Abstract

Here we report the fabrication of a magneto-optic waveguide based on TGG crystal via 15 MeV C3+ ion irradiation. The ion irradiation process leads to the optical anisotropy in the as-irradiated TGG waveguide, which hinders the magneto-optical rotation in the waveguide. To remove the irradiation-induced optical anisotropy, we annealed the as-irradiated TGG waveguide under different conditions. After annealing at 400 °C for one hour, the magneto-optical rotation of 14° per centimeter is observed in the waveguide at the wavelength of 632.8 nm, under the magnetic field of 0.24 T, which is comparable to that observed in the TGG crystal under the same magnetic field. This work paves the way for applications of TGG waveguides as integrated optical rotators and isolators.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical planar and ridge waveguides in terbium gallium garnet crystals produced by ion implantation and precise diamond blade dicing

Yue Wang, Xiao-Liang Shen, Qi-Feng Zhu, and Chun-Xiao Liu
Opt. Mater. Express 8(11) 3288-3294 (2018)

Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass

Qiang Liu, S. Gross, P. Dekker, M. J. Withford, and M. J. Steel
Opt. Express 22(23) 28037-28051 (2014)

Nanomagnetic route to bias-magnet-free, on-chip Faraday rotators

Miguel Levy
J. Opt. Soc. Am. B 22(1) 254-260 (2005)

References

  • View by:
  • |
  • |
  • |

  1. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
    [Crossref]
  2. W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer,” IEEE Photonics Technol. Lett. 11(8), 1012–1014 (1999).
    [Crossref]
  3. B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photonics J. 6(1), 1–15 (2014).
    [Crossref]
  4. Y. Wang, X. Shen, R. Zheng, P. Lv, C. Liu, and H. Guo, “Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet,” J. Korean Phys. Soc. 72(7), 765–769 (2018).
    [Crossref]
  5. C. Liu, X. Shen, R. Zheng, H. Guo, W. Li, and W. Wei, “Visible and near-infrared waveguides formed by double-energy proton implantation in magneto-optical glasses,” Appl. Phys. B 123(2), 56 (2017).
    [Crossref]
  6. Q. Zhu, Y. Wang, X. Shen, H. Guo, and C. Liu, “Optical Ridge Waveguides in Magneto-Optical Glasses Fabricated by Combination of Silicon Ion Implantation and Femtosecond Laser Ablation,” IEEE Photonics J. 10(5), 1–7 (2018).
    [Crossref]
  7. X. Long, B. Jing, and L. Xin, “Inscription of waveguides in terbium gallium garnet using femtosecond laser,” Acta Opt. Sin. 34(4), 0432002 (2014).
    [Crossref]
  8. Y. Wang, X. Shen, Q. Zhu, and C. liu, “Optical planar and ridge waveguides in terbium gallium garnet crystals produced by ion implantation and precise diamond blade dicing,” Opt. Mater. Express 8(11), 3288–3294 (2018).
    [Crossref]
  9. H. Shimizu and Y. Nakano, “Fabrication and characterization of an InGaAsp/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation,” J. Lightwave Technol. 24(1), 38–43 (2006).
    [Crossref]
  10. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
    [Crossref]
  11. Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
    [Crossref]
  12. Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood Jr, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
    [Crossref]
  13. K. M. Samirand and J. H. S. Bethanie, “Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photonics Technol. Lett. 17(1), 127–129 (2005).
    [Crossref]
  14. U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B 182(2), K91–K93 (1994).
    [Crossref]
  15. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
    [Crossref]
  16. I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
    [Crossref]
  17. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
    [Crossref]
  18. Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, “Reverse proton exchange for buried waveguides in LiNbO3,” J. Opt. Soc. Am. A 15(7), 1838–1842 (1998).
    [Crossref]
  19. H. Uetsuhara, S. Goto, Y. Nakata, N. Vasa, T. Okada, and M. Maeda, “Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition,” Appl. Phys. A 69(7), S719–S722 (1999).
    [Crossref]
  20. W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84 μm,” Opt. Express 19(2), 1449–1454 (2011).
    [Crossref]
  21. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
    [Crossref]
  22. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [Crossref]
  23. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
    [Crossref]
  24. T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
    [Crossref]
  25. N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow-fluence swift heavy ion irradiation in lithium niobate crystals,” J. Phys. D 44(10), 105103 (2011).
    [Crossref]
  26. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
    [Crossref]
  27. J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (∼10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
    [Crossref]
  28. J. Lv, Z. Shang, Y. Tan, J. R. V. D. Aldana, and F. Chen, “Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation,” Opt. Express 25(16), 19603–19608 (2017).
    [Crossref]
  29. Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
    [Crossref]
  30. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
    [Crossref]
  31. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
    [Crossref]
  32. Y. Jia, N. Dong, F. Chen, J. R. V. D. Aldana, S. Akhmadaliev, and S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
    [Crossref]
  33. Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
    [Crossref]
  34. Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
    [Crossref]
  35. P. K. Tien, D. P. Schinke, and S. L. Blank, “Magneto-optics and motion of the magnetization in a film-waveguide optical switch,” J. Appl. Phys. 45(7), 3059–3068 (1974).
    [Crossref]

2018 (3)

Y. Wang, X. Shen, R. Zheng, P. Lv, C. Liu, and H. Guo, “Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet,” J. Korean Phys. Soc. 72(7), 765–769 (2018).
[Crossref]

Q. Zhu, Y. Wang, X. Shen, H. Guo, and C. Liu, “Optical Ridge Waveguides in Magneto-Optical Glasses Fabricated by Combination of Silicon Ion Implantation and Femtosecond Laser Ablation,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

Y. Wang, X. Shen, Q. Zhu, and C. liu, “Optical planar and ridge waveguides in terbium gallium garnet crystals produced by ion implantation and precise diamond blade dicing,” Opt. Mater. Express 8(11), 3288–3294 (2018).
[Crossref]

2017 (2)

C. Liu, X. Shen, R. Zheng, H. Guo, W. Li, and W. Wei, “Visible and near-infrared waveguides formed by double-energy proton implantation in magneto-optical glasses,” Appl. Phys. B 123(2), 56 (2017).
[Crossref]

J. Lv, Z. Shang, Y. Tan, J. R. V. D. Aldana, and F. Chen, “Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation,” Opt. Express 25(16), 19603–19608 (2017).
[Crossref]

2015 (1)

2014 (4)

2013 (2)

2012 (2)

Y. Jia, N. Dong, F. Chen, J. R. V. D. Aldana, S. Akhmadaliev, and S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[Crossref]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

2011 (2)

N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow-fluence swift heavy ion irradiation in lithium niobate crystals,” J. Phys. D 44(10), 105103 (2011).
[Crossref]

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84 μm,” Opt. Express 19(2), 1449–1454 (2011).
[Crossref]

2010 (4)

2009 (2)

2008 (2)

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood Jr, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[Crossref]

2007 (1)

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

2006 (1)

2005 (3)

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22(1), 240–253 (2005).
[Crossref]

K. M. Samirand and J. H. S. Bethanie, “Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photonics Technol. Lett. 17(1), 127–129 (2005).
[Crossref]

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

1999 (2)

W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer,” IEEE Photonics Technol. Lett. 11(8), 1012–1014 (1999).
[Crossref]

H. Uetsuhara, S. Goto, Y. Nakata, N. Vasa, T. Okada, and M. Maeda, “Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition,” Appl. Phys. A 69(7), S719–S722 (1999).
[Crossref]

1998 (2)

1994 (1)

U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B 182(2), K91–K93 (1994).
[Crossref]

1974 (1)

P. K. Tien, D. P. Schinke, and S. L. Blank, “Magneto-optics and motion of the magnetization in a film-waveguide optical switch,” J. Appl. Phys. 45(7), 3059–3068 (1974).
[Crossref]

Aguiló, M.

Agulló-López, F.

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (∼10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[Crossref]

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

Akhmadaliev, S.

Aldana, J. R. V. D.

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Ando, K.

W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer,” IEEE Photonics Technol. Lett. 11(8), 1012–1014 (1999).
[Crossref]

Bahlmann, N.

Benayas, A.

Berry,

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Bethanie, J. H. S.

K. M. Samirand and J. H. S. Bethanie, “Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photonics Technol. Lett. 17(1), 127–129 (2005).
[Crossref]

Blank, S. L.

P. K. Tien, D. P. Schinke, and S. L. Blank, “Magneto-optics and motion of the magnetization in a film-waveguide optical switch,” J. Appl. Phys. 45(7), 3059–3068 (1974).
[Crossref]

Bolaños, W.

Caballero-Calero, O.

Caccavale, F.

Calmano, T.

Cantelar, E.

Carnicero, J.

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

Carrascosa, M.

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

Carvajal, J. J.

Chen, F.

J. Lv, Z. Shang, Y. Tan, J. R. V. D. Aldana, and F. Chen, “Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation,” Opt. Express 25(16), 19603–19608 (2017).
[Crossref]

Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
[Crossref]

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref]

Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
[Crossref]

Y. Jia, N. Dong, F. Chen, J. R. V. D. Aldana, S. Akhmadaliev, and S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[Crossref]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow-fluence swift heavy ion irradiation in lithium niobate crystals,” J. Phys. D 44(10), 105103 (2011).
[Crossref]

Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
[Crossref]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref]

Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
[Crossref]

Crespillo, M. L.

Davies, L.

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Díaz, F.

Dong, N.

Dötsch, H.

Fedorov, V. A.

García, G.

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

Garcia-Cabañes, A.

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

García-Cabañes, A.

García-Navarro, A.

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

Gerhardt, R.

Gonella, F.

Goto, S.

H. Uetsuhara, S. Goto, Y. Nakata, N. Vasa, T. Okada, and M. Maeda, “Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition,” Appl. Phys. A 69(7), S719–S722 (1999).
[Crossref]

Griebner, U.

Guo, H.

Q. Zhu, Y. Wang, X. Shen, H. Guo, and C. Liu, “Optical Ridge Waveguides in Magneto-Optical Glasses Fabricated by Combination of Silicon Ion Implantation and Femtosecond Laser Ablation,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

Y. Wang, X. Shen, R. Zheng, P. Lv, C. Liu, and H. Guo, “Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet,” J. Korean Phys. Soc. 72(7), 765–769 (2018).
[Crossref]

C. Liu, X. Shen, R. Zheng, H. Guo, W. Li, and W. Wei, “Visible and near-infrared waveguides formed by double-energy proton implantation in magneto-optical glasses,” Appl. Phys. B 123(2), 56 (2017).
[Crossref]

Hammer, M.

Hertel, P.

Hsieh, I.-W.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood Jr, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Huber, G.

Jaque, D.

Jarvis, A.

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Jia, Y.

Jing, B.

X. Long, B. Jing, and L. Xin, “Inscription of waveguides in terbium gallium garnet using femtosecond laser,” Acta Opt. Sin. 34(4), 0432002 (2014).
[Crossref]

John, S.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[Crossref]

Kar, A. K.

Kawanaka, J.

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[Crossref]

Korkishko, Y. N.

Li, W.

C. Liu, X. Shen, R. Zheng, H. Guo, W. Li, and W. Wei, “Visible and near-infrared waveguides formed by double-energy proton implantation in magneto-optical glasses,” Appl. Phys. B 123(2), 56 (2017).
[Crossref]

Lifante, G.

Liu, C.

Q. Zhu, Y. Wang, X. Shen, H. Guo, and C. Liu, “Optical Ridge Waveguides in Magneto-Optical Glasses Fabricated by Combination of Silicon Ion Implantation and Femtosecond Laser Ablation,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

Y. Wang, X. Shen, R. Zheng, P. Lv, C. Liu, and H. Guo, “Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet,” J. Korean Phys. Soc. 72(7), 765–769 (2018).
[Crossref]

Y. Wang, X. Shen, Q. Zhu, and C. liu, “Optical planar and ridge waveguides in terbium gallium garnet crystals produced by ion implantation and precise diamond blade dicing,” Opt. Mater. Express 8(11), 3288–3294 (2018).
[Crossref]

C. Liu, X. Shen, R. Zheng, H. Guo, W. Li, and W. Wei, “Visible and near-infrared waveguides formed by double-energy proton implantation in magneto-optical glasses,” Appl. Phys. B 123(2), 56 (2017).
[Crossref]

Liu, F.

Long, X.

X. Long, B. Jing, and L. Xin, “Inscription of waveguides in terbium gallium garnet using femtosecond laser,” Acta Opt. Sin. 34(4), 0432002 (2014).
[Crossref]

Lu, Q. M.

Luan, Q.

Lv, J.

Lv, P.

Y. Wang, X. Shen, R. Zheng, P. Lv, C. Liu, and H. Guo, “Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet,” J. Korean Phys. Soc. 72(7), 765–769 (2018).
[Crossref]

Madden, S.

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Maeda, M.

H. Uetsuhara, S. Goto, Y. Nakata, N. Vasa, T. Okada, and M. Maeda, “Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition,” Appl. Phys. A 69(7), S719–S722 (1999).
[Crossref]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Mateos, X.

Mendez, A.

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

Mizumoto, T.

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photonics J. 6(1), 1–15 (2014).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood Jr, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Morozova, T. M.

Motokoshi, S.

Murugan, G. S.

Nakano, Y.

Nakata, Y.

H. Uetsuhara, S. Goto, Y. Nakata, N. Vasa, T. Okada, and M. Maeda, “Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition,” Appl. Phys. A 69(7), S719–S722 (1999).
[Crossref]

Narusawa, T.

Nozawa, H.

Okada, T.

H. Uetsuhara, S. Goto, Y. Nakata, N. Vasa, T. Okada, and M. Maeda, “Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition,” Appl. Phys. A 69(7), S719–S722 (1999).
[Crossref]

Olivares, J.

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (∼10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[Crossref]

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

Osgood Jr, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood Jr, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Palashov, O. V.

Panyutin, V. L.

Petermann, K.

Petrov, V.

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Popkov, A. F.

Qiu, F.

Ren, Y.

Rode, A. V.

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Rodenas, A.

Ruan, Y. L.

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Ruiz, T.

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

Samirand, K. M.

K. M. Samirand and J. H. S. Bethanie, “Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photonics Technol. Lett. 17(1), 127–129 (2005).
[Crossref]

Schinke, D. P.

P. K. Tien, D. P. Schinke, and S. L. Blank, “Magneto-optics and motion of the magnetization in a film-waveguide optical switch,” J. Appl. Phys. 45(7), 3059–3068 (1974).
[Crossref]

Schlarb, U.

U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B 182(2), K91–K93 (1994).
[Crossref]

Segato, F.

Shang, Z.

Shen, X.

Y. Wang, X. Shen, Q. Zhu, and C. liu, “Optical planar and ridge waveguides in terbium gallium garnet crystals produced by ion implantation and precise diamond blade dicing,” Opt. Mater. Express 8(11), 3288–3294 (2018).
[Crossref]

Q. Zhu, Y. Wang, X. Shen, H. Guo, and C. Liu, “Optical Ridge Waveguides in Magneto-Optical Glasses Fabricated by Combination of Silicon Ion Implantation and Femtosecond Laser Ablation,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

Y. Wang, X. Shen, R. Zheng, P. Lv, C. Liu, and H. Guo, “Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet,” J. Korean Phys. Soc. 72(7), 765–769 (2018).
[Crossref]

C. Liu, X. Shen, R. Zheng, H. Guo, W. Li, and W. Wei, “Visible and near-infrared waveguides formed by double-energy proton implantation in magneto-optical glasses,” Appl. Phys. B 123(2), 56 (2017).
[Crossref]

Shimizu, H.

Shoji, Y.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood Jr, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Siebenmorgen, J.

Snetkov, I. L.

Stadler, B. J. H.

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photonics J. 6(1), 1–15 (2014).
[Crossref]

Starobor, A. V.

Sugg, B.

U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B 182(2), K91–K93 (1994).
[Crossref]

Sun, S.

Takeda, H.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[Crossref]

Tan, Y.

Thomson, R. R.

Tien, P. K.

P. K. Tien, D. P. Schinke, and S. L. Blank, “Magneto-optics and motion of the magnetization in a film-waveguide optical switch,” J. Appl. Phys. 45(7), 3059–3068 (1974).
[Crossref]

Toulemonde, M.

Trautmann, C.

Uetsuhara, H.

H. Uetsuhara, S. Goto, Y. Nakata, N. Vasa, T. Okada, and M. Maeda, “Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition,” Appl. Phys. A 69(7), S719–S722 (1999).
[Crossref]

Vasa, N.

H. Uetsuhara, S. Goto, Y. Nakata, N. Vasa, T. Okada, and M. Maeda, “Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition,” Appl. Phys. A 69(7), S719–S722 (1999).
[Crossref]

Wang, Y.

Q. Zhu, Y. Wang, X. Shen, H. Guo, and C. Liu, “Optical Ridge Waveguides in Magneto-Optical Glasses Fabricated by Combination of Silicon Ion Implantation and Femtosecond Laser Ablation,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

Y. Wang, X. Shen, R. Zheng, P. Lv, C. Liu, and H. Guo, “Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet,” J. Korean Phys. Soc. 72(7), 765–769 (2018).
[Crossref]

Y. Wang, X. Shen, Q. Zhu, and C. liu, “Optical planar and ridge waveguides in terbium gallium garnet crystals produced by ion implantation and precise diamond blade dicing,” Opt. Mater. Express 8(11), 3288–3294 (2018).
[Crossref]

Wei, W.

C. Liu, X. Shen, R. Zheng, H. Guo, W. Li, and W. Wei, “Visible and near-infrared waveguides formed by double-energy proton implantation in magneto-optical glasses,” Appl. Phys. B 123(2), 56 (2017).
[Crossref]

Wilkens, L.

Wilkinson, J. S.

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Xin, L.

X. Long, B. Jing, and L. Xin, “Inscription of waveguides in terbium gallium garnet using femtosecond laser,” Acta Opt. Sin. 34(4), 0432002 (2014).
[Crossref]

Yanagitani, T.

Yasuhara, R.

Ynsa, M. D.

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood Jr, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Zaets, W.

W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer,” IEEE Photonics Technol. Lett. 11(8), 1012–1014 (1999).
[Crossref]

Zheng, R.

Y. Wang, X. Shen, R. Zheng, P. Lv, C. Liu, and H. Guo, “Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet,” J. Korean Phys. Soc. 72(7), 765–769 (2018).
[Crossref]

C. Liu, X. Shen, R. Zheng, H. Guo, W. Li, and W. Wei, “Visible and near-infrared waveguides formed by double-energy proton implantation in magneto-optical glasses,” Appl. Phys. B 123(2), 56 (2017).
[Crossref]

Zhou, S.

Zhu, Q.

Q. Zhu, Y. Wang, X. Shen, H. Guo, and C. Liu, “Optical Ridge Waveguides in Magneto-Optical Glasses Fabricated by Combination of Silicon Ion Implantation and Femtosecond Laser Ablation,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

Y. Wang, X. Shen, Q. Zhu, and C. liu, “Optical planar and ridge waveguides in terbium gallium garnet crystals produced by ion implantation and precise diamond blade dicing,” Opt. Mater. Express 8(11), 3288–3294 (2018).
[Crossref]

Zhuromskyy, O.

Acta Opt. Sin. (1)

X. Long, B. Jing, and L. Xin, “Inscription of waveguides in terbium gallium garnet using femtosecond laser,” Acta Opt. Sin. 34(4), 0432002 (2014).
[Crossref]

Appl. Phys. A (1)

H. Uetsuhara, S. Goto, Y. Nakata, N. Vasa, T. Okada, and M. Maeda, “Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition,” Appl. Phys. A 69(7), S719–S722 (1999).
[Crossref]

Appl. Phys. B (2)

C. Liu, X. Shen, R. Zheng, H. Guo, W. Li, and W. Wei, “Visible and near-infrared waveguides formed by double-energy proton implantation in magneto-optical glasses,” Appl. Phys. B 123(2), 56 (2017).
[Crossref]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[Crossref]

Appl. Phys. Lett. (1)

Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, and R. M. Osgood Jr, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

IEEE Photonics J. (2)

Q. Zhu, Y. Wang, X. Shen, H. Guo, and C. Liu, “Optical Ridge Waveguides in Magneto-Optical Glasses Fabricated by Combination of Silicon Ion Implantation and Femtosecond Laser Ablation,” IEEE Photonics J. 10(5), 1–7 (2018).
[Crossref]

B. J. H. Stadler and T. Mizumoto, “Integrated magneto-optical materials and isolators: a review,” IEEE Photonics J. 6(1), 1–15 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

W. Zaets and K. Ando, “Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer,” IEEE Photonics Technol. Lett. 11(8), 1012–1014 (1999).
[Crossref]

K. M. Samirand and J. H. S. Bethanie, “Novel designs for integrating YIG/air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photonics Technol. Lett. 17(1), 127–129 (2005).
[Crossref]

J. Appl. Phys. (1)

P. K. Tien, D. P. Schinke, and S. L. Blank, “Magneto-optics and motion of the magnetization in a film-waveguide optical switch,” J. Appl. Phys. 45(7), 3059–3068 (1974).
[Crossref]

J. Korean Phys. Soc. (1)

Y. Wang, X. Shen, R. Zheng, P. Lv, C. Liu, and H. Guo, “Optical Planar Waveguides Fabricated by Using Carbon Ion Implantation in Terbium Gallium Garnet,” J. Korean Phys. Soc. 72(7), 765–769 (2018).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (2)

T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabañes, J. Olivares, F. Agulló-López, A. García-Navarro, and G. García, “Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation,” J. Phys. D 40(15), 4454–4459 (2007).
[Crossref]

N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow-fluence swift heavy ion irradiation in lithium niobate crystals,” J. Phys. D 44(10), 105103 (2011).
[Crossref]

Laser Photonics Rev. (2)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

Opt. Commun. (1)

Y. L. Ruan, A. Jarvis, A. V. Rode, S. Madden, L. Davies, and Berry, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252(1-3), 39–45 (2005).
[Crossref]

Opt. Express (11)

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref]

Y. Jia, N. Dong, F. Chen, J. R. V. D. Aldana, S. Akhmadaliev, and S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[Crossref]

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref]

Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
[Crossref]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref]

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84 μm,” Opt. Express 19(2), 1449–1454 (2011).
[Crossref]

J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. García-Cabañes, M. Toulemonde, C. Trautmann, and F. Agulló-López, “Thick optical waveguides in lithium niobate induced by swift heavy ions (∼10 MeV/amu) at ultralow fluences,” Opt. Express 17(26), 24175–24182 (2009).
[Crossref]

J. Lv, Z. Shang, Y. Tan, J. R. V. D. Aldana, and F. Chen, “Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation,” Opt. Express 25(16), 19603–19608 (2017).
[Crossref]

Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. A (1)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[Crossref]

Phys. Status Solidi B (1)

U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B 182(2), K91–K93 (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup for magneto-optic measurement in the TGG optical waveguide.
Fig. 2.
Fig. 2. (a) Optical microscope image of the cross-section of as-irradiated TGG waveguide (S0). (b) Electronic (dashed line) and nuclear (solid line) stopping powers as a function of depth of the TGG waveguide. Measured and simulated modal profiles of fundamental modes in the TGG waveguide with TE (c) and TM (e) polarizations at 632.8 nm. Reconstructed refractive index profiles of the waveguide (dashed line is S0 and solid line is S3) with TE (d) and TM (f) polarizations.
Fig. 3.
Fig. 3. (a) Variation of the maximum refractive index contrast of the TGG planar waveguide under different annealing conditions. (b) Polarization images of the propagation loss of waveguide at 632.8 nm.
Fig. 4.
Fig. 4. Raman spectra at a depth of 4 μm in S0 (a) and S3 (e) excited by 532 nm laser with TE and TM -polarization. The intensity distribution of the Raman signal of S0 (d) and S3 (h) at 356.3 cm−1 along with the depth. Raman mapping of S0 excited by the light with TE -polarization (b) and TM -polarization (c). Raman mapping of S3 excited by the light with TE -polarization (f) and TM -polarization (g).
Fig. 5.
Fig. 5. The measured internal optical rotation angles of the TGG planar optical waveguide under different annealing conditions.
Fig. 6.
Fig. 6. The relationship between rotation angle ratio R of the TGG waveguide and the EI contrast between TE and TM modes. Here the propagation distance is 5 mm with Faraday rotation constant θ of 18°/cm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E T E = A ( 0 ) { c o s [ ( Δ β 2 / 4 + θ 2 ) 1 / 2 x ] i Δ β / 2 ( Δ β 2 / 4 + θ 2 ) 1 / 2 s i n [ ( Δ β 2 / 4 + θ 2 ) 1 / 2 x ] }
E T M = ( β T M 1 / 2 β T E 1 / 2 / k 0 n ) θ ( Δ β 2 / 4 + θ 2 ) 1 / 2 A ( 0 ) e x p ( i Δ β x ) s i n [ ( Δ β 2 / 4 + θ 2 ) 1 / 2 x ]
t a n 2 θ p = I T M / I T E

Metrics