Abstract

We design a coding metasurface based on Pancharatnam-Berry (PB) phase to manipulate terahertz waves, which is simple and flexible. Compared with the previous design of the coding metasurface, the present coding particles can be obtained by using a same size meta-particle with various orientations instead of designing multiple structures or changing specific size parameters. The PB coding metasurfaces composed of U-shaped particles with pre-designed coding sequences can generate multi-bit coding in the terahertz frequencies and control the reflected terahertz waves to the various directions. Both simulation and theoretical calculation scattering patterns of the designed PB coding metasurfaces demonstrate the expected manipulations. Additionally, the bandwidth of radar cross section (RCS) reduction of approaching −15 dB is 1.05THz (range from 0.9THz to 1.95THz). We believe that the proposed design provides a more flexible way for the manipulation of reflected terahertz waves.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Flexible manipulation of terahertz wave reflection using polarization insensitive coding metasurfaces

Li Jiu-sheng, Zhao Ze-jiang, and Yao Jian-quan
Opt. Express 25(24) 29983-29992 (2017)

Fast optimization method of designing a wideband metasurface without using the Pancharatnam–Berry phase

Sai Sui, Hua Ma, Yueguang Lv, Jiafu Wang, Zhiqiang Li, Jieqiu Zhang, Zhuo Xu, and Shaobo Qu
Opt. Express 26(2) 1443-1451 (2018)

Coding metasurface for broadband microwave scattering reduction with optical transparency

Ke Chen, Li Cui, Yijun Feng, Junming Zhao, Tian Jiang, and Bo Zhu
Opt. Express 25(5) 5571-5579 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref]
  4. X. Li, S. Y. Xiao, B. G. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
    [Crossref]
  5. P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
    [Crossref]
  6. D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
    [Crossref]
  7. H. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).
    [Crossref]
  8. L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
    [Crossref]
  9. Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
    [Crossref]
  10. L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Opt. Express 26(5), 5686–5693 (2018).
    [Crossref]
  11. M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
    [Crossref]
  12. X. X. He, G. M. Wang, T. Cai, J. Xiao, and Y. Q. Zhuang, “Tunable Pancharatnam–Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24(24), 27836–27848 (2016).
    [Crossref]
  13. C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6(1), 34819 (2016).
    [Crossref]
  14. T. J. Cui, M. Q. Qi, X. Wang, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  15. S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
    [Crossref]
  16. L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
    [Crossref]
  17. Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
    [Crossref]
  18. X. Ni, Z. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref]

2018 (1)

2017 (1)

H. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).
[Crossref]

2016 (5)

C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6(1), 34819 (2016).
[Crossref]

X. X. He, G. M. Wang, T. Cai, J. Xiao, and Y. Q. Zhuang, “Tunable Pancharatnam–Berry metasurface for dynamical and high-efficiency anomalous reflection,” Opt. Express 24(24), 27836–27848 (2016).
[Crossref]

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref]

2015 (3)

X. Ni, Z. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

2014 (2)

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wang, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

2012 (2)

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

X. Li, S. Y. Xiao, B. G. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref]

2006 (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

1987 (1)

M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[Crossref]

Aieta, F.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Bai, Y.

C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6(1), 34819 (2016).
[Crossref]

Berry, M. V.

M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[Crossref]

Blanchard, R.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Cai, B. G.

Cai, T.

Capasso, F.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Chan, K. L.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Cheah, K. W.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Chen, H. B.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Chen, H. S.

C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6(1), 34819 (2016).
[Crossref]

Chen, H. Y.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Chen, M.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Chen, S. M.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Chen, X. Z.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Cheng, Q.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wang, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cui, T. J.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wang, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

X. Li, S. Y. Xiao, B. G. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref]

Ding, X.

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Gaburro, Z.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Gao, L. H.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Genevet, P.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Guo, Y.

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref]

Han, J.

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Han, J. G.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

He, Q.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

X. Li, S. Y. Xiao, B. G. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref]

He, X. X.

Huang, H.

Iqbal, S.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Jiang, W. X.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Jin, B. B.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Kats, M. A.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Lei, L.

Li, G. X.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Li, K. F.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Li, S.

Li, X.

Li, Y. F.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Liang, D.

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Liang, L.

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Liang, L. J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Lin, J.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Ling, X.

H. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).
[Crossref]

Liu, C. B.

C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6(1), 34819 (2016).
[Crossref]

Liu, S.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Liu, W. W.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Luo, W.

H. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).
[Crossref]

Ma, H. F.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Ma, S. J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Mrejen, M.

X. Ni, Z. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Ni, X.

X. Ni, Z. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Noor, A.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Pan, W.

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Pun, E. Y. B.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wang, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qiao, L. J.

C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6(1), 34819 (2016).
[Crossref]

Qu, S. B.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Scully, M. O.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Shao, L.

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Tang, S.

H. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).
[Crossref]

Tang, W. X.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Tao, K.

Tian, Z.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Wan, X.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Wang, G. M.

Wang, J. F.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Wang, X.

T. J. Cui, M. Q. Qi, X. Wang, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, Y.

X. Ni, Z. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Wei, D.

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Wei, M.

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Wen, D. D.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Wen, Q. Y.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Wong, P. W. H.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Wong, Z.

X. Ni, Z. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Wu, P. H.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Xiao, J.

Xiao, S. Y.

Xu, H.

H. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).
[Crossref]

Xu, P.

Xu, Q.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Xu, Z.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Yan, L.

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref]

Yan, X.

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Yang, J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Yang, Q. L.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Yang, Y.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Yang, Y. H.

C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6(1), 34819 (2016).
[Crossref]

Yao, J.

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Yao, J. Q.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

Yu, N. F.

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Yue, F. Y.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Zhang, A. X.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Zhang, G.

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Zhang, J. Q.

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

Zhang, L.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Zhang, Q.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Zhang, S.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Zhang, W. L.

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Zhang, X.

X. Ni, Z. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Zhao, J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wang, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, Q.

C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6(1), 34819 (2016).
[Crossref]

Zheng, G. X.

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Zhou, J.

C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6(1), 34819 (2016).
[Crossref]

Zhou, L.

H. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).
[Crossref]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

X. Li, S. Y. Xiao, B. G. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref]

Zhuang, Y. Q.

Adv. Opt. Mater. (1)

S. Liu, L. Zhang, Q. L. Yang, Q. Xu, Y. Yang, A. Noor, Q. Zhang, S. Iqbal, X. Wan, Z. Tian, W. X. Tang, Q. Cheng, J. G. Han, W. L. Zhang, and T. J. Cui, “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies,” Adv. Opt. Mater. 4(12), 1965–1973 (2016).
[Crossref]

Ann. Phys. (1)

H. Xu, S. Tang, X. Ling, W. Luo, and L. Zhou, “Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking,” Ann. Phys. 529(5), 1700045 (2017).
[Crossref]

Appl. Phys. Lett. (2)

P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett. 104(22), 221110 (2014).
[Crossref]

J. Mod. Opt. (1)

M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[Crossref]

Light: Sci. Appl. (2)

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Sci. Appl. 4(9), e324 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wang, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,” Light: Sci. Appl. 3(10), e218 (2014).
[Crossref]

Nat. Commun. (1)

D. D. Wen, F. Y. Yue, G. X. Li, G. X. Zheng, K. L. Chan, S. M. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Z. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Sci. Rep. (3)

C. B. Liu, Y. Bai, Q. Zhao, Y. H. Yang, H. S. Chen, J. Zhou, and L. J. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6(1), 34819 (2016).
[Crossref]

L. Liang, M. Wei, X. Yan, D. Wei, D. Liang, J. Han, X. Ding, G. Zhang, and J. Yao, “Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies,” Sci. Rep. 6(1), 39252 (2016).
[Crossref]

Y. Guo, L. Yan, W. Pan, and L. Shao, “Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion,” Sci. Rep. 6(1), 30154 (2016).
[Crossref]

Science (3)

X. Ni, Z. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Design of the basic coding particle. (a) Schematic diagram of the basic coding particle. Reflection magnitude of the basic coding particle under normal incidence of LCP (b) and RCP (c) waves. Here, RLL(RRR) and RRL(RLR) are the reflection magnitude with co-polarization and cross-polarization under normally incident LCP (RCP) waves, respectively. (d) Reflection phase and amplitude values under normal incidence of x- and y linearly polarized waves, respectively.
Fig. 2.
Fig. 2. Spectrum information of the coding particle versus different rotation angle α under normal incidence of LCP and RCP waves. (a) Description of the rotation angle α. (b) Curves of the phase responses and rotation angle of U-shaped coding particle under normally incident RCP and LCP waves. (c) Reflection magnitude and phase versus different rotation angle α. (d) Eight coding particles for coding metasurfaces.
Fig. 3.
Fig. 3. Pre-designed regular coding sequences. (a) Pre-designed coding sequence with “000,000,100,100…” periodically distributed along x-axis (Denoted as 1-bit coding metasurface 1), (b) Pre-designed coding sequence with “100,000,100,000…” periodically distributed along y-axis direction (Denoted as 1-bit coding metasurface 2), (c) Pre-designed coding sequence with “000,010,100,110…” periodically distributed along y-axis direction (Denoted as 2-bit coding metasurface 1), (d) Pre-designed coding sequence with “110,100,110,100…/000,010,000,010…” periodically distributed along x-axis direction (Denoted as 2-bit coding metasurface 2), (e) Pre-designed coding sequence with “000,001,010,011,100,101,110,111…” periodically distributed along x-axis direction (Denoted as 3-bit coding metasurface 1), (f) Pre-designed coding sequence with “000,001,010,011,100,101,110,111/100,101,110,111,000,001,010,011…” periodically distributed along x-axis direction (Denoted as 3-bit coding metasurface 2), (g) Pre-designed coding sequence with “000,001,010,011,100,101,110,111/000,001,010,011,100,101,110,111/100,101,110,111,000,001,010,011…” periodically distributed along x-axis direction (Denoted as 3-bit coding metasurface 3).
Fig. 4.
Fig. 4. 3D far-field scattering patterns of 1-bit regular coding metasurface. (a) with Fig. 3(a) coding sequence under normal incidence of LP wave, (b) with Fig. 3(b) coding sequence under normal incidence of LP wave. 2D far-field scattering patterns of 1-bit regular coding metasurface. (c) with Fig. 3(a) coding sequence under normal incidence of LP wave, (d) with Fig. 3(b) coding sequence under normal incidence of LP wave.
Fig. 5.
Fig. 5. 3D far-field scattering patterns of 2-bit regular coding metasurface. (a) With Fig. 3(c) coding sequence under normal incidence of LP wave, (b) With Fig. 3(d) under normal incidence of the LP wave. 2D far-field scattering patterns of 2-bit regular coding metasurface.(c) 2D far-field scattering patterns of 2-bit coding metasurface with Fig. 3(c) coding sequence under normal incidence of LP waves, (d) 2D far-field scattering patterns of 2-bit coding metasurface with Fig. 3(d) under normal incidence of the LP wave.
Fig. 6.
Fig. 6. 3D far-field scattering patterns of 3-bit coding metasurface with Fig. 3(e) coding sequence under normal incidence of LCP (a), RCP (b), LP (c) waves. With Fig. 3(f) coding sequence under normal incidence of LCP (d), RCP (e), LP (f). With Fig. 3(g) coding sequence under normal incidence of LCP (g), RCP (h), LP (i).
Fig. 7.
Fig. 7. 2D far-field scattering patterns of 3-bit coding metasurface with Fig. 3(e) coding sequence under normal incidence of LCP (a), RCP (b), LP (c) waves. With Fig. 3(f) coding sequence under normal incidence of LCP (d), RCP (e), LP (f). With Fig. 3(g) coding sequence under normal incidence of LCP (g), RCP (h), LP (i).
Fig. 8.
Fig. 8. (a)∼(c) are the random coding sequences of 1-bit, 2-bit and 3-bit coding metasurfaces composed of 8×8 array of coding particles produced by MATLAB, respectively. (d)∼(f) are 1-bit, 2-bit and 3-bit coding metasurfaces with random coding sequence, respectively.
Fig. 9.
Fig. 9. Values of RCS reduction for three kinds of random PB coding metasurfaces.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F ( θ , φ ) = f m , n ( θ , φ ) S a ( θ , φ )
S a ( θ , φ ) = m = 1 M n = 1 N exp { j [ φ m , n + k 0 D x ( m 1 2 ) ( sin θ cos φ sin θ i cos φ i ) + k 0 D x ( n 1 2 ) ( sin θ sin φ sin θ i sin φ i ) ] }
θ a = a r c sin [ ( k 0 sin θ i sin φ i + φ x ) 2 + ( k 0 sin θ i sin φ i + φ y ) 2 / k 0 ]
φ a = a r c tan k 0 sin θ i sin φ i + φ y k 0 sin θ i cos φ i + φ x
F ( θ , φ ) = f e ( θ , φ ) m = 1 M n = 1 N exp { i { φ m , n + k 0 D x sin θ ( m 1 2 ) cos φ + k 0 D y ( n 1 2 ) cos φ sin φ } }
F ( θ , φ ) = m = 1 M exp { i ( k 0 D x ( m 1 2 ) sin θ cos φ + m π } n = 1 N exp { i ( k 0 D y ( n 1 2 ) cos θ sin φ + n π }
{ φ = ± a r c t a n ( D x D y ) a n d φ = π ± a r c t a n ( D x D y ) θ = a r c s i n ( λ 2 ) 1 D y 2 + 1 D x 2

Metrics