (1974).
    [Crossref] [PubMed]
  6. J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
    [Crossref] [PubMed]
  7. Z. Jakšić, M. Maksimović, and M. Sarajlić, “Silver–silica transparent metal structures as bandpass filters for the ultraviolet range,” J. Opt. A, Pure Appl. Opt. 7(1), 51–55 (2005).
    [Crossref]
  8. W. D. Li and S. Y. Chou, “Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography,” Opt. Express 18(2), 931–937 (2010).
    [Crossref] [PubMed]
  9. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
    [Crossref] [PubMed]
  10. Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
    [Crossref] [PubMed]
  11. J. Chen, C. Gu, H. Lin, and S. C. Chen, “Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces,” Opt. Express 23(16), 20977–20985 (2015).
    [Crossref] [PubMed]
  12. W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Biomed. Opt. Express 5(5), 1626–1635 (2014).
    [Crossref] [PubMed]
  13. C. Y. David, A. Richard, K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23(6), 2088–2093 (2005).
    [Crossref]
  14. Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 204, 44–47 (2013).
    [Crossref]
  15. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
    [Crossref] [PubMed]
  16. H. Nomada, K. Morita, H. Higuchi, H. Yoshioka, and Y. Oki, “Carbon-polydimethylsiloxane-based integratable optical technology for spectroscopic analysis,” Talanta 166, 428–432 (2017).
    [Crossref] [PubMed]
  17. P. N. Pusey and W. Van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320(6060), 340–342 (1986).
    [Crossref]
  18. R. Budwig, “Refractive index matching methods for liquid flow investigations,” Exp. Fluids 17(5), 350–355 (1994).
    [Crossref]
  19. D. C. Miller and et al.., “Analysis of transmitted optical spectrum enabling accelerated testing of multijunction concentrating photovoltaic designs,” Opt. Eng. 50(1), 013003 (2011).
    [Crossref]
  20. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965).
    [Crossref]
  21. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
    [Crossref]
  22. R. Apetz and M. P. B. Van Bruggen, “Transparent alumina: a light scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
    [Crossref]
  23. H. C. Hulst and H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1982), pp. 85–100.

2017 (1)

H. Nomada, K. Morita, H. Higuchi, H. Yoshioka, and Y. Oki, “Carbon-polydimethylsiloxane-based integratable optical technology for spectroscopic analysis,” Talanta 166, 428–432 (2017).
[Crossref] [PubMed]

2015 (2)

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

J. Chen, C. Gu, H. Lin, and S. C. Chen, “Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces,” Opt. Express 23(16), 20977–20985 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 204, 44–47 (2013).
[Crossref]

2011 (1)

D. C. Miller and et al.., “Analysis of transmitted optical spectrum enabling accelerated testing of multijunction concentrating photovoltaic designs,” Opt. Eng. 50(1), 013003 (2011).
[Crossref]

2010 (2)

F. Crapulli, D. Santoro, C. N. Haas, M. Notarnicola, and L. Liberti, “Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using Computational Fluid Dynamics,” Chem. Eng. J. 161(1–2), 9–18 (2010).
[Crossref]

W. D. Li and S. Y. Chou, “Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography,” Opt. Express 18(2), 931–937 (2010).
[Crossref] [PubMed]

2006 (1)

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

2005 (3)

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

Z. Jakšić, M. Maksimović, and M. Sarajlić, “Silver–silica transparent metal structures as bandpass filters for the ultraviolet range,” J. Opt. A, Pure Appl. Opt. 7(1), 51–55 (2005).
[Crossref]

C. Y. David, A. Richard, K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23(6), 2088–2093 (2005).
[Crossref]

2003 (3)

R. Apetz and M. P. B. Van Bruggen, “Transparent alumina: a light scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[Crossref]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[Crossref] [PubMed]

A. Evilevitch, L. Lavelle, C. M. Knobler, E. Raspaud, and W. M. Gelbart, “Osmotic pressure inhibition of DNA ejection from phage,” Proc. Natl. Acad. Sci. U.S.A. 100(16), 9292–9295 (2003).
[Crossref] [PubMed]

1994 (1)

R. Budwig, “Refractive index matching methods for liquid flow investigations,” Exp. Fluids 17(5), 350–355 (1994).
[Crossref]

1986 (1)

P. N. Pusey and W. Van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320(6060), 340–342 (1986).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

1974 (1)

1965 (1)

1964 (1)

R. F. Itzhaki and D. M. Gill, “A micro-biuret method for estimating proteins,” Anal. Biochem. 9(4), 401–410 (1964).
[Crossref] [PubMed]

Apetz, R.

R. Apetz and M. P. B. Van Bruggen, “Transparent alumina: a light scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[Crossref]

Beecher, S.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Bradley, D. D.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Budwig, R.

R. Budwig, “Refractive index matching methods for liquid flow investigations,” Exp. Fluids 17(5), 350–355 (1994).
[Crossref]

Cai, Z.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 204, 44–47 (2013).
[Crossref]

Camou, S.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[Crossref] [PubMed]

Chen, J.

Chen, S. C.

Chou, S. Y.

Conchello, J. A.

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

Cornwell, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Crapulli, F.

F. Crapulli, D. Santoro, C. N. Haas, M. Notarnicola, and L. Liberti, “Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using Computational Fluid Dynamics,” Chem. Eng. J. 161(1–2), 9–18 (2010).
[Crossref]

David, C. Y.

Demello, A. J.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Demello, J. C.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Eich, K.

Evilevitch, A.

A. Evilevitch, L. Lavelle, C. M. Knobler, E. Raspaud, and W. M. Gelbart, “Osmotic pressure inhibition of DNA ejection from phage,” Proc. Natl. Acad. Sci. U.S.A. 100(16), 9292–9295 (2003).
[Crossref] [PubMed]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[Crossref] [PubMed]

Fujita, H.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[Crossref] [PubMed]

Gale, B. K.

Gelbart, W. M.

A. Evilevitch, L. Lavelle, C. M. Knobler, E. Raspaud, and W. M. Gelbart, “Osmotic pressure inhibition of DNA ejection from phage,” Proc. Natl. Acad. Sci. U.S.A. 100(16), 9292–9295 (2003).
[Crossref] [PubMed]

Gill, D. M.

R. F. Itzhaki and D. M. Gill, “A micro-biuret method for estimating proteins,” Anal. Biochem. 9(4), 401–410 (1964).
[Crossref] [PubMed]

Gu, C.

Haas, C. N.

F. Crapulli, D. Santoro, C. N. Haas, M. Notarnicola, and L. Liberti, “Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using Computational Fluid Dynamics,” Chem. Eng. J. 161(1–2), 9–18 (2010).
[Crossref]

Higuchi, H.

H. Nomada, K. Morita, H. Higuchi, H. Yoshioka, and Y. Oki, “Carbon-polydimethylsiloxane-based integratable optical technology for spectroscopic analysis,” Talanta 166, 428–432 (2017).
[Crossref] [PubMed]

Hofmann, O.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Itzhaki, R. F.

R. F. Itzhaki and D. M. Gill, “A micro-biuret method for estimating proteins,” Anal. Biochem. 9(4), 401–410 (1964).
[Crossref] [PubMed]

Jakšic, Z.

Z. Jakšić, M. Maksimović, and M. Sarajlić, “Silver–silica transparent metal structures as bandpass filters for the ultraviolet range,” J. Opt. A, Pure Appl. Opt. 7(1), 51–55 (2005).
[Crossref]

Jeang, J.

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

Knobler, C. M.

A. Evilevitch, L. Lavelle, C. M. Knobler, E. Raspaud, and W. M. Gelbart, “Osmotic pressure inhibition of DNA ejection from phage,” Proc. Natl. Acad. Sci. U.S.A. 100(16), 9292–9295 (2003).
[Crossref] [PubMed]

Lavelle, L.

A. Evilevitch, L. Lavelle, C. M. Knobler, E. Raspaud, and W. M. Gelbart, “Osmotic pressure inhibition of DNA ejection from phage,” Proc. Natl. Acad. Sci. U.S.A. 100(16), 9292–9295 (2003).
[Crossref] [PubMed]

Lee, C. H.

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

Lee, W. M.

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

Li, W. D.

Liberti, L.

F. Crapulli, D. Santoro, C. N. Haas, M. Notarnicola, and L. Liberti, “Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using Computational Fluid Dynamics,” Chem. Eng. J. 161(1–2), 9–18 (2010).
[Crossref]

Lichtman, J. W.

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

Lin, H.

Maksimovic, M.

Z. Jakšić, M. Maksimović, and M. Sarajlić, “Silver–silica transparent metal structures as bandpass filters for the ultraviolet range,” J. Opt. A, Pure Appl. Opt. 7(1), 51–55 (2005).
[Crossref]

Malherbe, A.

Malitson, H.

Miller, D. C.

D. C. Miller and et al.., “Analysis of transmitted optical spectrum enabling accelerated testing of multijunction concentrating photovoltaic designs,” Opt. Eng. 50(1), 013003 (2011).
[Crossref]

Morita, K.

H. Nomada, K. Morita, H. Higuchi, H. Yoshioka, and Y. Oki, “Carbon-polydimethylsiloxane-based integratable optical technology for spectroscopic analysis,” Talanta 166, 428–432 (2017).
[Crossref] [PubMed]

Nomada, H.

H. Nomada, K. Morita, H. Higuchi, H. Yoshioka, and Y. Oki, “Carbon-polydimethylsiloxane-based integratable optical technology for spectroscopic analysis,” Talanta 166, 428–432 (2017).
[Crossref] [PubMed]

Notarnicola, M.

F. Crapulli, D. Santoro, C. N. Haas, M. Notarnicola, and L. Liberti, “Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using Computational Fluid Dynamics,” Chem. Eng. J. 161(1–2), 9–18 (2010).
[Crossref]

Oki, Y.

H. Nomada, K. Morita, H. Higuchi, H. Yoshioka, and Y. Oki, “Carbon-polydimethylsiloxane-based integratable optical technology for spectroscopic analysis,” Talanta 166, 428–432 (2017).
[Crossref] [PubMed]

Phan, T. G.

Pusey, P. N.

P. N. Pusey and W. Van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320(6060), 340–342 (1986).
[Crossref]

Qiu, W.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 204, 44–47 (2013).
[Crossref]

Raja, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Raspaud, E.

A. Evilevitch, L. Lavelle, C. M. Knobler, E. Raspaud, and W. M. Gelbart, “Osmotic pressure inhibition of DNA ejection from phage,” Proc. Natl. Acad. Sci. U.S.A. 100(16), 9292–9295 (2003).
[Crossref] [PubMed]

Reece, P. J.

Richard, A.

Santoro, D.

F. Crapulli, D. Santoro, C. N. Haas, M. Notarnicola, and L. Liberti, “Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using Computational Fluid Dynamics,” Chem. Eng. J. 161(1–2), 9–18 (2010).
[Crossref]

Sarajlic, M.

Z. Jakšić, M. Maksimović, and M. Sarajlić, “Silver–silica transparent metal structures as bandpass filters for the ultraviolet range,” J. Opt. A, Pure Appl. Opt. 7(1), 51–55 (2005).
[Crossref]

Shao, G.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 204, 44–47 (2013).
[Crossref]

Shih, W. C.

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

Sung, Y. L.

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

Upadhya, A.

Van Bruggen, M. P. B.

R. Apetz and M. P. B. Van Bruggen, “Transparent alumina: a light scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[Crossref]

Van Megen, W.

P. N. Pusey and W. Van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320(6060), 340–342 (1986).
[Crossref]

Wang, W.

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 204, 44–47 (2013).
[Crossref]

Wang, X.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

Yoshioka, H.

H. Nomada, K. Morita, H. Higuchi, H. Yoshioka, and Y. Oki, “Carbon-polydimethylsiloxane-based integratable optical technology for spectroscopic analysis,” Talanta 166, 428–432 (2017).
[Crossref] [PubMed]

Anal. Biochem. (1)

R. F. Itzhaki and D. M. Gill, “A micro-biuret method for estimating proteins,” Anal. Biochem. 9(4), 401–410 (1964).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Chem. Eng. J. (1)

F. Crapulli, D. Santoro, C. N. Haas, M. Notarnicola, and L. Liberti, “Modeling virus transport and inactivation in a fluoropolymer tube UV photoreactor using Computational Fluid Dynamics,” Chem. Eng. J. 161(1–2), 9–18 (2010).
[Crossref]

Exp. Fluids (1)

R. Budwig, “Refractive index matching methods for liquid flow investigations,” Exp. Fluids 17(5), 350–355 (1994).
[Crossref]

J. Am. Ceram. Soc. (1)

R. Apetz and M. P. B. Van Bruggen, “Transparent alumina: a light scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[Crossref]

J. Biomed. Opt. (1)

Y. L. Sung, J. Jeang, C. H. Lee, and W. C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20(4), 047005 (2015).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

Z. Jakšić, M. Maksimović, and M. Sarajlić, “Silver–silica transparent metal structures as bandpass filters for the ultraviolet range,” J. Opt. A, Pure Appl. Opt. 7(1), 51–55 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

Lab Chip (2)

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[Crossref] [PubMed]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[Crossref] [PubMed]

Nat. Methods (1)

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

Nature (1)

P. N. Pusey and W. Van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320(6060), 340–342 (1986).
[Crossref]

Opt. Eng. (1)

D. C. Miller and et al.., “Analysis of transmitted optical spectrum enabling accelerated testing of multijunction concentrating photovoltaic designs,” Opt. Eng. 50(1), 013003 (2011).
[Crossref]

Opt. Express (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Evilevitch, L. Lavelle, C. M. Knobler, E. Raspaud, and W. M. Gelbart, “Osmotic pressure inhibition of DNA ejection from phage,” Proc. Natl. Acad. Sci. U.S.A. 100(16), 9292–9295 (2003).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

Z. Cai, W. Qiu, G. Shao, and W. Wang, “A new fabrication method for all-PDMS waveguides,” Sens. Actuators A Phys. 204, 44–47 (2013).
[Crossref]

Talanta (1)

H. Nomada, K. Morita, H. Higuchi, H. Yoshioka, and Y. Oki, “Carbon-polydimethylsiloxane-based integratable optical technology for spectroscopic analysis,” Talanta 166, 428–432 (2017).
[Crossref] [PubMed]

Other (2)

H. C. Hulst and H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1982), pp. 85–100.

P. Brescia, “Micro-volume purity assessment of nucleic acids using A260/A280 ratio and spectral scanning.” BioTek Instruments, Winooski, VT, Tech. Rep. AN060112–12, Rev, 06–04 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Refractive index dispersion of PDMSR (Ref [19].), SiO2 (Ref [20].), and CaF2 (Ref [21].) from literature; PDMS with matrix- A, B, C (A: SIM-360, B: KE-103 from Shinetsu Chemical, C: SYLGARD 184 from Dow Corning) measured by spectroscopic ellipsometer (SEMILAB, SE-2000). λcp1 is the cross-point wavelength of SiO2 and PDMSR; λcp2 is the cross-point wavelength of CaF2 and PDMS.
Fig. 2
Fig. 2 (a) Calculated absorption spectra of PDMS matrices A, B, C and D. (b) The measured transmittance spectra of 1.0 mm thick matrices A, B, C in solid state and D in liquid state.
Fig. 3
Fig. 3 Fabrication process for the scattering filters using PDMS dispersed with inorganic material.
Fig. 4
Fig. 4 (a) Transmittance spectra of 1.3 mm thick films dispersing SiO2 particles (16 wt.%, 20 wt.%, 24 wt.%) in matrix-A. (b) Transmittance spectra normalized by PDMS (only matrix-A) film spectrum.
Fig. 5
Fig. 5 Evaluated results for different commercial CaF2 materials. Combination I: powder I dispersed in PDMS (matrix-A) film with 15, 20, 25, 30, and 35 wt.% concentrations; Combination II: powder II dispersed in PDMS (matrix-A) film with 5 and 10 wt.% concentrations; Combination III: powder III dispersed in PDMS (matrix-A) film with 30 wt.% concentration; Combination IV: powder IV dispersed in PDMS (matrix-A) film with 10 and 30 wt.% concentrations.
Fig. 6
Fig. 6 Transparency of 1.0 mm-thick film of the samples. (a) only matrix-A (b) 30 wt.% CaF2 in matrix-A (c) only matrix-B, and (d) 30 wt.% CaF2 in matrix-B.
Fig. 7
Fig. 7 (a) Transmittance spectra of CaF2: PDMS films (1.0 mm thickness) with matrix-A and varying concentrations of 15, 20, 25, 30, 35 and 60 wt.% CaF2 (b) Normalized spectra by PDMS (only matrix-A) film transmittance.
Fig. 8
Fig. 8 (a) Transmittance spectra of CaF2: PDMS films (1.0 mm thickness) with matrix-B. The CaF2 particle concentrations were 20 and 30 wt.%. (b)Transmittance spectra of CaF2: PDMS with matrices C (1.0 mm thick film) and D (liquid state in 1.0 mm quartz cell). The CaF2 particle concentrations are 10 wt.%
Fig. 9
Fig. 9 (a) The microscopic image of 30 wt.% CaF2: PDMS with matrix-A film was measured by optical microscope (Nikon, ECLIPSE TE2000-U). (b) Scanning electron microscope image of powder I measured by scanning electron microscope (Hitachi, SU3500). (c) The maximum transmittance as peak wavelength from normalized transmittance measurement of 15~35 wt.% CaF2 and matrix A samples
Fig. 10
Fig. 10 (a) Microscope image of CaF2 particle in H2O (concentration of CaF2: 1 wt.%), measured by optical microscope (Nikon, ECLIPSE TE2000-U). (b) Distribution of CaF2 particle size counted using 16 microscope images with different shooting conditions; it can be fitted with log-normal distribution (μ = −1.05, σ = 1.53).
Fig. 11
Fig. 11 (a) Set-up of diffusing profile measurement in the visible region. (b) Diffusing profile in the visible region (CaF2: PDMS film with matrix-A (CaF2 concentration: 30 wt.%), incident light wavelength: 532 nm).
Fig. 12
Fig. 12 (a) Set-up of diffusing profile measurement in the UV field. (b) Diffusing profile in UV field for the CaF2: PDMS film with matrix-A (CaF2 concentration: 30 wt.%), incident light wavelength: 300 nm).
Fig. 13
Fig. 13 Fitting results: (a) simulation conditions: CaF2: PDMS film with matrix-A, particle diameter and distribution of CaF2 powder I in Fig. 9(b) (μ = −1.05, σ = 1.53), concentration: 30 wt.%, thickness: 1 mm; experimental data: the spectra of CaF2: PDMS film with matrix-A, concentration: 30 wt.%, thickness: 1 mm; (b) simulation conditions: CaF2:PDMS film with matrix-A, particle diameter and distribution of CaF2 powder I in Fig. 9(b) (μ = −1.05, σ = 1.53), concentration: 10–60 wt.%, thickness: 1 mm; experimental data: bandwidth (FWHM) calculated from the spectra of CaF2:PDMS films with matrix-A, concentration: 15, 20, 25, 30, 35, 60 wt.%, thickness: 1 mm.
Fig. 14
Fig. 14 Simulation results based on simulated or experimental particles size and distribution of log-normal distribution; simulation conditions: CaF2: PDMS film with matrix-A, 1 mm thickness, concentration: 10–60 wt.%, (a) mean CaF2 particle size: 1 μm, standard deviation of polydisperse particles (simulation) is 9.0 μm (μ = −2, σ = 2.05); standard deviation of polydisperse particles (experiment) is 3.4 μm (μ = −1.05, σ = 1.53); standard deviation of monodisperse particles (simulation) is 0 μm (μ = σ = 0); (b) standard deviation of distribution is 3.4 μm, the average particle sizes are 0.5 μm (μ = −2.63, σ = 1.97), 1 μm (μ = −1.05, σ = 1.53), 5 μm (μ = 1.41, σ = 0.62), and 10 μm (μ = 2.25, σ = 0.34).

Tables (2)

Tables Icon

Table 1 Evaluation of compound of commercial CaF2 powders dispersed in different PDMSs

Tables Icon

Table 2 Property of four kinds of PDMS matrices

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 2π xσ e (μ+Log(x)) 2 2 σ 2 (x>0)
Τ= e σNL
N= ϒ 4 3 π ( D 2 ) 3
σ RGD =2π ( D 2 ) 4 k 2 ( Δn n ) 2
{ | m1 |1 kD| m1 |1
σ Hulst =2 4 p sinp 4 p 2 ( 1cosp ),p= kDΔn n 2

Metrics