Abstract

Encapsulation of fluorescent directives “thermally activated delayed fluorescence" molecules into a zeolitic imidazole frameworks was proposed, and 4CzIPN molecules were successfully encapsulated into ZIF-11 pores by one step process with a loading efficiency of 0.064 of the proportion of 4CzIPN/ZIF-11. Some Spectroscopic studies such as XRD, UV-Vis, FTIR, THz-TDS and time resolved streak measurement, and the suppression of intramolecular vibrational, rotational and librational motions of 4CzIPN molecules were confirmed. Interestingly, the florescence lifetime of 4CzIPN was considerably elongated from 2.37 ns to 14.8 ns, while the phosphorescence lifetime became a little bit short from 2.15 μs to 1.65 μs. The lifetime differences was thought to be due to the suppression of the 4CzIPN molecules’ motion by the close ZIF-11 frameworks that affected the reverse intersystem crossing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Linearly polarized surface warm-yellow LED based on orientated organic dyes in rod-like metal-organic framework crystal arrays

Jin Wang, Feihong Ye, Zhenjiang Huang, Yunchao Zhang, Xinhui Zhou, and Yunqing Lu
Opt. Mater. Express 8(9) 2901-2909 (2018)

Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether

Peng Wang, Feng Qin, Li Wang, Fajun Li, Yangdong Zheng, Yunfei Song, Zhiguo Zhang, and Wenwu Cao
Opt. Express 22(3) 2414-2422 (2014)

Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

Eric T. Hoke, Brian E. Hardin, and Michael D. McGehee
Opt. Express 18(4) 3893-3904 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492, 234–238 (2012).
    [Crossref] [PubMed]
  2. J. Li, T. Nakagawa, J. MacDonald, Q. Shang, H. Nomura, H. Miyazaki, and C. Adachi, “Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative,” Adv. Mater. 25, 3319–3323 (2013).
    [Crossref] [PubMed]
  3. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8, 326–332 (2014).
    [Crossref]
  4. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048–5051 (2001).
    [Crossref]
  5. C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
    [Crossref] [PubMed]
  6. S. Wang, Y. Zhang, W. Chen, J. Wei, Y. Liu, and Y. Wang, “Achieving high power efficiency and low roll-off oleds based on energy transfer from thermally activated delayed excitons to fluorescent dopants,” Chem. Commun. 51, 11972–11975 (2015).
    [Crossref]
  7. J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
    [Crossref]
  8. C. Murawski, K. Leo, and M. C. Gather, “Efficiency Roll–Off in Organic Light–Emitting Diodes,” Adv. Mater. 25, 6801–6827 (2013).
    [Crossref] [PubMed]
  9. M. Cai, X. Song, D. Zhang, J. Qiao, and L. Duan, “π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for tadf and phosphorescent devices with low efficiency roll-off,” J. Mater. Chem. C 5, 3372–3381 (2017).
    [Crossref]
  10. H. Li, M. Eddaoudi, M. O’Keeffe, and O. M. Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402, 276–279 (1999).
    [Crossref]
  11. S. Kaskel, The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications (WILEY–VCH, Weinheim, Germany, 2016).
  12. Y. Lei, Y. Sun, H. Zhang, L. Liao, S.-T. Lee, and W.-Y. Wong, “Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds,” Chem. Commun. 52, 12318–12321 (2016).
    [Crossref]
  13. H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong, and W.-S. Ahn, “CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating,” Cat. Today 185, 35–40 (2012).
    [Crossref]
  14. J. Sánchez-Línez, B. Zornoza, C. Téllez, and J. Coronas, “On the chemical filler-polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation,” J. Mater. Chem. A 4, 14334–14341 (2016).
    [Crossref]
  15. O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
    [Crossref] [PubMed]
  16. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal-organic framework materials as catalysts,” Chem. Soc. Rev. 38, 1450–1459 (2009).
    [Crossref] [PubMed]
  17. M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, “Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties,” J. Mater. Chem. 17, 3827–3832 (2007).
    [Crossref]
  18. G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
    [Crossref] [PubMed]
  19. Y. Liu and T. Zhiyong, “Multifunctional Nanoparticle@MOF Core–Shell Nanostructures,” Adv. Mater. 25, 5819–5825 (2013).
    [Crossref] [PubMed]
  20. M. Wu and Y. Yang, “Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy,” Adv. Mater. 29, 1606134 (2017).
    [Crossref]
  21. J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
    [Crossref]
  22. H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
    [Crossref]
  23. J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 11087 (2013).
    [Crossref]
  24. J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, and C.-K. Tsung, “Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation,” ACS Nano 8, 2812–2819 (2014).
    [Crossref] [PubMed]
  25. H. Mieno, R. Kabe, N. Notsuka, M. D. Allendolf, and C. Adachi, “Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8,” Adv. Opt. Mater. 4, 1015–1021 (2016).
    [Crossref]
  26. D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, and G. Qian, “Ratiometric dual-emitting MOF⊂dye thermometers with a tunable operating range and sensitivity,” J. Mater. Chem. C 5, 1607–1613 (2017).
    [Crossref]
  27. M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi, “Zeolite-like Metal-Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts,” J. Am. Chem. Soc. 130, 12639–12641 (2008).
    [Crossref] [PubMed]
  28. M. Gao, A. J. Misquitta, L. H. N. Rimmer, and M. T. Dove, “Molecular dynamics simulation study of various zeolitic imidazolate framework structures,” Dalton Trans. 45, 4289–4302 (2016).
    [Crossref]
  29. A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res. 43, 58–67 (2010).
    [Crossref]
  30. B. Seoane, J. M. Zamaro, C. Tellez, and J. Coronas, “Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20),” CrystEngComm 14, 3103–3107 (2012).
    [Crossref]
  31. H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, and S. Yao, “Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples,” Analyst 139, 5818–5826 (2014).
    [Crossref] [PubMed]
  32. M. He, J. Yao, Q. Liu, Z. Zhong, and H. Wang, “Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12,” Dalton Trans. 42, 16608–16613 (2013).
    [Crossref] [PubMed]
  33. J. Sánchez-Laínez and B. Zornoza, Á. Mayoral, Á. Berenguer-Murcia, D. Cazorla-Amorós, C. Téllez, and J. Coronas, “Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes,” J. Mater. Chem. A 3, 6549–6556 (2015).
    [Crossref]
  34. M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, and M. Wiebcke, “Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape,” Dalton Trans. 43, 3528–3536 (2014).
    [Crossref]
  35. B. P. Biswal, T. Panda, and R. Banerjee, “Solution mediated phase transformation (RHO to SOD) in porous Co-imidazolate based zeolitic frameworks with high water stability,” Chem. Commun. 48, 11868–11870 (2012).
    [Crossref]
  36. H. Takeda, C. Chen, T. Komino, H. Yoshioka, Y. Oki, and C. Adachi, “0.6 – 1.6 thz band spectroscopy of organic thermally activated delayed fluorescence materials,” Opt. Matter. Exp. 6, 3045–3052 (2016).
    [Crossref]

2018 (1)

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

2017 (4)

M. Cai, X. Song, D. Zhang, J. Qiao, and L. Duan, “π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for tadf and phosphorescent devices with low efficiency roll-off,” J. Mater. Chem. C 5, 3372–3381 (2017).
[Crossref]

M. Wu and Y. Yang, “Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy,” Adv. Mater. 29, 1606134 (2017).
[Crossref]

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, and G. Qian, “Ratiometric dual-emitting MOF⊂dye thermometers with a tunable operating range and sensitivity,” J. Mater. Chem. C 5, 1607–1613 (2017).
[Crossref]

2016 (6)

M. Gao, A. J. Misquitta, L. H. N. Rimmer, and M. T. Dove, “Molecular dynamics simulation study of various zeolitic imidazolate framework structures,” Dalton Trans. 45, 4289–4302 (2016).
[Crossref]

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

H. Mieno, R. Kabe, N. Notsuka, M. D. Allendolf, and C. Adachi, “Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8,” Adv. Opt. Mater. 4, 1015–1021 (2016).
[Crossref]

Y. Lei, Y. Sun, H. Zhang, L. Liao, S.-T. Lee, and W.-Y. Wong, “Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds,” Chem. Commun. 52, 12318–12321 (2016).
[Crossref]

J. Sánchez-Línez, B. Zornoza, C. Téllez, and J. Coronas, “On the chemical filler-polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation,” J. Mater. Chem. A 4, 14334–14341 (2016).
[Crossref]

H. Takeda, C. Chen, T. Komino, H. Yoshioka, Y. Oki, and C. Adachi, “0.6 – 1.6 thz band spectroscopy of organic thermally activated delayed fluorescence materials,” Opt. Matter. Exp. 6, 3045–3052 (2016).
[Crossref]

2015 (2)

S. Wang, Y. Zhang, W. Chen, J. Wei, Y. Liu, and Y. Wang, “Achieving high power efficiency and low roll-off oleds based on energy transfer from thermally activated delayed excitons to fluorescent dopants,” Chem. Commun. 51, 11972–11975 (2015).
[Crossref]

J. Sánchez-Laínez and B. Zornoza, Á. Mayoral, Á. Berenguer-Murcia, D. Cazorla-Amorós, C. Téllez, and J. Coronas, “Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes,” J. Mater. Chem. A 3, 6549–6556 (2015).
[Crossref]

2014 (5)

M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, and M. Wiebcke, “Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape,” Dalton Trans. 43, 3528–3536 (2014).
[Crossref]

H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, and S. Yao, “Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples,” Analyst 139, 5818–5826 (2014).
[Crossref] [PubMed]

J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, and C.-K. Tsung, “Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation,” ACS Nano 8, 2812–2819 (2014).
[Crossref] [PubMed]

C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
[Crossref] [PubMed]

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8, 326–332 (2014).
[Crossref]

2013 (5)

J. Li, T. Nakagawa, J. MacDonald, Q. Shang, H. Nomura, H. Miyazaki, and C. Adachi, “Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative,” Adv. Mater. 25, 3319–3323 (2013).
[Crossref] [PubMed]

C. Murawski, K. Leo, and M. C. Gather, “Efficiency Roll–Off in Organic Light–Emitting Diodes,” Adv. Mater. 25, 6801–6827 (2013).
[Crossref] [PubMed]

Y. Liu and T. Zhiyong, “Multifunctional Nanoparticle@MOF Core–Shell Nanostructures,” Adv. Mater. 25, 5819–5825 (2013).
[Crossref] [PubMed]

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 11087 (2013).
[Crossref]

M. He, J. Yao, Q. Liu, Z. Zhong, and H. Wang, “Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12,” Dalton Trans. 42, 16608–16613 (2013).
[Crossref] [PubMed]

2012 (5)

B. P. Biswal, T. Panda, and R. Banerjee, “Solution mediated phase transformation (RHO to SOD) in porous Co-imidazolate based zeolitic frameworks with high water stability,” Chem. Commun. 48, 11868–11870 (2012).
[Crossref]

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492, 234–238 (2012).
[Crossref] [PubMed]

H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong, and W.-S. Ahn, “CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating,” Cat. Today 185, 35–40 (2012).
[Crossref]

B. Seoane, J. M. Zamaro, C. Tellez, and J. Coronas, “Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20),” CrystEngComm 14, 3103–3107 (2012).
[Crossref]

2010 (2)

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res. 43, 58–67 (2010).
[Crossref]

2009 (1)

J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal-organic framework materials as catalysts,” Chem. Soc. Rev. 38, 1450–1459 (2009).
[Crossref] [PubMed]

2008 (1)

M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi, “Zeolite-like Metal-Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts,” J. Am. Chem. Soc. 130, 12639–12641 (2008).
[Crossref] [PubMed]

2007 (1)

M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, “Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties,” J. Mater. Chem. 17, 3827–3832 (2007).
[Crossref]

2001 (1)

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048–5051 (2001).
[Crossref]

1999 (1)

H. Li, M. Eddaoudi, M. O’Keeffe, and O. M. Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402, 276–279 (1999).
[Crossref]

Adachi, C.

H. Mieno, R. Kabe, N. Notsuka, M. D. Allendolf, and C. Adachi, “Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8,” Adv. Opt. Mater. 4, 1015–1021 (2016).
[Crossref]

H. Takeda, C. Chen, T. Komino, H. Yoshioka, Y. Oki, and C. Adachi, “0.6 – 1.6 thz band spectroscopy of organic thermally activated delayed fluorescence materials,” Opt. Matter. Exp. 6, 3045–3052 (2016).
[Crossref]

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8, 326–332 (2014).
[Crossref]

J. Li, T. Nakagawa, J. MacDonald, Q. Shang, H. Nomura, H. Miyazaki, and C. Adachi, “Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative,” Adv. Mater. 25, 3319–3323 (2013).
[Crossref] [PubMed]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492, 234–238 (2012).
[Crossref] [PubMed]

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048–5051 (2001).
[Crossref]

Ahn, W.-S.

H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong, and W.-S. Ahn, “CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating,” Cat. Today 185, 35–40 (2012).
[Crossref]

Aldred, M. P.

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

Alkordi, M. H.

M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi, “Zeolite-like Metal-Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts,” J. Am. Chem. Soc. 130, 12639–12641 (2008).
[Crossref] [PubMed]

Allendolf, M. D.

H. Mieno, R. Kabe, N. Notsuka, M. D. Allendolf, and C. Adachi, “Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8,” Adv. Opt. Mater. 4, 1015–1021 (2016).
[Crossref]

Baburin, I. A.

M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, and M. Wiebcke, “Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape,” Dalton Trans. 43, 3528–3536 (2014).
[Crossref]

Baldo, M. A.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048–5051 (2001).
[Crossref]

Banerjee, R.

B. P. Biswal, T. Panda, and R. Banerjee, “Solution mediated phase transformation (RHO to SOD) in porous Co-imidazolate based zeolitic frameworks with high water stability,” Chem. Commun. 48, 11868–11870 (2012).
[Crossref]

Bao, T.-Y.

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Biswal, B. P.

B. P. Biswal, T. Panda, and R. Banerjee, “Solution mediated phase transformation (RHO to SOD) in porous Co-imidazolate based zeolitic frameworks with high water stability,” Chem. Commun. 48, 11868–11870 (2012).
[Crossref]

Cai, M.

M. Cai, X. Song, D. Zhang, J. Qiao, and L. Duan, “π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for tadf and phosphorescent devices with low efficiency roll-off,” J. Mater. Chem. C 5, 3372–3381 (2017).
[Crossref]

Cao, X.-L.

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Chen, B.

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 11087 (2013).
[Crossref]

Chen, C.

H. Takeda, C. Chen, T. Komino, H. Yoshioka, Y. Oki, and C. Adachi, “0.6 – 1.6 thz band spectroscopy of organic thermally activated delayed fluorescence materials,” Opt. Matter. Exp. 6, 3045–3052 (2016).
[Crossref]

H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, and S. Yao, “Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples,” Analyst 139, 5818–5826 (2014).
[Crossref] [PubMed]

Chen, W.

S. Wang, Y. Zhang, W. Chen, J. Wei, Y. Liu, and Y. Wang, “Achieving high power efficiency and low roll-off oleds based on energy transfer from thermally activated delayed excitons to fluorescent dopants,” Chem. Commun. 51, 11972–11975 (2015).
[Crossref]

Chen, X.

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Chepelin, O.

C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
[Crossref] [PubMed]

Chi, Z.

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

Cho, H.-Y.

H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong, and W.-S. Ahn, “CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating,” Cat. Today 185, 35–40 (2012).
[Crossref]

Chou, L.-Y.

J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, and C.-K. Tsung, “Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation,” ACS Nano 8, 2812–2819 (2014).
[Crossref] [PubMed]

Coronas, J.

J. Sánchez-Línez, B. Zornoza, C. Téllez, and J. Coronas, “On the chemical filler-polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation,” J. Mater. Chem. A 4, 14334–14341 (2016).
[Crossref]

B. Seoane, J. M. Zamaro, C. Tellez, and J. Coronas, “Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20),” CrystEngComm 14, 3103–3107 (2012).
[Crossref]

Cui, Y.

D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, and G. Qian, “Ratiometric dual-emitting MOF⊂dye thermometers with a tunable operating range and sensitivity,” J. Mater. Chem. C 5, 1607–1613 (2017).
[Crossref]

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 11087 (2013).
[Crossref]

Dong, L.-Z.

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Doonan, C. J.

A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res. 43, 58–67 (2010).
[Crossref]

Dove, M. T.

M. Gao, A. J. Misquitta, L. H. N. Rimmer, and M. T. Dove, “Molecular dynamics simulation study of various zeolitic imidazolate framework structures,” Dalton Trans. 45, 4289–4302 (2016).
[Crossref]

Duan, L.

M. Cai, X. Song, D. Zhang, J. Qiao, and L. Duan, “π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for tadf and phosphorescent devices with low efficiency roll-off,” J. Mater. Chem. C 5, 3372–3381 (2017).
[Crossref]

DuChene, J. S.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Eddaoudi, M.

M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi, “Zeolite-like Metal-Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts,” J. Am. Chem. Soc. 130, 12639–12641 (2008).
[Crossref] [PubMed]

H. Li, M. Eddaoudi, M. O’Keeffe, and O. M. Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402, 276–279 (1999).
[Crossref]

Eryazici, I.

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

Eubank, J. F.

M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi, “Zeolite-like Metal-Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts,” J. Am. Chem. Soc. 130, 12639–12641 (2008).
[Crossref] [PubMed]

Farha, O. K.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal-organic framework materials as catalysts,” Chem. Soc. Rev. 38, 1450–1459 (2009).
[Crossref] [PubMed]

Forrest, S. R.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048–5051 (2001).
[Crossref]

Fröde, H.

M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, “Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties,” J. Mater. Chem. 17, 3827–3832 (2007).
[Crossref]

Gao, M.

M. Gao, A. J. Misquitta, L. H. N. Rimmer, and M. T. Dove, “Molecular dynamics simulation study of various zeolitic imidazolate framework structures,” Dalton Trans. 45, 4289–4302 (2016).
[Crossref]

Gather, M. C.

C. Murawski, K. Leo, and M. C. Gather, “Efficiency Roll–Off in Organic Light–Emitting Diodes,” Adv. Mater. 25, 6801–6827 (2013).
[Crossref] [PubMed]

Goushi, K.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492, 234–238 (2012).
[Crossref] [PubMed]

Guo, Z.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Han, S.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Hauser, B. G.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

He, H.

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

He, M.

M. He, J. Yao, Q. Liu, Z. Zhong, and H. Wang, “Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12,” Dalton Trans. 42, 16608–16613 (2013).
[Crossref] [PubMed]

Henschel, A.

M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, “Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties,” J. Mater. Chem. 17, 3827–3832 (2007).
[Crossref]

Hikov, T.

M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, and M. Wiebcke, “Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape,” Dalton Trans. 43, 3528–3536 (2014).
[Crossref]

Hu, H.

H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, and S. Yao, “Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples,” Analyst 139, 5818–5826 (2014).
[Crossref] [PubMed]

Huang, S.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8, 326–332 (2014).
[Crossref]

Huber, K.

M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, and M. Wiebcke, “Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape,” Dalton Trans. 43, 3528–3536 (2014).
[Crossref]

Huo, F.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Hupp, J. T.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal-organic framework materials as catalysts,” Chem. Soc. Rev. 38, 1450–1459 (2009).
[Crossref] [PubMed]

Jeong, S.-Y.

H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong, and W.-S. Ahn, “CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating,” Cat. Today 185, 35–40 (2012).
[Crossref]

Jiang, K.

D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, and G. Qian, “Ratiometric dual-emitting MOF⊂dye thermometers with a tunable operating range and sensitivity,” J. Mater. Chem. C 5, 1607–1613 (2017).
[Crossref]

Kabe, R.

H. Mieno, R. Kabe, N. Notsuka, M. D. Allendolf, and C. Adachi, “Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8,” Adv. Opt. Mater. 4, 1015–1021 (2016).
[Crossref]

Kanatzidis, M. G.

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

Kaskel, S.

M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, “Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties,” J. Mater. Chem. 17, 3827–3832 (2007).
[Crossref]

S. Kaskel, The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications (WILEY–VCH, Weinheim, Germany, 2016).

Kim, J.

H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong, and W.-S. Ahn, “CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating,” Cat. Today 185, 35–40 (2012).
[Crossref]

Klemm, E.

M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, “Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties,” J. Mater. Chem. 17, 3827–3832 (2007).
[Crossref]

Knobler, C. B.

A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res. 43, 58–67 (2010).
[Crossref]

Komino, T.

H. Takeda, C. Chen, T. Komino, H. Yoshioka, Y. Oki, and C. Adachi, “0.6 – 1.6 thz band spectroscopy of organic thermally activated delayed fluorescence materials,” Opt. Matter. Exp. 6, 3045–3052 (2016).
[Crossref]

Kuo, C.-H.

J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, and C.-K. Tsung, “Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation,” ACS Nano 8, 2812–2819 (2014).
[Crossref] [PubMed]

Lan, Y.-Q.

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Larsen, R. W.

M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi, “Zeolite-like Metal-Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts,” J. Am. Chem. Soc. 130, 12639–12641 (2008).
[Crossref] [PubMed]

Lee, J.

J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal-organic framework materials as catalysts,” Chem. Soc. Rev. 38, 1450–1459 (2009).
[Crossref] [PubMed]

Lee, S.-T.

Y. Lei, Y. Sun, H. Zhang, L. Liao, S.-T. Lee, and W.-Y. Wong, “Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds,” Chem. Commun. 52, 12318–12321 (2016).
[Crossref]

Lei, Y.

Y. Lei, Y. Sun, H. Zhang, L. Liao, S.-T. Lee, and W.-Y. Wong, “Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds,” Chem. Commun. 52, 12318–12321 (2016).
[Crossref]

Leitl, M. J.

C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
[Crossref] [PubMed]

Leo, K.

C. Murawski, K. Leo, and M. C. Gather, “Efficiency Roll–Off in Organic Light–Emitting Diodes,” Adv. Mater. 25, 6801–6827 (2013).
[Crossref] [PubMed]

Leoni, S.

M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, and M. Wiebcke, “Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape,” Dalton Trans. 43, 3528–3536 (2014).
[Crossref]

Li, B.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8, 326–332 (2014).
[Crossref]

Li, H.

H. Li, M. Eddaoudi, M. O’Keeffe, and O. M. Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402, 276–279 (1999).
[Crossref]

Li, J.

J. Li, T. Nakagawa, J. MacDonald, Q. Shang, H. Nomura, H. Miyazaki, and C. Adachi, “Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative,” Adv. Mater. 25, 3319–3323 (2013).
[Crossref] [PubMed]

Li, S.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Liao, L.

Y. Lei, Y. Sun, H. Zhang, L. Liao, S.-T. Lee, and W.-Y. Wong, “Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds,” Chem. Commun. 52, 12318–12321 (2016).
[Crossref]

Lin, L.

H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, and S. Yao, “Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples,” Analyst 139, 5818–5826 (2014).
[Crossref] [PubMed]

Linfoot, C. L.

C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
[Crossref] [PubMed]

Liu, D.-Y.

J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, and C.-K. Tsung, “Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation,” ACS Nano 8, 2812–2819 (2014).
[Crossref] [PubMed]

Liu, J.

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Liu, Q.

M. He, J. Yao, Q. Liu, Z. Zhong, and H. Wang, “Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12,” Dalton Trans. 42, 16608–16613 (2013).
[Crossref] [PubMed]

Liu, S.

H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, and S. Yao, “Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples,” Analyst 139, 5818–5826 (2014).
[Crossref] [PubMed]

Liu, T.

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

Liu, X.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Liu, Y.

S. Wang, Y. Zhang, W. Chen, J. Wei, Y. Liu, and Y. Wang, “Achieving high power efficiency and low roll-off oleds based on energy transfer from thermally activated delayed excitons to fluorescent dopants,” Chem. Commun. 51, 11972–11975 (2015).
[Crossref]

Y. Liu and T. Zhiyong, “Multifunctional Nanoparticle@MOF Core–Shell Nanostructures,” Adv. Mater. 25, 5819–5825 (2013).
[Crossref] [PubMed]

M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi, “Zeolite-like Metal-Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts,” J. Am. Chem. Soc. 130, 12639–12641 (2008).
[Crossref] [PubMed]

Loo, S. C. J.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Lu, G.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Ma, E.

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

Ma, J.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

MacDonald, J.

J. Li, T. Nakagawa, J. MacDonald, Q. Shang, H. Nomura, H. Miyazaki, and C. Adachi, “Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative,” Adv. Mater. 25, 3319–3323 (2013).
[Crossref] [PubMed]

Malliakas, C. D.

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

Mieno, H.

H. Mieno, R. Kabe, N. Notsuka, M. D. Allendolf, and C. Adachi, “Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8,” Adv. Opt. Mater. 4, 1015–1021 (2016).
[Crossref]

Misquitta, A. J.

M. Gao, A. J. Misquitta, L. H. N. Rimmer, and M. T. Dove, “Molecular dynamics simulation study of various zeolitic imidazolate framework structures,” Dalton Trans. 45, 4289–4302 (2016).
[Crossref]

Miyazaki, H.

J. Li, T. Nakagawa, J. MacDonald, Q. Shang, H. Nomura, H. Miyazaki, and C. Adachi, “Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative,” Adv. Mater. 25, 3319–3323 (2013).
[Crossref] [PubMed]

Murawski, C.

C. Murawski, K. Leo, and M. C. Gather, “Efficiency Roll–Off in Organic Light–Emitting Diodes,” Adv. Mater. 25, 6801–6827 (2013).
[Crossref] [PubMed]

Nakagawa, T.

J. Li, T. Nakagawa, J. MacDonald, Q. Shang, H. Nomura, H. Miyazaki, and C. Adachi, “Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative,” Adv. Mater. 25, 3319–3323 (2013).
[Crossref] [PubMed]

Nguyen, S. T.

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal-organic framework materials as catalysts,” Chem. Soc. Rev. 38, 1450–1459 (2009).
[Crossref] [PubMed]

Nomura, H.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8, 326–332 (2014).
[Crossref]

J. Li, T. Nakagawa, J. MacDonald, Q. Shang, H. Nomura, H. Miyazaki, and C. Adachi, “Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative,” Adv. Mater. 25, 3319–3323 (2013).
[Crossref] [PubMed]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492, 234–238 (2012).
[Crossref] [PubMed]

Notsuka, N.

H. Mieno, R. Kabe, N. Notsuka, M. D. Allendolf, and C. Adachi, “Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8,” Adv. Opt. Mater. 4, 1015–1021 (2016).
[Crossref]

O’Keeffe, M.

A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res. 43, 58–67 (2010).
[Crossref]

H. Li, M. Eddaoudi, M. O’Keeffe, and O. M. Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402, 276–279 (1999).
[Crossref]

Oki, Y.

H. Takeda, C. Chen, T. Komino, H. Yoshioka, Y. Oki, and C. Adachi, “0.6 – 1.6 thz band spectroscopy of organic thermally activated delayed fluorescence materials,” Opt. Matter. Exp. 6, 3045–3052 (2016).
[Crossref]

Özgür Yazaydin, A.

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

Panda, T.

B. P. Biswal, T. Panda, and R. Banerjee, “Solution mediated phase transformation (RHO to SOD) in porous Co-imidazolate based zeolitic frameworks with high water stability,” Chem. Commun. 48, 11868–11870 (2012).
[Crossref]

Phan, A.

A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res. 43, 58–67 (2010).
[Crossref]

Qi, X.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Qian, G.

D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, and G. Qian, “Ratiometric dual-emitting MOF⊂dye thermometers with a tunable operating range and sensitivity,” J. Mater. Chem. C 5, 1607–1613 (2017).
[Crossref]

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 11087 (2013).
[Crossref]

Qiao, J.

M. Cai, X. Song, D. Zhang, J. Qiao, and L. Duan, “π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for tadf and phosphorescent devices with low efficiency roll-off,” J. Mater. Chem. C 5, 3372–3381 (2017).
[Crossref]

Rausch, A. F.

C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
[Crossref] [PubMed]

Richardson, P.

C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
[Crossref] [PubMed]

Rimmer, L. H. N.

M. Gao, A. J. Misquitta, L. H. N. Rimmer, and M. T. Dove, “Molecular dynamics simulation study of various zeolitic imidazolate framework structures,” Dalton Trans. 45, 4289–4302 (2016).
[Crossref]

Roberts, J.

J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal-organic framework materials as catalysts,” Chem. Soc. Rev. 38, 1450–1459 (2009).
[Crossref] [PubMed]

Robertson, N.

C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
[Crossref] [PubMed]

Sabo, M.

M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, “Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties,” J. Mater. Chem. 17, 3827–3832 (2007).
[Crossref]

Sánchez-Laínez, J.

J. Sánchez-Laínez and B. Zornoza, Á. Mayoral, Á. Berenguer-Murcia, D. Cazorla-Amorós, C. Téllez, and J. Coronas, “Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes,” J. Mater. Chem. A 3, 6549–6556 (2015).
[Crossref]

Sánchez-Línez, J.

J. Sánchez-Línez, B. Zornoza, C. Téllez, and J. Coronas, “On the chemical filler-polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation,” J. Mater. Chem. A 4, 14334–14341 (2016).
[Crossref]

Scheidt, K. A.

J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal-organic framework materials as catalysts,” Chem. Soc. Rev. 38, 1450–1459 (2009).
[Crossref] [PubMed]

Schweinefuß, M. E.

M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, and M. Wiebcke, “Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape,” Dalton Trans. 43, 3528–3536 (2014).
[Crossref]

Seoane, B.

B. Seoane, J. M. Zamaro, C. Tellez, and J. Coronas, “Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20),” CrystEngComm 14, 3103–3107 (2012).
[Crossref]

Sha, J.-Q.

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Shang, Q.

J. Li, T. Nakagawa, J. MacDonald, Q. Shang, H. Nomura, H. Miyazaki, and C. Adachi, “Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative,” Adv. Mater. 25, 3319–3323 (2013).
[Crossref] [PubMed]

Shizu, K.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492, 234–238 (2012).
[Crossref] [PubMed]

Snurr, R. Q.

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

Song, T.

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

Song, X.

M. Cai, X. Song, D. Zhang, J. Qiao, and L. Duan, “π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for tadf and phosphorescent devices with low efficiency roll-off,” J. Mater. Chem. C 5, 3372–3381 (2017).
[Crossref]

Springer, S.

M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, and M. Wiebcke, “Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape,” Dalton Trans. 43, 3528–3536 (2014).
[Crossref]

Sun, Y.

Y. Lei, Y. Sun, H. Zhang, L. Liao, S.-T. Lee, and W.-Y. Wong, “Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds,” Chem. Commun. 52, 12318–12321 (2016).
[Crossref]

Takeda, H.

H. Takeda, C. Chen, T. Komino, H. Yoshioka, Y. Oki, and C. Adachi, “0.6 – 1.6 thz band spectroscopy of organic thermally activated delayed fluorescence materials,” Opt. Matter. Exp. 6, 3045–3052 (2016).
[Crossref]

Tanaka, H.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8, 326–332 (2014).
[Crossref]

Tellez, C.

B. Seoane, J. M. Zamaro, C. Tellez, and J. Coronas, “Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20),” CrystEngComm 14, 3103–3107 (2012).
[Crossref]

Téllez, C.

J. Sánchez-Línez, B. Zornoza, C. Téllez, and J. Coronas, “On the chemical filler-polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation,” J. Mater. Chem. A 4, 14334–14341 (2016).
[Crossref]

Thompson, M. E.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048–5051 (2001).
[Crossref]

Tsung, C.-K.

J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, and C.-K. Tsung, “Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation,” ACS Nano 8, 2812–2819 (2014).
[Crossref] [PubMed]

Uoyama, H.

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492, 234–238 (2012).
[Crossref] [PubMed]

Uribe-Romo, F. J.

A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res. 43, 58–67 (2010).
[Crossref]

Wang, H.

M. He, J. Yao, Q. Liu, Z. Zhong, and H. Wang, “Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12,” Dalton Trans. 42, 16608–16613 (2013).
[Crossref] [PubMed]

Wang, J.

H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, and S. Yao, “Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples,” Analyst 139, 5818–5826 (2014).
[Crossref] [PubMed]

Wang, S.

S. Wang, Y. Zhang, W. Chen, J. Wei, Y. Liu, and Y. Wang, “Achieving high power efficiency and low roll-off oleds based on energy transfer from thermally activated delayed excitons to fluorescent dopants,” Chem. Commun. 51, 11972–11975 (2015).
[Crossref]

Wang, X.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Wang, Y.

S. Wang, Y. Zhang, W. Chen, J. Wei, Y. Liu, and Y. Wang, “Achieving high power efficiency and low roll-off oleds based on energy transfer from thermally activated delayed excitons to fluorescent dopants,” Chem. Commun. 51, 11972–11975 (2015).
[Crossref]

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Wang, Z.

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 11087 (2013).
[Crossref]

Weerapana, E.

J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, and C.-K. Tsung, “Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation,” ACS Nano 8, 2812–2819 (2014).
[Crossref] [PubMed]

Wei, J.

S. Wang, Y. Zhang, W. Chen, J. Wei, Y. Liu, and Y. Wang, “Achieving high power efficiency and low roll-off oleds based on energy transfer from thermally activated delayed excitons to fluorescent dopants,” Chem. Commun. 51, 11972–11975 (2015).
[Crossref]

Wei, W. D.

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

White, F. J.

C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
[Crossref] [PubMed]

Wiebcke, M.

M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, and M. Wiebcke, “Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape,” Dalton Trans. 43, 3528–3536 (2014).
[Crossref]

Wong, W.-Y.

Y. Lei, Y. Sun, H. Zhang, L. Liao, S.-T. Lee, and W.-Y. Wong, “Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds,” Chem. Commun. 52, 12318–12321 (2016).
[Crossref]

Wu, C.-D.

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

Wu, L.-H.

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Wu, M.

M. Wu and Y. Yang, “Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy,” Adv. Mater. 29, 1606134 (2017).
[Crossref]

Xie, Z.

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

Xu, H.

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 11087 (2013).
[Crossref]

Yaghi, O. M.

A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res. 43, 58–67 (2010).
[Crossref]

H. Li, M. Eddaoudi, M. O’Keeffe, and O. M. Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402, 276–279 (1999).
[Crossref]

Yang, D.-A.

H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong, and W.-S. Ahn, “CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating,” Cat. Today 185, 35–40 (2012).
[Crossref]

Yang, X.-Y.

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Yang, Y.

M. Wu and Y. Yang, “Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy,” Adv. Mater. 29, 1606134 (2017).
[Crossref]

D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, and G. Qian, “Ratiometric dual-emitting MOF⊂dye thermometers with a tunable operating range and sensitivity,” J. Mater. Chem. C 5, 1607–1613 (2017).
[Crossref]

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 11087 (2013).
[Crossref]

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Yang, Z.

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

Yao, J.

M. He, J. Yao, Q. Liu, Z. Zhong, and H. Wang, “Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12,” Dalton Trans. 42, 16608–16613 (2013).
[Crossref] [PubMed]

Yao, S.

H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, and S. Yao, “Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples,” Analyst 139, 5818–5826 (2014).
[Crossref] [PubMed]

Yersin, H.

C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
[Crossref] [PubMed]

Yoshioka, H.

H. Takeda, C. Chen, T. Komino, H. Yoshioka, Y. Oki, and C. Adachi, “0.6 – 1.6 thz band spectroscopy of organic thermally activated delayed fluorescence materials,” Opt. Matter. Exp. 6, 3045–3052 (2016).
[Crossref]

Yu, J.

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 11087 (2013).
[Crossref]

Yue, D.

D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, and G. Qian, “Ratiometric dual-emitting MOF⊂dye thermometers with a tunable operating range and sensitivity,” J. Mater. Chem. C 5, 1607–1613 (2017).
[Crossref]

Zamaro, J. M.

B. Seoane, J. M. Zamaro, C. Tellez, and J. Coronas, “Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20),” CrystEngComm 14, 3103–3107 (2012).
[Crossref]

Zhang, D.

M. Cai, X. Song, D. Zhang, J. Qiao, and L. Duan, “π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for tadf and phosphorescent devices with low efficiency roll-off,” J. Mater. Chem. C 5, 3372–3381 (2017).
[Crossref]

Zhang, H.

Y. Lei, Y. Sun, H. Zhang, L. Liao, S.-T. Lee, and W.-Y. Wong, “Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds,” Chem. Commun. 52, 12318–12321 (2016).
[Crossref]

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Zhang, L.

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Zhang, Q.

D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, and G. Qian, “Ratiometric dual-emitting MOF⊂dye thermometers with a tunable operating range and sensitivity,” J. Mater. Chem. C 5, 1607–1613 (2017).
[Crossref]

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8, 326–332 (2014).
[Crossref]

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Zhang, Y.

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

S. Wang, Y. Zhang, W. Chen, J. Wei, Y. Liu, and Y. Wang, “Achieving high power efficiency and low roll-off oleds based on energy transfer from thermally activated delayed excitons to fluorescent dopants,” Chem. Commun. 51, 11972–11975 (2015).
[Crossref]

Zhao, D.

D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, and G. Qian, “Ratiometric dual-emitting MOF⊂dye thermometers with a tunable operating range and sensitivity,” J. Mater. Chem. C 5, 1607–1613 (2017).
[Crossref]

Zhao, J.

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

Zhiyong, T.

Y. Liu and T. Zhiyong, “Multifunctional Nanoparticle@MOF Core–Shell Nanostructures,” Adv. Mater. 25, 5819–5825 (2013).
[Crossref] [PubMed]

Zhong, Z.

M. He, J. Yao, Q. Liu, Z. Zhong, and H. Wang, “Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12,” Dalton Trans. 42, 16608–16613 (2013).
[Crossref] [PubMed]

Zhu, P.-P.

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Zhuang, J.

J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, and C.-K. Tsung, “Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation,” ACS Nano 8, 2812–2819 (2014).
[Crossref] [PubMed]

Zornoza, B.

J. Sánchez-Línez, B. Zornoza, C. Téllez, and J. Coronas, “On the chemical filler-polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation,” J. Mater. Chem. A 4, 14334–14341 (2016).
[Crossref]

J. Sánchez-Laínez and B. Zornoza, Á. Mayoral, Á. Berenguer-Murcia, D. Cazorla-Amorós, C. Téllez, and J. Coronas, “Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes,” J. Mater. Chem. A 3, 6549–6556 (2015).
[Crossref]

Zou, Y.

H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, and S. Yao, “Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples,” Analyst 139, 5818–5826 (2014).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res. 43, 58–67 (2010).
[Crossref]

ACS Nano (1)

J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana, and C.-K. Tsung, “Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation,” ACS Nano 8, 2812–2819 (2014).
[Crossref] [PubMed]

Adv. Mater. (4)

Y. Liu and T. Zhiyong, “Multifunctional Nanoparticle@MOF Core–Shell Nanostructures,” Adv. Mater. 25, 5819–5825 (2013).
[Crossref] [PubMed]

M. Wu and Y. Yang, “Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy,” Adv. Mater. 29, 1606134 (2017).
[Crossref]

J. Li, T. Nakagawa, J. MacDonald, Q. Shang, H. Nomura, H. Miyazaki, and C. Adachi, “Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed Fluorescence Channel in a Heptazine Derivative,” Adv. Mater. 25, 3319–3323 (2013).
[Crossref] [PubMed]

C. Murawski, K. Leo, and M. C. Gather, “Efficiency Roll–Off in Organic Light–Emitting Diodes,” Adv. Mater. 25, 6801–6827 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

H. Mieno, R. Kabe, N. Notsuka, M. D. Allendolf, and C. Adachi, “Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8,” Adv. Opt. Mater. 4, 1015–1021 (2016).
[Crossref]

Analyst (1)

H. Hu, S. Liu, C. Chen, J. Wang, Y. Zou, L. Lin, and S. Yao, “Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples,” Analyst 139, 5818–5826 (2014).
[Crossref] [PubMed]

Cat. Today (1)

H.-Y. Cho, D.-A. Yang, J. Kim, S.-Y. Jeong, and W.-S. Ahn, “CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating,” Cat. Today 185, 35–40 (2012).
[Crossref]

Chem. Commun. (4)

S. Wang, Y. Zhang, W. Chen, J. Wei, Y. Liu, and Y. Wang, “Achieving high power efficiency and low roll-off oleds based on energy transfer from thermally activated delayed excitons to fluorescent dopants,” Chem. Commun. 51, 11972–11975 (2015).
[Crossref]

Y. Lei, Y. Sun, H. Zhang, L. Liao, S.-T. Lee, and W.-Y. Wong, “Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds,” Chem. Commun. 52, 12318–12321 (2016).
[Crossref]

B. P. Biswal, T. Panda, and R. Banerjee, “Solution mediated phase transformation (RHO to SOD) in porous Co-imidazolate based zeolitic frameworks with high water stability,” Chem. Commun. 48, 11868–11870 (2012).
[Crossref]

J. Liu, T.-Y. Bao, X.-Y. Yang, P.-P. Zhu, L.-H. Wu, J.-Q. Sha, L. Zhang, L.-Z. Dong, X.-L. Cao, and Y.-Q. Lan, “Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery,” Chem. Commun. 53, 7804–7807 (2017).
[Crossref]

Chem. Soc. Rev. (1)

J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, “Metal-organic framework materials as catalysts,” Chem. Soc. Rev. 38, 1450–1459 (2009).
[Crossref] [PubMed]

CrystEngComm (1)

B. Seoane, J. M. Zamaro, C. Tellez, and J. Coronas, “Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20),” CrystEngComm 14, 3103–3107 (2012).
[Crossref]

Dalton Trans. (3)

M. He, J. Yao, Q. Liu, Z. Zhong, and H. Wang, “Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12,” Dalton Trans. 42, 16608–16613 (2013).
[Crossref] [PubMed]

M. E. Schweinefuß, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni, and M. Wiebcke, “Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape,” Dalton Trans. 43, 3528–3536 (2014).
[Crossref]

M. Gao, A. J. Misquitta, L. H. N. Rimmer, and M. T. Dove, “Molecular dynamics simulation study of various zeolitic imidazolate framework structures,” Dalton Trans. 45, 4289–4302 (2016).
[Crossref]

Inorg. Chem. (1)

C. L. Linfoot, M. J. Leitl, P. Richardson, A. F. Rausch, O. Chepelin, F. J. White, H. Yersin, and N. Robertson, “Thermally activated delayed fluorescence (tadf) and enhancing photoluminescence quantum yields of [cu i(diimine)(diphosphine)] + complexes-photophysical, structural, and computational studies,” Inorg. Chem. 53, 10854–10861 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

M. H. Alkordi, Y. Liu, R. W. Larsen, J. F. Eubank, and M. Eddaoudi, “Zeolite-like Metal-Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts,” J. Am. Chem. Soc. 130, 12639–12641 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048–5051 (2001).
[Crossref]

J. Mater. Chem. (1)

M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, “Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties,” J. Mater. Chem. 17, 3827–3832 (2007).
[Crossref]

J. Mater. Chem. A (2)

J. Sánchez-Línez, B. Zornoza, C. Téllez, and J. Coronas, “On the chemical filler-polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation,” J. Mater. Chem. A 4, 14334–14341 (2016).
[Crossref]

J. Sánchez-Laínez and B. Zornoza, Á. Mayoral, Á. Berenguer-Murcia, D. Cazorla-Amorós, C. Téllez, and J. Coronas, “Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes,” J. Mater. Chem. A 3, 6549–6556 (2015).
[Crossref]

J. Mater. Chem. C (3)

D. Zhao, D. Yue, K. Jiang, Y. Cui, Q. Zhang, Y. Yang, and G. Qian, “Ratiometric dual-emitting MOF⊂dye thermometers with a tunable operating range and sensitivity,” J. Mater. Chem. C 5, 1607–1613 (2017).
[Crossref]

J. Zhao, Z. Yang, X. Chen, Z. Xie, T. Liu, Z. Chi, Z. Yang, Y. Zhang, M. P. Aldred, and Z. Chi, “Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration,” J. Mater. Chem. C 6, 4257–4264 (2018).
[Crossref]

M. Cai, X. Song, D. Zhang, J. Qiao, and L. Duan, “π–π stacking: a strategy to improve the electron mobilities of bipolar hosts for tadf and phosphorescent devices with low efficiency roll-off,” J. Mater. Chem. C 5, 3372–3381 (2017).
[Crossref]

Nat. Chem. (2)

O. K. Farha, A. Özgür Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem. 2, 944–948 (2010).
[Crossref] [PubMed]

G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, and F. Huo, “Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation,” Nat. Chem. 4, 310 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C.-D. Wu, X. Chen, B. Chen, and G. Qian, “Polarized three-photon-pumped laser in a single MOF microcrystal,” Nat. Commun. 7, 11087 (2016).
[Crossref]

J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing,” Nat. Commun. 4, 11087 (2013).
[Crossref]

Nat. Photonics (1)

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,” Nat. Photonics 8, 326–332 (2014).
[Crossref]

Nature (2)

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature 492, 234–238 (2012).
[Crossref] [PubMed]

H. Li, M. Eddaoudi, M. O’Keeffe, and O. M. Yaghi, “Design and synthesis of an exceptionally stable and highly porous metal-organic framework,” Nature 402, 276–279 (1999).
[Crossref]

Opt. Matter. Exp. (1)

H. Takeda, C. Chen, T. Komino, H. Yoshioka, Y. Oki, and C. Adachi, “0.6 – 1.6 thz band spectroscopy of organic thermally activated delayed fluorescence materials,” Opt. Matter. Exp. 6, 3045–3052 (2016).
[Crossref]

Other (1)

S. Kaskel, The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications (WILEY–VCH, Weinheim, Germany, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Flow chart of the one-pot synthesis of 4CzIPN included ZIF-11 micro crystal.
Fig. 2
Fig. 2 SEM images of (a) ZIF-11 and (b) 4CzIPN ZIF-11. c) Measured powder–XRD patterns of 4CzIPN, 4CzIPN ZIF-11, and calculated XRD pattern of ZIF-11. Dotted line shows 8.28° of 2θ.
Fig. 3
Fig. 3 Measured TGA curves of 4CzIPN ZIF-11 and ZIF-11 for comparison. The data was normalized by weight.
Fig. 4
Fig. 4 Concentration vs. Fluorescence intensity diagram in Chloroform solutions of 4CzIPN (red dots) and 4CzIPN ZIF-11 (blue dot). The linear fit was shown as blue line.
Fig. 5
Fig. 5 The mid–infrared absorption spectrum of 4CzIPN, 4CzIPN ZIF-11 and ZIF-11. The experimental conditions were 0.04 Torr at room temperature.
Fig. 6
Fig. 6 Terahertz absorption spectrum of 4CzIPN, 4CzIPN ZIF-11 and ZIF-11 0.5 – 3.0 THz range. The measurement conditions are, below 1 % humidity at room temperature.
Fig. 7
Fig. 7 Time resolved spectrum of a) 4CzIPN’s fluorescence, b) 4CzIPN ZIF-11’s fluorescence, d) 4CzIPN’s phosphorescence and e) 4CzIPN ZIF-11’s phosphorescence. (c) and (f) shows the photon counts of (a), (b), (d), (e) as a function of decay time.
Fig. 8
Fig. 8 Temperature dependence of 4CzIPN ZIF-11’s fluorescence spectrum from 50 K to 300 K by 50 K with cryogenic spectroscopy.
Fig. 9
Fig. 9 Photoluminescence quantum yields of ZIF-11 at room temperature.

Metrics