Abstract

We report on the effect of laser repetition rate on the refractive index (RI) change or phase change induced by the femtosecond micromachining hydrogel-based ophthalmic materials. A repetition rate tunable femtosecond ytterbium (Yb) doped fiber laser was used to study the relation between the laser-induced phase change and the pulse repetition rate in the range of 1 MHz to 60 MHz. We present both the qualitative and quantitative results of the laser-induced phase change obtained in hydrogel-based contact lenses at different repetition rates and discuss the effect of repetition rate on the magnitude of the phase shift, the optical damage threshold and the maximum achievable phase change just below the optically-induced damage threshold. A photochemical model derived in the four photon absorption limit with pulse overlapping is employed to fit the experimental data obtained at four different repetition rates, 5 MHz, 10 MHz, 15 MHz and 60 MHz. This work contributes to the current knowledge of the response of hydrogel polymers to various laser irradiation parameters and the optimization of laser repetition rates enables femtosecond micromachining of ophthalmic materials at a lower average power and a faster writing speed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser micromachining in ophthalmic hydrogels: spectroscopic study of materials effects

Dan Yu, Ruiting Huang, and Wayne H. Knox
Opt. Mater. Express 9(8) 3292-3305 (2019)

Femtosecond micro-machining of hydrogels: parametric study and photochemical model including material saturation

Ruiting Huang and Wayne H. Knox
Opt. Mater. Express 9(9) 3818-3834 (2019)

Optimization of femtosecond laser micromachining in hydrogel polymers

Li Ding, Dharmendra Jani, Jeffrey Linhardt, Jay F. Künzler, Siddhesh Pawar, Glen Labenski, Thomas Smith, and Wayne H. Knox
J. Opt. Soc. Am. B 26(9) 1679-1687 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref] [PubMed]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  3. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004).
    [Crossref] [PubMed]
  4. C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
    [Crossref]
  5. J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Gross, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3), 583–592 (2003).
    [Crossref]
  6. J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
    [Crossref]
  7. K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  8. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  9. G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257–2271 (2015).
    [Crossref]
  10. L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
    [Crossref]
  11. R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
    [Crossref] [PubMed]
  12. L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
    [Crossref] [PubMed]
  13. G. A. Gandara-Montano, L. Zheleznyak, and W. H. Knox, “Optical quality of hydrogel ophthalmic devices created with femtosecond laser induced refractive index modification,” Opt. Mater. Express 8(2), 295–313 (2018).
    [Crossref]
  14. D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
    [Crossref] [PubMed]
  15. L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of Femtosecond Laser Intratissue Refractive Index Shaping (IRIS) in the Living Cornea with Sodium Fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
    [Crossref] [PubMed]
  16. G. A. Gandara-Montano, V. Stoy, M. Dudič, V. Petrák, K. Haškovcová, and W. H. Knox, “Large optical phase shifts in hydrogels written with femtosecond laser pulses: elucidating the role of localized water concentration changes,” Opt. Mater. Express 7(9), 3162–3180 (2017).
    [Crossref]
  17. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Optimization of femtosecond laser micromachining in hydrogel polymers,” J. Opt. Soc. Am. B 26(9), 1679–1687 (2009).
    [Crossref]
  18. J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
    [Crossref] [PubMed]
  19. J. Lopez, R. Torres, Y. Zaouter, P. Georges, M. Hanna, E. Mottay, and R. Kling, “Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser,” Proc. SPIE 8611, 861118 (2013).
    [Crossref]
  20. U. Loeschner, J. Schille, A. Stree, T. Knebel, L. Hartwig, R. Hillmann, and C. Endisch, “High-rate laser microprocessing using a polygon scanner system,” J. Laser Appl. 27(S2), S29303 (2015).
    [Crossref]
  21. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
    [Crossref]
  22. J. Finger and M. Reininghaus, “Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz,” Opt. Express 22(15), 18790–18799 (2014).
    [Crossref] [PubMed]
  23. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
    [Crossref]
  24. S. Biswas, A. Karthikeyan, and A. M. Kietzig, “Effect of repetition rate on femtosecond laser-induced homogenous microstructures,” Materials (Basel) 9(12), 1023 (2016).
    [Crossref] [PubMed]
  25. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  26. F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
    [Crossref] [PubMed]
  27. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, J. Linhardt, R. I. Blackwell, and J. F. Künzler, “Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining,” J. Opt. Soc. Am. B 26(4), 595–602 (2009).
    [Crossref]
  28. Johnson and Johnson Vision Care, Inc., https://www.acuvue.com/sites/acuvue_us/files/d-08-14-04_1davdwl_pi-fig_0.pdf .
  29. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley,1998).
  30. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  31. Pubchem, open chemistry database, https://pubchem.ncbi.nlm.nih.gov/substance/135213571#section=Top .
  32. J. Eichstädt, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Determination of irradiation parameters for laser-induced periodic surface structures,” Appl. Surf. Sci. 264, 79–87 (2013).
    [Crossref]
  33. D. Ashkenasi, A. Rosenfeld, and R. Stoian, “Laser-induced incubation in transparent materials and possible consequences for surface and bulk microstructuring with ultrashort pulses,” Proc. SPIE 4633, 90–98 (2002).
    [Crossref]
  34. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(1), S373–S376 (1999).
    [Crossref]
  35. A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly(methyl methacrylate),” Opt. Lett. 33(7), 651–653 (2008).
    [Crossref] [PubMed]
  36. A. Baum, P. J. Scully, M. Basanta, C. L. P. Thomas, P. R. Fielden, N. J. Goddard, W. Perrie, and P. R. Chalker, “Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32(2), 190–192 (2007).
    [Crossref] [PubMed]
  37. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  38. A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate),” J. Opt. Soc. Am. B 27(1), 107–111 (2010).
    [Crossref]

2018 (1)

2017 (2)

2016 (2)

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

S. Biswas, A. Karthikeyan, and A. M. Kietzig, “Effect of repetition rate on femtosecond laser-induced homogenous microstructures,” Materials (Basel) 9(12), 1023 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

J. Finger and M. Reininghaus, “Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz,” Opt. Express 22(15), 18790–18799 (2014).
[Crossref] [PubMed]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

2013 (2)

J. Lopez, R. Torres, Y. Zaouter, P. Georges, M. Hanna, E. Mottay, and R. Kling, “Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser,” Proc. SPIE 8611, 861118 (2013).
[Crossref]

J. Eichstädt, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Determination of irradiation parameters for laser-induced periodic surface structures,” Appl. Surf. Sci. 264, 79–87 (2013).
[Crossref]

2011 (2)

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
[Crossref]

2010 (2)

A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate),” J. Opt. Soc. Am. B 27(1), 107–111 (2010).
[Crossref]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of Femtosecond Laser Intratissue Refractive Index Shaping (IRIS) in the Living Cornea with Sodium Fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (2)

2007 (1)

2006 (1)

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

2005 (3)

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

2004 (2)

A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004).
[Crossref] [PubMed]

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

2003 (1)

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Gross, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3), 583–592 (2003).
[Crossref]

2002 (2)

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

D. Ashkenasi, A. Rosenfeld, and R. Stoian, “Laser-induced incubation in transparent materials and possible consequences for surface and bulk microstructuring with ultrashort pulses,” Proc. SPIE 4633, 90–98 (2002).
[Crossref]

2001 (1)

1999 (1)

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(1), S373–S376 (1999).
[Crossref]

1996 (1)

1982 (1)

Anderson, N.

Arai, A.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

Ashkenasi, D.

D. Ashkenasi, A. Rosenfeld, and R. Stoian, “Laser-induced incubation in transparent materials and possible consequences for surface and bulk microstructuring with ultrashort pulses,” Proc. SPIE 4633, 90–98 (2002).
[Crossref]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(1), S373–S376 (1999).
[Crossref]

Basanta, M.

Bauer, F.

Baum, A.

Bille, J. F.

J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
[Crossref] [PubMed]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Biswas, S.

S. Biswas, A. Karthikeyan, and A. M. Kietzig, “Effect of repetition rate on femtosecond laser-induced homogenous microstructures,” Materials (Basel) 9(12), 1023 (2016).
[Crossref] [PubMed]

Blackwell, R. I.

Bovatsek, J.

Brooks, D. R.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Cancado, L. G.

Chalker, P. R.

Chan, K.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Chhoeung, S.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Choi, T. Y.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

Davis, K. M.

DeMagistris, M.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Ding, L.

Dudic, M.

Eaton, S.

Eaton, S. M.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Eichstädt, J.

J. Eichstädt, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Determination of irradiation parameters for laser-induced periodic surface structures,” Appl. Surf. Sci. 264, 79–87 (2013).
[Crossref]

Ellis, J. D.

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257–2271 (2015).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Endisch, C.

U. Loeschner, J. Schille, A. Stree, T. Knebel, L. Hartwig, R. Hillmann, and C. Endisch, “High-rate laser microprocessing using a polygon scanner system,” J. Laser Appl. 27(S2), S29303 (2015).
[Crossref]

Engelhardt, J.

Enright, S.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Fielden, P. R.

Finger, J.

Gandara-Montano, G. A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Georges, P.

J. Lopez, R. Torres, Y. Zaouter, P. Georges, M. Hanna, E. Mottay, and R. Kling, “Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser,” Proc. SPIE 8611, 861118 (2013).
[Crossref]

Goddard, N. J.

Grigoropoulos, C. P.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

Gross, M. C.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Gross, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3), 583–592 (2003).
[Crossref]

Hanna, M.

J. Lopez, R. Torres, Y. Zaouter, P. Georges, M. Hanna, E. Mottay, and R. Kling, “Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser,” Proc. SPIE 8611, 861118 (2013).
[Crossref]

Hartwig, L.

U. Loeschner, J. Schille, A. Stree, T. Knebel, L. Hartwig, R. Hillmann, and C. Endisch, “High-rate laser microprocessing using a polygon scanner system,” J. Laser Appl. 27(S2), S29303 (2015).
[Crossref]

Haškovcová, K.

Herman, P.

Herman, P. R.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Hillmann, R.

U. Loeschner, J. Schille, A. Stree, T. Knebel, L. Hartwig, R. Hillmann, and C. Endisch, “High-rate laser microprocessing using a polygon scanner system,” J. Laser Appl. 27(S2), S29303 (2015).
[Crossref]

Hirao, K.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Huis in ’t Veld, A. J.

J. Eichstädt, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Determination of irradiation parameters for laser-induced periodic surface structures,” Appl. Surf. Sci. 264, 79–87 (2013).
[Crossref]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Huxlin, K. R.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of Femtosecond Laser Intratissue Refractive Index Shaping (IRIS) in the Living Cornea with Sodium Fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

Hwang, D. J.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

Ina, H.

Issac, R.

Ivansky, A.

Jani, D.

Jaroszynski, D. A.

Jiang, Z.

Jones, D.

Juodkazis, S.

Karthikeyan, A.

S. Biswas, A. Karthikeyan, and A. M. Kietzig, “Effect of repetition rate on femtosecond laser-induced homogenous microstructures,” Materials (Basel) 9(12), 1023 (2016).
[Crossref] [PubMed]

Kiedrowski, T.

Kietzig, A. M.

S. Biswas, A. Karthikeyan, and A. M. Kietzig, “Effect of repetition rate on femtosecond laser-induced homogenous microstructures,” Materials (Basel) 9(12), 1023 (2016).
[Crossref] [PubMed]

Kling, R.

J. Lopez, R. Torres, Y. Zaouter, P. Georges, M. Hanna, E. Mottay, and R. Kling, “Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser,” Proc. SPIE 8611, 861118 (2013).
[Crossref]

Knebel, T.

U. Loeschner, J. Schille, A. Stree, T. Knebel, L. Hartwig, R. Hillmann, and C. Endisch, “High-rate laser microprocessing using a polygon scanner system,” J. Laser Appl. 27(S2), S29303 (2015).
[Crossref]

Knox, W. H.

G. A. Gandara-Montano, L. Zheleznyak, and W. H. Knox, “Optical quality of hydrogel ophthalmic devices created with femtosecond laser induced refractive index modification,” Opt. Mater. Express 8(2), 295–313 (2018).
[Crossref]

G. A. Gandara-Montano, V. Stoy, M. Dudič, V. Petrák, K. Haškovcová, and W. H. Knox, “Large optical phase shifts in hydrogels written with femtosecond laser pulses: elucidating the role of localized water concentration changes,” Opt. Mater. Express 7(9), 3162–3180 (2017).
[Crossref]

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257–2271 (2015).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
[Crossref]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of Femtosecond Laser Intratissue Refractive Index Shaping (IRIS) in the Living Cornea with Sodium Fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, J. Linhardt, R. I. Blackwell, and J. F. Künzler, “Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining,” J. Opt. Soc. Am. B 26(4), 595–602 (2009).
[Crossref]

L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Optimization of femtosecond laser micromachining in hydrogel polymers,” J. Opt. Soc. Am. B 26(9), 1679–1687 (2009).
[Crossref]

Kobayashi, S.

Koo, J. S.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Gross, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3), 583–592 (2003).
[Crossref]

Krol, D. M.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Künzler, J. F.

Labenski, G.

Laghouissa, A.

Linhardt, J.

Liu, D.

Loeschner, U.

U. Loeschner, J. Schille, A. Stree, T. Knebel, L. Hartwig, R. Hillmann, and C. Endisch, “High-rate laser microprocessing using a polygon scanner system,” J. Laser Appl. 27(S2), S29303 (2015).
[Crossref]

Lopez, C.

Lopez, J.

J. Lopez, R. Torres, Y. Zaouter, P. Georges, M. Hanna, E. Mottay, and R. Kling, “Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser,” Proc. SPIE 8611, 861118 (2013).
[Crossref]

Lorenz, M.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(1), S373–S376 (1999).
[Crossref]

Lucarini, V.

MacRae, S.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Marcinkevi Ius, A.

Matsuo, S.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Metev, S.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Michalowski, A.

Misawa, H.

Miura, K.

Miwa, M.

Mottay, E.

J. Lopez, R. Torres, Y. Zaouter, P. Georges, M. Hanna, E. Mottay, and R. Kling, “Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser,” Proc. SPIE 8611, 861118 (2013).
[Crossref]

Motzkus, M.

Nagy, L. J.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of Femtosecond Laser Intratissue Refractive Index Shaping (IRIS) in the Living Cornea with Sodium Fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

Nishii, J.

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Nolte, S.

Novotny, L.

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Pawar, S.

Perrie, W.

Petrák, V.

Qiu, J.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

Reichman, W. J.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Reininghaus, M.

Richardson, K.

Richardson, M.

Riziotis, C.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Gross, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3), 583–592 (2003).
[Crossref]

Römer, G. R. B. E.

J. Eichstädt, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Determination of irradiation parameters for laser-induced periodic surface structures,” Appl. Surf. Sci. 264, 79–87 (2013).
[Crossref]

Rosenfeld, A.

D. Ashkenasi, A. Rosenfeld, and R. Stoian, “Laser-induced incubation in transparent materials and possible consequences for surface and bulk microstructuring with ultrashort pulses,” Proc. SPIE 4633, 90–98 (2002).
[Crossref]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(1), S373–S376 (1999).
[Crossref]

Sahler, R.

J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
[Crossref] [PubMed]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Savage, D. E.

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257–2271 (2015).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Schille, J.

U. Loeschner, J. Schille, A. Stree, T. Knebel, L. Hartwig, R. Hillmann, and C. Endisch, “High-rate laser microprocessing using a polygon scanner system,” J. Laser Appl. 27(S2), S29303 (2015).
[Crossref]

Scully, P. J.

Shah, L.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

Shams Eldin, M. A.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Shen, Y.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

Si, J.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

Smith, P. G. R.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Gross, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3), 583–592 (2003).
[Crossref]

Smith, T.

Stoian, R.

D. Ashkenasi, A. Rosenfeld, and R. Stoian, “Laser-induced incubation in transparent materials and possible consequences for surface and bulk microstructuring with ultrashort pulses,” Proc. SPIE 4633, 90–98 (2002).
[Crossref]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(1), S373–S376 (1999).
[Crossref]

Stoy, V.

Stree, A.

U. Loeschner, J. Schille, A. Stree, T. Knebel, L. Hartwig, R. Hillmann, and C. Endisch, “High-rate laser microprocessing using a polygon scanner system,” J. Laser Appl. 27(S2), S29303 (2015).
[Crossref]

Sugimoto, N.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Takeda, M.

Thomas, C. L. P.

Torres, R.

J. Lopez, R. Torres, Y. Zaouter, P. Georges, M. Hanna, E. Mottay, and R. Kling, “Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser,” Proc. SPIE 8611, 861118 (2013).
[Crossref]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Volpp, H. R.

Wang, N.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Watanabe, M.

Williams, R. B.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Gross, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3), 583–592 (2003).
[Crossref]

Wochnowski, C.

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Xu, L.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
[Crossref]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of Femtosecond Laser Intratissue Refractive Index Shaping (IRIS) in the Living Cornea with Sodium Fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

Yoshino, F.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

Zaouter, Y.

J. Lopez, R. Torres, Y. Zaouter, P. Georges, M. Hanna, E. Mottay, and R. Kling, “Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser,” Proc. SPIE 8611, 861118 (2013).
[Crossref]

Zhai, J.

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

Zhang, H.

Zheleznyak, L.

Zoubir, A.

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys. Lett. (1)

J. Si, J. Qiu, J. Zhai, Y. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80(3), 359–361 (2002).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(1), S373–S376 (1999).
[Crossref]

Appl. Surf. Sci. (1)

J. Eichstädt, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Determination of irradiation parameters for laser-induced periodic surface structures,” Appl. Surf. Sci. 264, 79–87 (2013).
[Crossref]

Biomed. Opt. Express (1)

Invest. Ophthalmol. Vis. Sci. (3)

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of Femtosecond Laser Intratissue Refractive Index Shaping (IRIS) in the Living Cornea with Sodium Fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

J. Cataract Refract. Surg. (1)

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

J. Laser Appl. (1)

U. Loeschner, J. Schille, A. Stree, T. Knebel, L. Hartwig, R. Hillmann, and C. Endisch, “High-rate laser microprocessing using a polygon scanner system,” J. Laser Appl. 27(S2), S29303 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers – reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Materials (Basel) (1)

S. Biswas, A. Karthikeyan, and A. M. Kietzig, “Effect of repetition rate on femtosecond laser-induced homogenous microstructures,” Materials (Basel) 9(12), 1023 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. (1)

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Gross, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23(3), 583–592 (2003).
[Crossref]

Opt. Mater. Express (4)

Polym. Degrad. Stabil. (1)

C. Wochnowski, M. A. Shams Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Proc. SPIE (2)

J. Lopez, R. Torres, Y. Zaouter, P. Georges, M. Hanna, E. Mottay, and R. Kling, “Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser,” Proc. SPIE 8611, 861118 (2013).
[Crossref]

D. Ashkenasi, A. Rosenfeld, and R. Stoian, “Laser-induced incubation in transparent materials and possible consequences for surface and bulk microstructuring with ultrashort pulses,” Proc. SPIE 4633, 90–98 (2002).
[Crossref]

Other (3)

Johnson and Johnson Vision Care, Inc., https://www.acuvue.com/sites/acuvue_us/files/d-08-14-04_1davdwl_pi-fig_0.pdf .

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley,1998).

Pubchem, open chemistry database, https://pubchem.ncbi.nlm.nih.gov/substance/135213571#section=Top .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Femtosecond writing system diagram. The Yb doped fiber laser is able to deliver femtosecond pulses at a series of adjustable repetition rates and with a maximum output power up to 30 W.
Fig. 2
Fig. 2 DIC image of the grating lines written at an average power of ~500 mW, at scan speeds of 5 mm/s, 50 mm/s and 100 mm/s (from top to bottom), and at repetition rates of 15 MHz (a) and 60 MHz (b), respectively; DIC images of the grating lines written at average powers of ~500 mW, ~1000 mW and ~1500 mW (from top to bottom), at a scan speed of 100 mm/s, and at repetition rates of 15 MHz (c) and 60 MHz (d), respectively.
Fig. 3
Fig. 3 (a) DIC image of four phase bars written in a J + J contact lens at two different powers, 1075 mW (top two) and 1105 mW (bottom two); (b) Schematic diagram showing two different scanning method, raster scanning (left) and rectangular loop scanning (right); (c) Interferogram of the two phase bars written at a power of 1105 mW, a scan speed of 200 mm/s and a repetition rate of 15 MHz; (d) The phase map with tilt moved showing phase difference between the laser-treated area and the surroundings.
Fig. 4
Fig. 4 Below the damage threshold, quantitative results showing the phase change magnitude measured at 543 nm for the phase bars written in a J + J Acuvue contact lens as a function of power (a) and as a function of single pulse energy (b); phase bars written in a Contaflex GM Advance 58 sample as a function of power (c) and as a function of single pulse energy (d) at different repetition rates, 5 MHz, 10 MHz, 15 MHz and 60 MHz.
Fig. 5
Fig. 5 Plot of logarithm of the induced phase change at 543 nm versus logarithm of the average power in the focal volume at 5 MHz, 10 MHz, 15 MHz and 60 MHz for the Contaflex sample (a) and the J + J contact lens (b) for the purpose of the determination of the order of multiphoton absorption process.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δϕ= ΔnL λ
D=ε( E VOL )(β I peak 3 L)
N= ων S
Δϕ=γ P 4 N A 5 υ 3 τ 3 S λ 7
Δϕ= Δ ϕ 0 1+ A A sat

Metrics