Abstract

In this paper, a novel design method that integrates broadband agile radiation and controllable scattering performance in one surface is proposed for an active metasurface. Each unit cell of the metasurface is incorporated with tunable devices, such as an electronic or micro-electro-mechanical-system (MEMS) varactor, to obtain frequency or spatial electromagnetic (EM) wave modulation. Besides, a probe is also adopted in the metasurface element so that the element can function as an antenna once fed by a transmitter. In this way, integrated broadband radiation and low radar cross section (RCS) are achieved for this type of active metasurface antenna (AMSA). To illustrate this method, an AMSA with a simple patch structure and lumped varactors, as an example, is demonstrated both numerically and experimentally. The results show that scanning radiation beams are obtained across a broad frequency band. Meanwhile, broadband flexible scattering performance is also realized by tuning the embedded varactors. Thus, a broad working band, reconfigurable radiation pattern, and low RCS are attained simultaneously for the AMSA. Good agreements between simulations and measurements further prove the effectiveness of the proposed method, which may have potential applications in stealth devices. Moreover, this method and the design strategy can be easily extended to other frequency range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-polarization, polarization-independent, wide-angle RCS reduction metasurface based on random phase gradients

Guoxiang Dong, Xiaoping Li, Yanming Liu, Shitao Zhu, Yuchen He, and Anxue Zhang
Appl. Opt. 58(4) 764-771 (2019)

Design of bifunctional metasurface based on independent control of transmission and reflection

Yaqiang Zhuang, Guangming Wang, Tong Cai, and Qingfeng Zhang
Opt. Express 26(3) 3594-3603 (2018)

Coding metasurface for broadband microwave scattering reduction with optical transparency

Ke Chen, Li Cui, Yijun Feng, Junming Zhao, Tian Jiang, and Bo Zhu
Opt. Express 25(5) 5571-5579 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
    [Crossref]
  2. H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90 degrees polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
    [Crossref]
  3. G. S. Kong, G. Z. Wang, H. F. Ma, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
    [Crossref]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  5. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  6. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  7. M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
    [Crossref]
  8. W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
    [Crossref]
  9. S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
    [Crossref]
  10. W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
    [Crossref]
  11. Z. W. Li, L. R. Huang, K. Lu, Y. L. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7(11), 112001 (2014).
    [Crossref]
  12. S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
    [Crossref] [PubMed]
  13. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  14. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  15. X. Yan, L. Liang, J. Yang, W. Liu, X. Ding, D. Xu, Y. Zhang, T. Cui, and J. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
    [Crossref] [PubMed]
  16. B. Sanz-Izquierdo and E. A. Parker, “Dual polarized reconfigurable frequency selective surfaces,” IEEE Trans. Antenn. Propag. 62(2), 764–771 (2014).
    [Crossref]
  17. P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
    [Crossref]
  18. W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).
  19. J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
    [Crossref]
  20. A. B. Li, Z. J. Luo, H. Wakatsuchi, S. Kim, and D. F. Sievenpiper, “Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications,” IEEE Access 5, 27439–27452 (2017).
    [Crossref]
  21. G. H. Du, C. Y. Yu, and C. J. Liu, “Frequency selective surface with switchable polarization,” Microw. Opt. Technol. Lett. 56(2), 515–518 (2014).
    [Crossref]
  22. W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
    [Crossref]
  23. M. T. Nouman, J. H. Hwang, M. Faiyaz, K. J. Lee, D. Y. Noh, and J. H. Jang, “Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control,” Opt. Express 26(10), 12922–12929 (2018).
    [Crossref] [PubMed]
  24. H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
    [Crossref] [PubMed]
  25. B. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
    [Crossref]
  26. X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
    [Crossref] [PubMed]
  27. W. Jiang, Y. Liu, S. X. Gong, and T. Hong, “Application of bionics in antenna radar cross section reduction,” IEEE Antennas Wirel. Propag. Lett. 8, 1275–1278 (2009).
    [Crossref]
  28. Y. B. Thakare Rajkuma, “Design of fractal patch antenna for size and radar cross section reduction,” IET Microw. Antennas Propag. 4(2), 175–181 (2010).
    [Crossref]
  29. L. J. Zhou and F. Yang, “Radar cross section reduction for microstrip antenna using shaping technique,” in Proc. Int. Conf. Microw. Millimeter Wave Techn. 871–873 (2016).
  30. D. R. Jackson, “The RCS of a rectangular microstrip patch in a substrate-superstrate geometry,” IEEE Trans. Antenn. Propag. 38(1), 2–8 (1990).
    [Crossref]
  31. D. M. Pozar, “Radar Cross Section of Microstrip antenna on normally biased ferrit substrate,” Electron. Lett. 25(16), 1079–1080 (1989).
    [Crossref]
  32. Y. H. Liu and X. P. Zhao, “Perfect absorber metamaterial for designing low-RCS patch antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 1473–1476 (2014).
    [Crossref]
  33. T. Liu, X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(3), 1479–1484 (2013).
    [Crossref]
  34. Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
    [Crossref]
  35. Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their application on RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
    [Crossref]
  36. Y. Liu, Y. Hao, K. Li, and S. Gong, “Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial,” IEEE Antennas Wirel. Propag. Lett. 15, 80–83 (2016).
    [Crossref]
  37. K. Li, Y. Liu, Y. T. Jia, and Y. J. Guo, “A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 65(8), 4288–4292 (2017).
    [Crossref]

2018 (1)

2017 (2)

K. Li, Y. Liu, Y. T. Jia, and Y. J. Guo, “A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 65(8), 4288–4292 (2017).
[Crossref]

A. B. Li, Z. J. Luo, H. Wakatsuchi, S. Kim, and D. F. Sievenpiper, “Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications,” IEEE Access 5, 27439–27452 (2017).
[Crossref]

2016 (9)

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their application on RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Y. Liu, Y. Hao, K. Li, and S. Gong, “Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial,” IEEE Antennas Wirel. Propag. Lett. 15, 80–83 (2016).
[Crossref]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
[Crossref]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

2015 (5)

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

B. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

X. Yan, L. Liang, J. Yang, W. Liu, X. Ding, D. Xu, Y. Zhang, T. Cui, and J. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
[Crossref] [PubMed]

W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).

2014 (7)

G. H. Du, C. Y. Yu, and C. J. Liu, “Frequency selective surface with switchable polarization,” Microw. Opt. Technol. Lett. 56(2), 515–518 (2014).
[Crossref]

B. Sanz-Izquierdo and E. A. Parker, “Dual polarized reconfigurable frequency selective surfaces,” IEEE Trans. Antenn. Propag. 62(2), 764–771 (2014).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90 degrees polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

G. S. Kong, G. Z. Wang, H. F. Ma, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
[Crossref]

Z. W. Li, L. R. Huang, K. Lu, Y. L. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7(11), 112001 (2014).
[Crossref]

Y. H. Liu and X. P. Zhao, “Perfect absorber metamaterial for designing low-RCS patch antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 1473–1476 (2014).
[Crossref]

2013 (2)

T. Liu, X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(3), 1479–1484 (2013).
[Crossref]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

2011 (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

2010 (2)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Y. B. Thakare Rajkuma, “Design of fractal patch antenna for size and radar cross section reduction,” IET Microw. Antennas Propag. 4(2), 175–181 (2010).
[Crossref]

2009 (1)

W. Jiang, Y. Liu, S. X. Gong, and T. Hong, “Application of bionics in antenna radar cross section reduction,” IEEE Antennas Wirel. Propag. Lett. 8, 1275–1278 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

1990 (1)

D. R. Jackson, “The RCS of a rectangular microstrip patch in a substrate-superstrate geometry,” IEEE Trans. Antenn. Propag. 38(1), 2–8 (1990).
[Crossref]

1989 (1)

D. M. Pozar, “Radar Cross Section of Microstrip antenna on normally biased ferrit substrate,” Electron. Lett. 25(16), 1079–1080 (1989).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Balanis, C. A.

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Bao, D.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

Batchelor, J. C.

P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
[Crossref]

Bie, S. W.

W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).

Birtcher, C. R.

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Cao, W. P.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Cao, X.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

Cao, X. Y.

T. Liu, X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(3), 1479–1484 (2013).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chen, J.

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Chen, J. Z.

W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
[Crossref]

Chen, K.

B. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

Chen, T. Y.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

Chen, W. G.

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Chen, X.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

Cheng, Q.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Cui, T.

Cui, T. J.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

G. S. Kong, G. Z. Wang, H. F. Ma, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Ding, X.

Du, G. H.

G. H. Du, C. Y. Yu, and C. J. Liu, “Frequency selective surface with switchable polarization,” Microw. Opt. Technol. Lett. 56(2), 515–518 (2014).
[Crossref]

Du, L.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

Ederra, I.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Esmaeli, S. H.

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
[Crossref]

Faiyaz, M.

Feng, Y. J.

B. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, J.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

T. Liu, X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(3), 1479–1484 (2013).
[Crossref]

Gao, X.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gong, S.

Y. Liu, Y. Hao, K. Li, and S. Gong, “Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial,” IEEE Antennas Wirel. Propag. Lett. 15, 80–83 (2016).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Gong, S. X.

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their application on RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

W. Jiang, Y. Liu, S. X. Gong, and T. Hong, “Application of bionics in antenna radar cross section reduction,” IEEE Antennas Wirel. Propag. Lett. 8, 1275–1278 (2009).
[Crossref]

Gonzalo, R.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Guo, Y. J.

K. Li, Y. Liu, Y. T. Jia, and Y. J. Guo, “A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 65(8), 4288–4292 (2017).
[Crossref]

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their application on RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Han, J.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

Han, X.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Hao, Y.

Y. Liu, Y. Hao, K. Li, and S. Gong, “Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial,” IEEE Antennas Wirel. Propag. Lett. 15, 80–83 (2016).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

He, B.

W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
[Crossref]

He, Y.

W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).

Hong, T.

W. Jiang, Y. Liu, S. X. Gong, and T. Hong, “Application of bionics in antenna radar cross section reduction,” IEEE Antennas Wirel. Propag. Lett. 8, 1275–1278 (2009).
[Crossref]

Huang, L. R.

Z. W. Li, L. R. Huang, K. Lu, Y. L. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7(11), 112001 (2014).
[Crossref]

Hwang, J. H.

Iriarte, J. C.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Jackson, D. R.

D. R. Jackson, “The RCS of a rectangular microstrip patch in a substrate-superstrate geometry,” IEEE Trans. Antenn. Propag. 38(1), 2–8 (1990).
[Crossref]

Jang, J. H.

Jia, N.

B. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

Jia, Y.

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their application on RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Jia, Y. T.

K. Li, Y. Liu, Y. T. Jia, and Y. J. Guo, “A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 65(8), 4288–4292 (2017).
[Crossref]

Jiang, J. J.

W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).

Jiang, T.

B. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

Jiang, W.

W. Jiang, Y. Liu, S. X. Gong, and T. Hong, “Application of bionics in antenna radar cross section reduction,” IEEE Antennas Wirel. Propag. Lett. 8, 1275–1278 (2009).
[Crossref]

Jiang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Jiang, Y.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90 degrees polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kim, S.

A. B. Li, Z. J. Luo, H. Wakatsuchi, S. Kim, and D. F. Sievenpiper, “Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications,” IEEE Access 5, 27439–27452 (2017).
[Crossref]

Kong, G. S.

Kong, P.

W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, K. J.

Li, A. B.

A. B. Li, Z. J. Luo, H. Wakatsuchi, S. Kim, and D. F. Sievenpiper, “Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications,” IEEE Access 5, 27439–27452 (2017).
[Crossref]

Li, H.

Li, H. O.

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

Li, J.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90 degrees polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Li, J. L.

W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).

Li, K.

K. Li, Y. Liu, Y. T. Jia, and Y. J. Guo, “A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 65(8), 4288–4292 (2017).
[Crossref]

Y. Liu, Y. Hao, K. Li, and S. Gong, “Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial,” IEEE Antennas Wirel. Propag. Lett. 15, 80–83 (2016).
[Crossref]

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their application on RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Li, M.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

Li, S.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

Li, W.

W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
[Crossref]

Li, W. Q.

T. Liu, X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(3), 1479–1484 (2013).
[Crossref]

Li, Z. R.

W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
[Crossref]

Li, Z. W.

Z. W. Li, L. R. Huang, K. Lu, Y. L. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7(11), 112001 (2014).
[Crossref]

Liang, L.

Liu, C. J.

G. H. Du, C. Y. Yu, and C. J. Liu, “Frequency selective surface with switchable polarization,” Microw. Opt. Technol. Lett. 56(2), 515–518 (2014).
[Crossref]

Liu, S.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

Liu, T.

T. Liu, X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(3), 1479–1484 (2013).
[Crossref]

Liu, W.

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Liu, Y.

K. Li, Y. Liu, Y. T. Jia, and Y. J. Guo, “A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 65(8), 4288–4292 (2017).
[Crossref]

Y. Liu, Y. Hao, K. Li, and S. Gong, “Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial,” IEEE Antennas Wirel. Propag. Lett. 15, 80–83 (2016).
[Crossref]

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their application on RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

W. Jiang, Y. Liu, S. X. Gong, and T. Hong, “Application of bionics in antenna radar cross section reduction,” IEEE Antennas Wirel. Propag. Lett. 8, 1275–1278 (2009).
[Crossref]

Liu, Y. H.

Y. H. Liu and X. P. Zhao, “Perfect absorber metamaterial for designing low-RCS patch antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 1473–1476 (2014).
[Crossref]

Lu, K.

Z. W. Li, L. R. Huang, K. Lu, Y. L. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7(11), 112001 (2014).
[Crossref]

Luo, Z. J.

A. B. Li, Z. J. Luo, H. Wakatsuchi, S. Kim, and D. F. Sievenpiper, “Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications,” IEEE Access 5, 27439–27452 (2017).
[Crossref]

Ma, H. F.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

G. S. Kong, G. Z. Wang, H. F. Ma, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Maagt, P. D.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Miao, L.

W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).

Min, L.

Z. W. Li, L. R. Huang, K. Lu, Y. L. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7(11), 112001 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Noh, D. Y.

Nouman, M. T.

Ouyang, C.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Paquay, M.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Parker, E. A.

B. Sanz-Izquierdo and E. A. Parker, “Dual polarized reconfigurable frequency selective surfaces,” IEEE Trans. Antenn. Propag. 62(2), 764–771 (2014).
[Crossref]

P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
[Crossref]

Pozar, D. M.

D. M. Pozar, “Radar Cross Section of Microstrip antenna on normally biased ferrit substrate,” Electron. Lett. 25(16), 1079–1080 (1989).
[Crossref]

Qi, M. Q.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sanz-Izquierdo, B.

B. Sanz-Izquierdo and E. A. Parker, “Dual polarized reconfigurable frequency selective surfaces,” IEEE Trans. Antenn. Propag. 62(2), 764–771 (2014).
[Crossref]

Sedighy, S. H.

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
[Crossref]

Shen, X.

Shi, H.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90 degrees polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Shi, H. Y.

W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
[Crossref]

Sievenpiper, D. F.

A. B. Li, Z. J. Luo, H. Wakatsuchi, S. Kim, and D. F. Sievenpiper, “Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications,” IEEE Access 5, 27439–27452 (2017).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Sun, L.

B. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

Sun, Y. L.

Z. W. Li, L. R. Huang, K. Lu, Y. L. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7(11), 112001 (2014).
[Crossref]

Tang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

Taylor, P. S.

P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thakare Rajkuma, Y. B.

Y. B. Thakare Rajkuma, “Design of fractal patch antenna for size and radar cross section reduction,” IET Microw. Antennas Propag. 4(2), 175–181 (2010).
[Crossref]

Wakatsuchi, H.

A. B. Li, Z. J. Luo, H. Wakatsuchi, S. Kim, and D. F. Sievenpiper, “Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications,” IEEE Access 5, 27439–27452 (2017).
[Crossref]

Wan, X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, G. Z.

Xia, S.

W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
[Crossref]

Xu, D.

Xu, H. B.

W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).

Xu, Q.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

Xu, S.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

Xu, W. H.

W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).

Xu, Z.

W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
[Crossref]

Yan, X.

Yang, F.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

Yang, H.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

Yang, H. H.

T. Liu, X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(3), 1479–1484 (2013).
[Crossref]

Yang, J.

Yao, J.

Yu, C. Y.

G. H. Du, C. Y. Yu, and C. J. Liu, “Frequency selective surface with switchable polarization,” Microw. Opt. Technol. Lett. 56(2), 515–518 (2014).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, H.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

Zhang, A.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90 degrees polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Zhang, A. X.

W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
[Crossref]

Zhang, W.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

Zhang, Y.

Zhao, J.

B. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Zhao, X. P.

Y. H. Liu and X. P. Zhao, “Perfect absorber metamaterial for designing low-RCS patch antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 1473–1476 (2014).
[Crossref]

Zhao, Y.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

Zheng, Q. R.

T. Liu, X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(3), 1479–1484 (2013).
[Crossref]

Zheng, S.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90 degrees polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Zheng, Y.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

Zhou, X. Y.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

Zhu, B.

B. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

Appl. Phys. Express (1)

Z. W. Li, L. R. Huang, K. Lu, Y. L. Sun, and L. Min, “Continuous metasurface for high-performance anomalous reflection,” Appl. Phys. Express 7(11), 112001 (2014).
[Crossref]

Appl. Phys. Lett. (2)

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90 degrees polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

W. H. Xu, Y. He, P. Kong, J. L. Li, H. B. Xu, L. Miao, S. W. Bie, and J. J. Jiang, “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications,” Appl. Phys. Lett. 118, 184903 (2015).

Electron. Lett. (2)

D. M. Pozar, “Radar Cross Section of Microstrip antenna on normally biased ferrit substrate,” Electron. Lett. 25(16), 1079–1080 (1989).
[Crossref]

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
[Crossref]

IEEE Access (1)

A. B. Li, Z. J. Luo, H. Wakatsuchi, S. Kim, and D. F. Sievenpiper, “Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications,” IEEE Access 5, 27439–27452 (2017).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (3)

Y. H. Liu and X. P. Zhao, “Perfect absorber metamaterial for designing low-RCS patch antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 1473–1476 (2014).
[Crossref]

W. Jiang, Y. Liu, S. X. Gong, and T. Hong, “Application of bionics in antenna radar cross section reduction,” IEEE Antennas Wirel. Propag. Lett. 8, 1275–1278 (2009).
[Crossref]

Y. Liu, Y. Hao, K. Li, and S. Gong, “Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial,” IEEE Antennas Wirel. Propag. Lett. 15, 80–83 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (12)

K. Li, Y. Liu, Y. T. Jia, and Y. J. Guo, “A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 65(8), 4288–4292 (2017).
[Crossref]

T. Liu, X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, “RCS reduction of waveguide slot antenna with metamaterial absorber,” IEEE Trans. Antenn. Propag. 61(3), 1479–1484 (2013).
[Crossref]

Y. Liu, K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
[Crossref]

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their application on RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

W. Li, S. Xia, B. He, J. Z. Chen, H. Y. Shi, A. X. Zhang, Z. R. Li, and Z. Xu, “A reconfigurable polarization converter using active metasurface and its application in horn antenna,” IEEE Trans. Antenn. Propag. 64(12), 5281–5290 (2016).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
[Crossref]

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
[Crossref]

B. Sanz-Izquierdo and E. A. Parker, “Dual polarized reconfigurable frequency selective surfaces,” IEEE Trans. Antenn. Propag. 62(2), 764–771 (2014).
[Crossref]

P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
[Crossref]

D. R. Jackson, “The RCS of a rectangular microstrip patch in a substrate-superstrate geometry,” IEEE Trans. Antenn. Propag. 38(1), 2–8 (1990).
[Crossref]

IET Microw. Antennas Propag. (1)

Y. B. Thakare Rajkuma, “Design of fractal patch antenna for size and radar cross section reduction,” IET Microw. Antennas Propag. 4(2), 175–181 (2010).
[Crossref]

Light Sci. Appl. (2)

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

G. H. Du, C. Y. Yu, and C. J. Liu, “Frequency selective surface with switchable polarization,” Microw. Opt. Technol. Lett. 56(2), 515–518 (2014).
[Crossref]

New J. Phys. (1)

J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, “A tunable metamaterial absorber using varactor diodes,” New J. Phys. 15(4), 043049 (2013).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Sci. Rep. (3)

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 035692 (2016).
[Crossref] [PubMed]

B. Zhu, K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. J. Feng, “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface,” Sci. Rep. 4(1), 4971 (2015).
[Crossref]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (1)

L. J. Zhou and F. Yang, “Radar cross section reduction for microstrip antenna using shaping technique,” in Proc. Int. Conf. Microw. Millimeter Wave Techn. 871–873 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 A cell topology of active metasurface antenna (AMSA). The color symbols represent tunable devices such as electronic or MEMS varactors.
Fig. 2
Fig. 2 Illustration of the AMSA design concept. (a,b) Radiation properties: frequency reconfigurability and scanning radiation patterns. (c,d) Examples to demonstrate the flexibility of manipulating scattering fields.
Fig. 3
Fig. 3 Schematic of an AMSA and the zoom-in view of the unit cell.
Fig. 4
Fig. 4 Simulated radiation performance of the AMSA. (a) Reflection coefficients with different Cy. (b) Scanning radiation patterns in yoz plane at 2.8 GHz with Cy = 0.6 pF. 3D radiation patterns at (c) 3.8 GHz with Cy = 0.2pF, (d) 2.78 GHz with Cy = 0.6pF, and (e) 2.27 GHz with Cy = 1.0pF.
Fig. 5
Fig. 5 Two-dimensional varactor capacitances diagrams for three representative designs. For brevity, each cell is coded and represented by different colors in both axes. (a) State 1 in which chessboard configuration is formed along x-axis. (b) State 2 in which a certain phase gradient is formed along x-axis. (c) State 3 in which two different phase gradients are formed along x- and y-axes, respectively.
Fig. 6
Fig. 6 Simulated scattering performance of State 1. RCS versus frequency under (a) y- and (b) x-polarized incidence. 3D scattering beams at (c) 2.78 GHz under y-polarized incidence, (d) 2.69 GHz and (e) 2.88 GHz under x-polarized incidence.
Fig. 7
Fig. 7 Simulated scattering performance of State 2. 3D scattering beams under (a) y- and (b) x- polarized incidence at 2.78 GHz. (c) RCS versus frequency under y-polarized incidence. (d) Near-electric-field distribution in xoz plane at 2.78 GHz under x-polarized incidence.
Fig. 8
Fig. 8 Simulated scattering performance of State 3 at 2.78 GHz. 3D scattering patterns under (a) x- and (b) y-polarized incidence. Corresponding near-electric-field distributions in (c) xoz and (d) yoz planes.
Fig. 9
Fig. 9 (a) One of the fabricated sample. (b) Reflection performance measurement setup.
Fig. 10
Fig. 10 Measured radiation performance. (a) Reflection coefficients. (b) Normalized radiation patterns of Sample 1 at 2.8 GHz.
Fig. 11
Fig. 11 Measured reflection performance. The reflection reduction of (a) Sample 1 and (b) Sample 3 under y-polarization. (c) The reflection reduction of Sample 1 under x-polarization. (d) The normalized reflection pattern of Sample 3 under x-polarization.

Tables (2)

Tables Icon

Table 1 Varactor capacitance and the corresponding codes (unit: pF)

Tables Icon

Table 2 Detailed capacitances for different samples (unit: pF)

Metrics