Abstract

Femtosecond laser ablation of materials can alter their optical, chemical, electrical, and mechanical properties. It has been previously shown that ablated metals can be simultaneously black and superhydrophobic. In this work, we demonstrate a variety of colored superhydrophobic metals. By raster scanning the surface of copper and overlapping a portion of the irradiated area, we create two distinct and geometrically separated nanostructured regions, one forming color, the other inducing superhydrophobicity. Colors forming along the trough of the raster-scanned lines are formed by nanoparticle-induced plasmonic absorption and result in a range of colors from purple to red, depending on the raster scanning speed of the laser. The edges of the raster-scannedarea, having been doubly irradiated, form large hierarchical micro/nanostructures which induce superhydrophobicity. Contact angle measurements, spectral examination, and nanoparticle analysis enable us to fully characterize and understand these structures and how they result in dual functionality colored superhydrophobic surfaces.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Modification of wettability of stainless steel by picosecond laser surface microstructuring

Zongjie Bao, Chengwei Wang, Yang Zhang, and Quan-Zhong Zhao
Photon. Res. 3(4) 180-183 (2015)

Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam

Fan Zhang, Ji’an Duan, Xiongfeng Zhou, and Cong Wang
Opt. Express 26(26) 34016-34030 (2018)

Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification

Tae Oh Yoon, Hyun Joo Shin, Sae Chae Jeoung, and Youn-Il Park
Opt. Express 16(17) 12715-12725 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” Journal of Applied Physics 117, 033103 (2015).
    [Crossref]
  2. T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22, 4917–4919 (2006).
    [Crossref] [PubMed]
  3. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Applied Surface Science 256, 61–66 (2009).
    [Crossref]
  4. A. Vorobyev and C. Guo, “Water sprints uphill on glass,” Journal of Applied Physics 108, 123512 (2010).
    [Crossref]
  5. A. Vorobyev and C. Guo, “Femtosecond laser modification of material wetting properties: a brief review,” Science of Advanced Materials 4, 432–438 (2012).
    [Crossref]
  6. M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Applied Surface Science 257, 7771–7777 (2011).
    [Crossref]
  7. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Applied Physics Letters 92, 041914 (2008).
    [Crossref]
  8. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser & Photonics Reviews 7, 385–407 (2013).
    [Crossref]
  9. Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Appl. Surf. Sci. 256, 1582–1588 (2009).
    [Crossref]
  10. S. O’Hana, A. J. Pinkerton, K. Shoba, A. Gale, and L. Li, “Laser surface colouring of titanium for contemporary jewellery,” Surface Engineering 24, 147–153 (2008).
    [Crossref]
  11. A. P. Del Pino, J. Fernández-Pradas, P. Serra, and J. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surface and Coat. Technology 187, 106–112 (2004).
    [Crossref]
  12. S. Wang and L. Jiang, “Definition of superhydrophobic states,” Adv. Mater. 19, 3423–3424 (2007).
  13. A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
    [Crossref] [PubMed]
  14. M. V. Rukosuyev, J. Lee, S. J. Cho, G. Lim, and M. B. Jun, “One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation,” Appl. Surf. Sci. 313, 411–417 (2014).
    [Crossref]
  15. Y. Su, B. Ji, Y. Huang, and K.-C. Hwang, “Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation,” Langmuir 26, 18926–18937 (2010).
    [Crossref] [PubMed]
  16. A. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
    [Crossref]
  17. J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures— a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron.23 (2017).
    [Crossref]
  18. A. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008).
    [Crossref]
  19. A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301 (2009).
    [Crossref] [PubMed]

2015 (1)

A. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” Journal of Applied Physics 117, 033103 (2015).
[Crossref]

2014 (1)

M. V. Rukosuyev, J. Lee, S. J. Cho, G. Lim, and M. B. Jun, “One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation,” Appl. Surf. Sci. 313, 411–417 (2014).
[Crossref]

2013 (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser & Photonics Reviews 7, 385–407 (2013).
[Crossref]

2012 (1)

A. Vorobyev and C. Guo, “Femtosecond laser modification of material wetting properties: a brief review,” Science of Advanced Materials 4, 432–438 (2012).
[Crossref]

2011 (1)

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Applied Surface Science 257, 7771–7777 (2011).
[Crossref]

2010 (2)

Y. Su, B. Ji, Y. Huang, and K.-C. Hwang, “Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation,” Langmuir 26, 18926–18937 (2010).
[Crossref] [PubMed]

A. Vorobyev and C. Guo, “Water sprints uphill on glass,” Journal of Applied Physics 108, 123512 (2010).
[Crossref]

2009 (4)

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Applied Surface Science 256, 61–66 (2009).
[Crossref]

Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Appl. Surf. Sci. 256, 1582–1588 (2009).
[Crossref]

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301 (2009).
[Crossref] [PubMed]

A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
[Crossref] [PubMed]

2008 (3)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Applied Physics Letters 92, 041914 (2008).
[Crossref]

A. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008).
[Crossref]

S. O’Hana, A. J. Pinkerton, K. Shoba, A. Gale, and L. Li, “Laser surface colouring of titanium for contemporary jewellery,” Surface Engineering 24, 147–153 (2008).
[Crossref]

2007 (2)

A. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

S. Wang and L. Jiang, “Definition of superhydrophobic states,” Adv. Mater. 19, 3423–3424 (2007).

2006 (1)

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22, 4917–4919 (2006).
[Crossref] [PubMed]

2004 (1)

A. P. Del Pino, J. Fernández-Pradas, P. Serra, and J. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surface and Coat. Technology 187, 106–112 (2004).
[Crossref]

Ahmed, F.

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Applied Surface Science 257, 7771–7777 (2011).
[Crossref]

Ahsan, M. S.

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Applied Surface Science 257, 7771–7777 (2011).
[Crossref]

Baldacchini, T.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22, 4917–4919 (2006).
[Crossref] [PubMed]

Bonse, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures— a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron.23 (2017).
[Crossref]

Cai, L.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Applied Surface Science 256, 61–66 (2009).
[Crossref]

Carey, J. E.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22, 4917–4919 (2006).
[Crossref] [PubMed]

Cho, S. J.

M. V. Rukosuyev, J. Lee, S. J. Cho, G. Lim, and M. B. Jun, “One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation,” Appl. Surf. Sci. 313, 411–417 (2014).
[Crossref]

Del Pino, A. P.

A. P. Del Pino, J. Fernández-Pradas, P. Serra, and J. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surface and Coat. Technology 187, 106–112 (2004).
[Crossref]

Englezos, P.

A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
[Crossref] [PubMed]

Fernández-Pradas, J.

A. P. Del Pino, J. Fernández-Pradas, P. Serra, and J. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surface and Coat. Technology 187, 106–112 (2004).
[Crossref]

Gale, A.

S. O’Hana, A. J. Pinkerton, K. Shoba, A. Gale, and L. Li, “Laser surface colouring of titanium for contemporary jewellery,” Surface Engineering 24, 147–153 (2008).
[Crossref]

Guo, C.

A. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” Journal of Applied Physics 117, 033103 (2015).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser & Photonics Reviews 7, 385–407 (2013).
[Crossref]

A. Vorobyev and C. Guo, “Femtosecond laser modification of material wetting properties: a brief review,” Science of Advanced Materials 4, 432–438 (2012).
[Crossref]

A. Vorobyev and C. Guo, “Water sprints uphill on glass,” Journal of Applied Physics 108, 123512 (2010).
[Crossref]

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301 (2009).
[Crossref] [PubMed]

A. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Applied Physics Letters 92, 041914 (2008).
[Crossref]

A. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

Hatzikiriakos, S. G.

A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
[Crossref] [PubMed]

Höhm, S.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures— a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron.23 (2017).
[Crossref]

Huang, Y.

Y. Su, B. Ji, Y. Huang, and K.-C. Hwang, “Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation,” Langmuir 26, 18926–18937 (2010).
[Crossref] [PubMed]

Hwang, K.-C.

Y. Su, B. Ji, Y. Huang, and K.-C. Hwang, “Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation,” Langmuir 26, 18926–18937 (2010).
[Crossref] [PubMed]

Ji, B.

Y. Su, B. Ji, Y. Huang, and K.-C. Hwang, “Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation,” Langmuir 26, 18926–18937 (2010).
[Crossref] [PubMed]

Jiang, L.

S. Wang and L. Jiang, “Definition of superhydrophobic states,” Adv. Mater. 19, 3423–3424 (2007).

Jun, M. B.

M. V. Rukosuyev, J. Lee, S. J. Cho, G. Lim, and M. B. Jun, “One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation,” Appl. Surf. Sci. 313, 411–417 (2014).
[Crossref]

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Applied Surface Science 257, 7771–7777 (2011).
[Crossref]

Kietzig, A.-M.

A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
[Crossref] [PubMed]

Kim, Y. G.

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Applied Surface Science 257, 7771–7777 (2011).
[Crossref]

Kirner, S. V.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures— a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron.23 (2017).
[Crossref]

Krüger, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures— a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron.23 (2017).
[Crossref]

Lee, J.

M. V. Rukosuyev, J. Lee, S. J. Cho, G. Lim, and M. B. Jun, “One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation,” Appl. Surf. Sci. 313, 411–417 (2014).
[Crossref]

Lee, M. S.

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Applied Surface Science 257, 7771–7777 (2011).
[Crossref]

Li, G.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Applied Surface Science 256, 61–66 (2009).
[Crossref]

Li, J.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Applied Surface Science 256, 61–66 (2009).
[Crossref]

Li, L.

S. O’Hana, A. J. Pinkerton, K. Shoba, A. Gale, and L. Li, “Laser surface colouring of titanium for contemporary jewellery,” Surface Engineering 24, 147–153 (2008).
[Crossref]

Li, Z.

Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Appl. Surf. Sci. 256, 1582–1588 (2009).
[Crossref]

Lim, G.

M. V. Rukosuyev, J. Lee, S. J. Cho, G. Lim, and M. B. Jun, “One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation,” Appl. Surf. Sci. 313, 411–417 (2014).
[Crossref]

Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Appl. Surf. Sci. 256, 1582–1588 (2009).
[Crossref]

Liu, Y.

Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Appl. Surf. Sci. 256, 1582–1588 (2009).
[Crossref]

Makin, V.

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301 (2009).
[Crossref] [PubMed]

Mazur, E.

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22, 4917–4919 (2006).
[Crossref] [PubMed]

Morenza, J.

A. P. Del Pino, J. Fernández-Pradas, P. Serra, and J. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surface and Coat. Technology 187, 106–112 (2004).
[Crossref]

O’Hana, S.

S. O’Hana, A. J. Pinkerton, K. Shoba, A. Gale, and L. Li, “Laser surface colouring of titanium for contemporary jewellery,” Surface Engineering 24, 147–153 (2008).
[Crossref]

Pinkerton, A. J.

S. O’Hana, A. J. Pinkerton, K. Shoba, A. Gale, and L. Li, “Laser surface colouring of titanium for contemporary jewellery,” Surface Engineering 24, 147–153 (2008).
[Crossref]

Rosenfeld, A.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures— a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron.23 (2017).
[Crossref]

Rukosuyev, M. V.

M. V. Rukosuyev, J. Lee, S. J. Cho, G. Lim, and M. B. Jun, “One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation,” Appl. Surf. Sci. 313, 411–417 (2014).
[Crossref]

Seng, H.

Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Appl. Surf. Sci. 256, 1582–1588 (2009).
[Crossref]

Serra, P.

A. P. Del Pino, J. Fernández-Pradas, P. Serra, and J. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surface and Coat. Technology 187, 106–112 (2004).
[Crossref]

Shoba, K.

S. O’Hana, A. J. Pinkerton, K. Shoba, A. Gale, and L. Li, “Laser surface colouring of titanium for contemporary jewellery,” Surface Engineering 24, 147–153 (2008).
[Crossref]

Su, Y.

Y. Su, B. Ji, Y. Huang, and K.-C. Hwang, “Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation,” Langmuir 26, 18926–18937 (2010).
[Crossref] [PubMed]

Teh, K.

Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Appl. Surf. Sci. 256, 1582–1588 (2009).
[Crossref]

Vorobyev, A.

A. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” Journal of Applied Physics 117, 033103 (2015).
[Crossref]

A. Vorobyev and C. Guo, “Femtosecond laser modification of material wetting properties: a brief review,” Science of Advanced Materials 4, 432–438 (2012).
[Crossref]

A. Vorobyev and C. Guo, “Water sprints uphill on glass,” Journal of Applied Physics 108, 123512 (2010).
[Crossref]

A. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008).
[Crossref]

A. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser & Photonics Reviews 7, 385–407 (2013).
[Crossref]

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Applied Physics Letters 92, 041914 (2008).
[Crossref]

Wang, S.

S. Wang and L. Jiang, “Definition of superhydrophobic states,” Adv. Mater. 19, 3423–3424 (2007).

Wu, B.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Applied Surface Science 256, 61–66 (2009).
[Crossref]

Yakovlev, N.

Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Appl. Surf. Sci. 256, 1582–1588 (2009).
[Crossref]

Ye, X.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Applied Surface Science 256, 61–66 (2009).
[Crossref]

Zheng, H.

Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Appl. Surf. Sci. 256, 1582–1588 (2009).
[Crossref]

Zhou, M.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Applied Surface Science 256, 61–66 (2009).
[Crossref]

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22, 4917–4919 (2006).
[Crossref] [PubMed]

Adv. Mater. (1)

S. Wang and L. Jiang, “Definition of superhydrophobic states,” Adv. Mater. 19, 3423–3424 (2007).

Appl. Surf. Sci. (3)

M. V. Rukosuyev, J. Lee, S. J. Cho, G. Lim, and M. B. Jun, “One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation,” Appl. Surf. Sci. 313, 411–417 (2014).
[Crossref]

A. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272–7280 (2007).
[Crossref]

Z. Li, H. Zheng, K. Teh, Y. Liu, G. Lim, H. Seng, and N. Yakovlev, “Analysis of oxide formation induced by uv laser coloration of stainless steel,” Appl. Surf. Sci. 256, 1582–1588 (2009).
[Crossref]

Applied Physics Letters (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Applied Physics Letters 92, 041914 (2008).
[Crossref]

Applied Surface Science (2)

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Applied Surface Science 256, 61–66 (2009).
[Crossref]

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Applied Surface Science 257, 7771–7777 (2011).
[Crossref]

J. Appl. Phys. (1)

A. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008).
[Crossref]

Journal of Applied Physics (2)

A. Vorobyev and C. Guo, “Water sprints uphill on glass,” Journal of Applied Physics 108, 123512 (2010).
[Crossref]

A. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” Journal of Applied Physics 117, 033103 (2015).
[Crossref]

Langmuir (3)

T. Baldacchini, J. E. Carey, M. Zhou, and E. Mazur, “Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser,” Langmuir 22, 4917–4919 (2006).
[Crossref] [PubMed]

A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, “Patterned superhydrophobic metallic surfaces,” Langmuir 25, 4821–4827 (2009).
[Crossref] [PubMed]

Y. Su, B. Ji, Y. Huang, and K.-C. Hwang, “Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation,” Langmuir 26, 18926–18937 (2010).
[Crossref] [PubMed]

Laser & Photonics Reviews (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser & Photonics Reviews 7, 385–407 (2013).
[Crossref]

Phys. Rev. Lett. (1)

A. Y. Vorobyev, V. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102, 234301 (2009).
[Crossref] [PubMed]

Science of Advanced Materials (1)

A. Vorobyev and C. Guo, “Femtosecond laser modification of material wetting properties: a brief review,” Science of Advanced Materials 4, 432–438 (2012).
[Crossref]

Surface and Coat. Technology (1)

A. P. Del Pino, J. Fernández-Pradas, P. Serra, and J. Morenza, “Coloring of titanium through laser oxidation: comparative study with anodizing,” Surface and Coat. Technology 187, 106–112 (2004).
[Crossref]

Surface Engineering (1)

S. O’Hana, A. J. Pinkerton, K. Shoba, A. Gale, and L. Li, “Laser surface colouring of titanium for contemporary jewellery,” Surface Engineering 24, 147–153 (2008).
[Crossref]

Other (1)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-induced periodic surface structures— a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron.23 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Photograph of femtosecond laser processed Cu, demonstrating the range of colors able to be formed. (b) Microscope image of the 3mm/s raster scanned Cu surface showing both dark and colored bands. (c) Height profile for a line of image b, illustrating that colored bands of the sample correspond to the troughs of the profile, while dark bands correspond to the peaks of the profile. Angled polishing marks are visible upon the colored bands.
Fig. 2
Fig. 2 Hydrophobic response of the laser processed Cu samples. (a) Linear response of scanning speed to contact angle for the irradiated samples. (b) Inverse exponential response of scanning speed to ablation depth for the samples. (c) Logarithmic response of ablation depth to hydrophobicity. (d) Image of a water droplet placed above a 1mm/s raster scanned sample, illustrating that water droplets only contact the tips of the raster scanned structures.
Fig. 3
Fig. 3 Spectral responses for pulsed femtosecond laser irradiated Cu surfaces for various raster scanning speeds. (a) Spectral reflectance in the wavelength range from 200nm to 1,200nm. (b) The change in reflectance between an unprocessed sample and that of the various laser irradiated samples. (c) A magnified view of Fig. 4(a), highlighting the visible spectrum. (d) The same information portrayed in figure c but weighted according to the CIE 1988 Spectral Luminous Efficiency Function for photopic vision.
Fig. 4
Fig. 4 SEM images of a 1.5mm/s raster scanned Cu surface. (a) SEM image of the large scale raster scanned lines formed on the surface of Cu after laser irradiation. (b) Magnified SEM image showing the bulbous and hierarchical microstructuresformed at the peaks of the raster scanned lines. (c) Magnified SEM image showing the finer nanostructures formed within the troughs of the raster scanned lines.
Fig. 5
Fig. 5 SEM photos and analysis of nanoparticles formed within the troughs of laser irradiated raster scanned lines on Cu. Figures 6(a), 6(b), and 6(c) show SEM photos of 3mm/s, 2mm/s, and 1mm/s laser irradiated samples, respectively. Figures 6(d), 6(e), and 6(f) show magnified views of SEM photos in Figs. 6(a), 6(b), and 6(c), respectively. Figures 6(g), 6(h), and 6(i) show the relation between scanning speed and nanoparticle radius, nanoparticle density, and interparticle spacing, respectively.

Metrics