Abstract

We propose a method of measuring low concentrations of fluorescent molecules located in a small volume of a liquid solvent (about 5 μl) based on the Ebbesen effect of the extraordinary transmission (EOT) of light through a state-of-the-art plasmonic crystal formed by a nanohole array perforated in the ultra-high-quality Ag film. In the method, the EOT effect is realized at the fluorescence wavelength of the detected molecules with a low transmission of light at the absorption wavelength. This approach enables the realization of high level sensor sensitivity approaching a sensitivity level of single molecules counting sensors, owing to the suppression of the sensor substrate’s inevitable parasitic luminescence. The proposed method was successfully demonstrated by detection an ultra-low concentration of Cy-5 fluorescent markers in a dimethyl sulfoxide solution corresponding to less than 1000 molecules in the sensor detection volume.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays

Vikram Chaudhery, Cheng-Sheng Huang, Anusha Pokhriyal, James Polans, and Brian T. Cunningham
Opt. Express 19(23) 23327-23340 (2011)

Plasmonic external cavity laser refractometric sensor

Meng Zhang, Meng Lu, Chun Ge, and Brian T. Cunningham
Opt. Express 22(17) 20347-20357 (2014)

Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection

Anusha Pokhriyal, Meng Lu, Vikram Chaudhery, Cheng-Sheng Huang, Stephen Schulz, and Brian T. Cunningham
Opt. Express 18(24) 24793-24808 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
    [Crossref]
  2. C. Zander, J. Enderlein, and R. A. Keller, Single molecule detection in solution: methods and applications (Wiley-VCH, 2002).
    [Crossref]
  3. K. Nayak, P. Melentiev, M. Morinaga, F. Le Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
    [Crossref] [PubMed]
  4. A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
    [Crossref] [PubMed]
  5. V. I. Balykin and P. N. Melentiev, “Optics and spectroscopy of a single plasmonic nanostructure,” Phys. Usp. 61, 133 (2018).
    [Crossref]
  6. D. R. Walt, Optical methods for single molecule detection and analysis (ACS Publications, 2012).
  7. F. Ma, Y. Li, B. Tang, and C.-y. Zhang, “Fluorescent biosensors based on single-molecule counting,” Acc. Chem. Res. 49, 1722–1730 (2016).
    [Crossref] [PubMed]
  8. A. B. Taylor and P. Zijlstra, “Single-molecule plasmon sensing: current status and future prospects,” ACS Sensors 2, 1103–1122 (2017).
    [Crossref] [PubMed]
  9. R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. communications 4, 2154 (2013).
    [Crossref]
  10. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. materials 11, 69 (2012).
    [Crossref]
  11. R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Comm. 5, 5713 (2014).
    [Crossref]
  12. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature. 391, 667 (1998).
    [Crossref]
  13. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano letters 10, 4962–4969 (2010).
    [Crossref] [PubMed]
  14. K. Van der Molen, F. B. Segerink, N. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
    [Crossref]
  15. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir. 20, 4813–4815 (2004).
    [Crossref]
  16. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41, 1049–1057 (2008).
    [Crossref] [PubMed]
  17. C. Genet and T. Ebbesen, “Light in tiny holes,” Nature. 445, 39 (2007).
    [Crossref] [PubMed]
  18. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4, 2015–2018 (2004).
    [Crossref]
  19. S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors,” Sensors. 11, 1565–1588 (2011).
    [Crossref]
  20. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal.Chem 79, 4729–4735 (2007).
  21. H. Ghaemi, T. Thio, D. e. a. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
    [Crossref]
  22. L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
    [Crossref] [PubMed]
  23. A. Zyablovskii, A. Pavlov, V. Klimov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyanskii, “Extraordinary light transmission through a metal film perforated by a subwavelength hole array,” J. Exp. Theor. Phys. 125, 175–188 (2017).
    [Crossref]
  24. P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
    [Crossref]
  25. A. Baburin, A. Kalmykov, R. Kirtaev, D. Negrov, D. Moskalev, I. Ryzhikov, P. Melentiev, I. Rodionov, and V. Balykin, “Toward theoretically limited spp propagation length above two hundred microns on ultra-smooth silver surface,” Opt. Mater. Express 8, 3254 (2018).
    [Crossref]
  26. I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.
  27. A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.
  28. A. Baburin, A. Gabidullin, A. Zverev, I. Rodionov, I. Ryzhikov, and Y. Panfilov, “Silver films deposited by electron-beam evaporation for application in nanoplasmonics,” Her. Bauman Mosc. State Tech. Univ. Instrum. Eng 6, 4–14 (2016).
  29. A. S. Baburin, A. I. Ivanov, I. A. Ryzhikov, I. V. Trofimov, A. R. Gabidullin, D. O. Moskalev, Y. V. Panfilov, and I. A. Rodionov, “Crystalline structure dependence on optical properties of silver thin film over time,” in “Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017,” (IEEE, 2017), pp. 1497–1502.
  30. P. Melentiev, A. Kuzin, and V. Balykin, “Control of spp propagation and focusing through scattering from nanostructures,” Quantum Electron. 47, 266–271 (2017).
    [Crossref]
  31. P. Melentiev and V. Balykin, “Nano optical elements for surface plasmon waves,” Phys. Usp.accepted, DOI: (2018).
    [Crossref]
  32. E. G. McRae and M. Kasha, “Enhancement of phosphorescence ability upon aggregation of dye molecules,” J. Chem. Phys. 28, 721–722 (1958).
    [Crossref]
  33. R. M. Gelfand, S. Wheaton, and R. Gordon, “Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles,” Opt. Lett. 39, 6415–6417 (2014).
    [Crossref] [PubMed]
  34. A. Afanasiev, P. Melentiev, A. Kuzin, A. Y. Kalatskiy, and V. Balykin, “Photon transport through a nanohole by a moving atom,” New J. Phys. 18, 053015 (2016).
    [Crossref]
  35. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
    [Crossref] [PubMed]
  36. P. J. Hillson and R. B. McKay, “Aggregation of dye molecules in aqueous solution a polarographic study,” T. Faraday Soc. 61, 374–382 (1965).
    [Crossref]
  37. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology. 15, 1368 (2004).
    [Crossref]
  38. Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

2018 (2)

2017 (4)

A. Zyablovskii, A. Pavlov, V. Klimov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyanskii, “Extraordinary light transmission through a metal film perforated by a subwavelength hole array,” J. Exp. Theor. Phys. 125, 175–188 (2017).
[Crossref]

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

P. Melentiev, A. Kuzin, and V. Balykin, “Control of spp propagation and focusing through scattering from nanostructures,” Quantum Electron. 47, 266–271 (2017).
[Crossref]

A. B. Taylor and P. Zijlstra, “Single-molecule plasmon sensing: current status and future prospects,” ACS Sensors 2, 1103–1122 (2017).
[Crossref] [PubMed]

2016 (3)

F. Ma, Y. Li, B. Tang, and C.-y. Zhang, “Fluorescent biosensors based on single-molecule counting,” Acc. Chem. Res. 49, 1722–1730 (2016).
[Crossref] [PubMed]

A. Afanasiev, P. Melentiev, A. Kuzin, A. Y. Kalatskiy, and V. Balykin, “Photon transport through a nanohole by a moving atom,” New J. Phys. 18, 053015 (2016).
[Crossref]

A. Baburin, A. Gabidullin, A. Zverev, I. Rodionov, I. Ryzhikov, and Y. Panfilov, “Silver films deposited by electron-beam evaporation for application in nanoplasmonics,” Her. Bauman Mosc. State Tech. Univ. Instrum. Eng 6, 4–14 (2016).

2014 (2)

R. M. Gelfand, S. Wheaton, and R. Gordon, “Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles,” Opt. Lett. 39, 6415–6417 (2014).
[Crossref] [PubMed]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Comm. 5, 5713 (2014).
[Crossref]

2013 (1)

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. communications 4, 2154 (2013).
[Crossref]

2012 (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. materials 11, 69 (2012).
[Crossref]

2011 (1)

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors,” Sensors. 11, 1565–1588 (2011).
[Crossref]

2010 (1)

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano letters 10, 4962–4969 (2010).
[Crossref] [PubMed]

2008 (2)

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41, 1049–1057 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

2007 (4)

C. Genet and T. Ebbesen, “Light in tiny holes,” Nature. 445, 39 (2007).
[Crossref] [PubMed]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal.Chem 79, 4729–4735 (2007).

K. Nayak, P. Melentiev, M. Morinaga, F. Le Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref] [PubMed]

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
[Crossref] [PubMed]

2004 (4)

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

K. Van der Molen, F. B. Segerink, N. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir. 20, 4813–4815 (2004).
[Crossref]

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology. 15, 1368 (2004).
[Crossref]

2001 (1)

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

1998 (2)

H. Ghaemi, T. Thio, D. e. a. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature. 391, 667 (1998).
[Crossref]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

1965 (1)

P. J. Hillson and R. B. McKay, “Aggregation of dye molecules in aqueous solution a polarographic study,” T. Faraday Soc. 61, 374–382 (1965).
[Crossref]

1958 (1)

E. G. McRae and M. Kasha, “Enhancement of phosphorescence ability upon aggregation of dye molecules,” J. Chem. Phys. 28, 721–722 (1958).
[Crossref]

Adato, R.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. communications 4, 2154 (2013).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. materials 11, 69 (2012).
[Crossref]

Afanasiev, A.

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

A. Afanasiev, P. Melentiev, A. Kuzin, A. Y. Kalatskiy, and V. Balykin, “Photon transport through a nanohole by a moving atom,” New J. Phys. 18, 053015 (2016).
[Crossref]

Akimov, A.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
[Crossref] [PubMed]

Albrecht, B.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Comm. 5, 5713 (2014).
[Crossref]

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal.Chem 79, 4729–4735 (2007).

Altug, H.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. communications 4, 2154 (2013).
[Crossref]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. materials 11, 69 (2012).
[Crossref]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano letters 10, 4962–4969 (2010).
[Crossref] [PubMed]

Anand, A.

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

Apple, F. S.

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

Arctander, E.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. materials 11, 69 (2012).
[Crossref]

Artar, A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano letters 10, 4962–4969 (2010).
[Crossref] [PubMed]

Baburin, A.

A. Baburin, A. Kalmykov, R. Kirtaev, D. Negrov, D. Moskalev, I. Ryzhikov, P. Melentiev, I. Rodionov, and V. Balykin, “Toward theoretically limited spp propagation length above two hundred microns on ultra-smooth silver surface,” Opt. Mater. Express 8, 3254 (2018).
[Crossref]

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

A. Baburin, A. Gabidullin, A. Zverev, I. Rodionov, I. Ryzhikov, and Y. Panfilov, “Silver films deposited by electron-beam evaporation for application in nanoplasmonics,” Her. Bauman Mosc. State Tech. Univ. Instrum. Eng 6, 4–14 (2016).

Baburin, A. S.

A. S. Baburin, A. I. Ivanov, I. A. Ryzhikov, I. V. Trofimov, A. R. Gabidullin, D. O. Moskalev, Y. V. Panfilov, and I. A. Rodionov, “Crystalline structure dependence on optical properties of silver thin film over time,” in “Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017,” (IEEE, 2017), pp. 1497–1502.

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

Balykin, V.

A. Baburin, A. Kalmykov, R. Kirtaev, D. Negrov, D. Moskalev, I. Ryzhikov, P. Melentiev, I. Rodionov, and V. Balykin, “Toward theoretically limited spp propagation length above two hundred microns on ultra-smooth silver surface,” Opt. Mater. Express 8, 3254 (2018).
[Crossref]

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

P. Melentiev, A. Kuzin, and V. Balykin, “Control of spp propagation and focusing through scattering from nanostructures,” Quantum Electron. 47, 266–271 (2017).
[Crossref]

A. Afanasiev, P. Melentiev, A. Kuzin, A. Y. Kalatskiy, and V. Balykin, “Photon transport through a nanohole by a moving atom,” New J. Phys. 18, 053015 (2016).
[Crossref]

K. Nayak, P. Melentiev, M. Morinaga, F. Le Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref] [PubMed]

P. Melentiev and V. Balykin, “Nano optical elements for surface plasmon waves,” Phys. Usp.accepted, DOI: (2018).
[Crossref]

Balykin, V. I.

V. I. Balykin and P. N. Melentiev, “Optics and spectroscopy of a single plasmonic nanostructure,” Phys. Usp. 61, 133 (2018).
[Crossref]

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

Bishop, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology. 15, 1368 (2004).
[Crossref]

Blair, S.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology. 15, 1368 (2004).
[Crossref]

Brolo, A. G.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41, 1049–1057 (2008).
[Crossref] [PubMed]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir. 20, 4813–4815 (2004).
[Crossref]

Cao, J.

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

Chang, D.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
[Crossref] [PubMed]

Chapman, A. R.

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

Chung, T.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors,” Sensors. 11, 1565–1588 (2011).
[Crossref]

Connor, J. H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano letters 10, 4962–4969 (2010).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Dobronosova, A. A.

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

Dobronosovaa, A. A.

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

Dorofeenko, A.

A. Zyablovskii, A. Pavlov, V. Klimov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyanskii, “Extraordinary light transmission through a metal film perforated by a subwavelength hole array,” J. Exp. Theor. Phys. 125, 175–188 (2017).
[Crossref]

Ebbesen, T.

C. Genet and T. Ebbesen, “Light in tiny holes,” Nature. 445, 39 (2007).
[Crossref] [PubMed]

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Ebbesen, T. W.

H. Ghaemi, T. Thio, D. e. a. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature. 391, 667 (1998).
[Crossref]

Enderlein, J.

C. Zander, J. Enderlein, and R. A. Keller, Single molecule detection in solution: methods and applications (Wiley-VCH, 2002).
[Crossref]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Filippov, I.

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

Gabidulin, A. R.

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

Gabidullin, A.

A. Baburin, A. Gabidullin, A. Zverev, I. Rodionov, I. Ryzhikov, and Y. Panfilov, “Silver films deposited by electron-beam evaporation for application in nanoplasmonics,” Her. Bauman Mosc. State Tech. Univ. Instrum. Eng 6, 4–14 (2016).

Gabidullin, A. R.

A. S. Baburin, A. I. Ivanov, I. A. Ryzhikov, I. V. Trofimov, A. R. Gabidullin, D. O. Moskalev, Y. V. Panfilov, and I. A. Rodionov, “Crystalline structure dependence on optical properties of silver thin film over time,” in “Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017,” (IEEE, 2017), pp. 1497–1502.

Ganieva, L. A.

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

Garcia-Vidal, F.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Geisbert, T. W.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano letters 10, 4962–4969 (2010).
[Crossref] [PubMed]

Gelfand, R. M.

Genet, C.

C. Genet and T. Ebbesen, “Light in tiny holes,” Nature. 445, 39 (2007).
[Crossref] [PubMed]

Ghaemi, H.

H. Ghaemi, T. Thio, D. e. a. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature. 391, 667 (1998).
[Crossref]

Gordon, R.

R. M. Gelfand, S. Wheaton, and R. Gordon, “Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles,” Opt. Lett. 39, 6415–6417 (2014).
[Crossref] [PubMed]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41, 1049–1057 (2008).
[Crossref] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir. 20, 4813–4815 (2004).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Gritchenko, A.

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

Grupp, D. e. a.

H. Ghaemi, T. Thio, D. e. a. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

Hakuta, K.

Hemmer, P.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
[Crossref] [PubMed]

Herron, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology. 15, 1368 (2004).
[Crossref]

Hillson, P. J.

P. J. Hillson and R. B. McKay, “Aggregation of dye molecules in aqueous solution a polarographic study,” T. Faraday Soc. 61, 374–382 (1965).
[Crossref]

Huang, M.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano letters 10, 4962–4969 (2010).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Ivanov, A. I.

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

A. S. Baburin, A. I. Ivanov, I. A. Ryzhikov, I. V. Trofimov, A. R. Gabidullin, D. O. Moskalev, Y. V. Panfilov, and I. A. Rodionov, “Crystalline structure dependence on optical properties of silver thin film over time,” in “Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017,” (IEEE, 2017), pp. 1497–1502.

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

Kalatskiy, A. Y.

A. Afanasiev, P. Melentiev, A. Kuzin, A. Y. Kalatskiy, and V. Balykin, “Photon transport through a nanohole by a moving atom,” New J. Phys. 18, 053015 (2016).
[Crossref]

Kalmykov, A.

A. Baburin, A. Kalmykov, R. Kirtaev, D. Negrov, D. Moskalev, I. Ryzhikov, P. Melentiev, I. Rodionov, and V. Balykin, “Toward theoretically limited spp propagation length above two hundred microns on ultra-smooth silver surface,” Opt. Mater. Express 8, 3254 (2018).
[Crossref]

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

Kamohara, O.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano letters 10, 4962–4969 (2010).
[Crossref] [PubMed]

Kasha, M.

E. G. McRae and M. Kasha, “Enhancement of phosphorescence ability upon aggregation of dye molecules,” J. Chem. Phys. 28, 721–722 (1958).
[Crossref]

Kavanagh, K. L.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41, 1049–1057 (2008).
[Crossref] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir. 20, 4813–4815 (2004).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Keller, R. A.

C. Zander, J. Enderlein, and R. A. Keller, Single molecule detection in solution: methods and applications (Wiley-VCH, 2002).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. materials 11, 69 (2012).
[Crossref]

Kirtaev, R.

Klimov, V.

A. Zyablovskii, A. Pavlov, V. Klimov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyanskii, “Extraordinary light transmission through a metal film perforated by a subwavelength hole array,” J. Exp. Theor. Phys. 125, 175–188 (2017).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal.Chem 79, 4729–4735 (2007).

Kuipers, L.

K. Van der Molen, F. B. Segerink, N. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

Kuzin, A.

P. Melentiev, A. Kuzin, and V. Balykin, “Control of spp propagation and focusing through scattering from nanostructures,” Quantum Electron. 47, 266–271 (2017).
[Crossref]

A. Afanasiev, P. Melentiev, A. Kuzin, A. Y. Kalatskiy, and V. Balykin, “Photon transport through a nanohole by a moving atom,” New J. Phys. 18, 053015 (2016).
[Crossref]

Le Kien, F.

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir. 20, 4813–4815 (2004).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Lee, B.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors,” Sensors. 11, 1565–1588 (2011).
[Crossref]

Lezec, H.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

H. Ghaemi, T. Thio, D. e. a. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature. 391, 667 (1998).
[Crossref]

Li, Y.

F. Ma, Y. Li, B. Tang, and C.-y. Zhang, “Fluorescent biosensors based on single-molecule counting,” Acc. Chem. Res. 49, 1722–1730 (2016).
[Crossref] [PubMed]

Lisyanskii, A.

A. Zyablovskii, A. Pavlov, V. Klimov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyanskii, “Extraordinary light transmission through a metal film perforated by a subwavelength hole array,” J. Exp. Theor. Phys. 125, 175–188 (2017).
[Crossref]

Liu, Y.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology. 15, 1368 (2004).
[Crossref]

Love, S. A.

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

Lukin, M.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
[Crossref] [PubMed]

Ma, F.

F. Ma, Y. Li, B. Tang, and C.-y. Zhang, “Fluorescent biosensors based on single-molecule counting,” Acc. Chem. Res. 49, 1722–1730 (2016).
[Crossref] [PubMed]

Maklakov, S. S.

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

Martin-Moreno, L.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

McKay, R. B.

P. J. Hillson and R. B. McKay, “Aggregation of dye molecules in aqueous solution a polarographic study,” T. Faraday Soc. 61, 374–382 (1965).
[Crossref]

McRae, E. G.

E. G. McRae and M. Kasha, “Enhancement of phosphorescence ability upon aggregation of dye molecules,” J. Chem. Phys. 28, 721–722 (1958).
[Crossref]

Melentiev, P.

A. Baburin, A. Kalmykov, R. Kirtaev, D. Negrov, D. Moskalev, I. Ryzhikov, P. Melentiev, I. Rodionov, and V. Balykin, “Toward theoretically limited spp propagation length above two hundred microns on ultra-smooth silver surface,” Opt. Mater. Express 8, 3254 (2018).
[Crossref]

P. Melentiev, A. Kuzin, and V. Balykin, “Control of spp propagation and focusing through scattering from nanostructures,” Quantum Electron. 47, 266–271 (2017).
[Crossref]

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

A. Afanasiev, P. Melentiev, A. Kuzin, A. Y. Kalatskiy, and V. Balykin, “Photon transport through a nanohole by a moving atom,” New J. Phys. 18, 053015 (2016).
[Crossref]

K. Nayak, P. Melentiev, M. Morinaga, F. Le Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref] [PubMed]

P. Melentiev and V. Balykin, “Nano optical elements for surface plasmon waves,” Phys. Usp.accepted, DOI: (2018).
[Crossref]

Melentiev, P. N.

V. I. Balykin and P. N. Melentiev, “Optics and spectroscopy of a single plasmonic nanostructure,” Phys. Usp. 61, 133 (2018).
[Crossref]

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

Mills, N. L.

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

Mitsch, R.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Comm. 5, 5713 (2014).
[Crossref]

Morinaga, M.

Moskalev, D.

Moskalev, D. O.

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

A. S. Baburin, A. I. Ivanov, I. A. Ryzhikov, I. V. Trofimov, A. R. Gabidullin, D. O. Moskalev, Y. V. Panfilov, and I. A. Rodionov, “Crystalline structure dependence on optical properties of silver thin film over time,” in “Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017,” (IEEE, 2017), pp. 1497–1502.

Mukherjee, A.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
[Crossref] [PubMed]

Nayak, K.

Nechepurenko, I.

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

Negrov, D.

Panfilov, Y.

A. Baburin, A. Gabidullin, A. Zverev, I. Rodionov, I. Ryzhikov, and Y. Panfilov, “Silver films deposited by electron-beam evaporation for application in nanoplasmonics,” Her. Bauman Mosc. State Tech. Univ. Instrum. Eng 6, 4–14 (2016).

Panfilov, Y. V.

A. S. Baburin, A. I. Ivanov, I. A. Ryzhikov, I. V. Trofimov, A. R. Gabidullin, D. O. Moskalev, Y. V. Panfilov, and I. A. Rodionov, “Crystalline structure dependence on optical properties of silver thin film over time,” in “Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017,” (IEEE, 2017), pp. 1497–1502.

Park, H.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
[Crossref] [PubMed]

Pavlov, A.

A. Zyablovskii, A. Pavlov, V. Klimov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyanskii, “Extraordinary light transmission through a metal film perforated by a subwavelength hole array,” J. Exp. Theor. Phys. 125, 175–188 (2017).
[Crossref]

Pellerin, K.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Pendry, J.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Philippov, I. A.

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

Pishchimova, A. A.

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

Pukhov, A.

A. Zyablovskii, A. Pavlov, V. Klimov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyanskii, “Extraordinary light transmission through a metal film perforated by a subwavelength hole array,” J. Exp. Theor. Phys. 125, 175–188 (2017).
[Crossref]

Rauschenbeutel, A.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Comm. 5, 5713 (2014).
[Crossref]

Rodionov, I.

A. Baburin, A. Kalmykov, R. Kirtaev, D. Negrov, D. Moskalev, I. Ryzhikov, P. Melentiev, I. Rodionov, and V. Balykin, “Toward theoretically limited spp propagation length above two hundred microns on ultra-smooth silver surface,” Opt. Mater. Express 8, 3254 (2018).
[Crossref]

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

A. Baburin, A. Gabidullin, A. Zverev, I. Rodionov, I. Ryzhikov, and Y. Panfilov, “Silver films deposited by electron-beam evaporation for application in nanoplasmonics,” Her. Bauman Mosc. State Tech. Univ. Instrum. Eng 6, 4–14 (2016).

Rodionov, I. A.

A. S. Baburin, A. I. Ivanov, I. A. Ryzhikov, I. V. Trofimov, A. R. Gabidullin, D. O. Moskalev, Y. V. Panfilov, and I. A. Rodionov, “Crystalline structure dependence on optical properties of silver thin film over time,” in “Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017,” (IEEE, 2017), pp. 1497–1502.

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

Roh, S.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors,” Sensors. 11, 1565–1588 (2011).
[Crossref]

Ryzhikov, I.

A. Baburin, A. Kalmykov, R. Kirtaev, D. Negrov, D. Moskalev, I. Ryzhikov, P. Melentiev, I. Rodionov, and V. Balykin, “Toward theoretically limited spp propagation length above two hundred microns on ultra-smooth silver surface,” Opt. Mater. Express 8, 3254 (2018).
[Crossref]

A. Baburin, A. Gabidullin, A. Zverev, I. Rodionov, I. Ryzhikov, and Y. Panfilov, “Silver films deposited by electron-beam evaporation for application in nanoplasmonics,” Her. Bauman Mosc. State Tech. Univ. Instrum. Eng 6, 4–14 (2016).

Ryzhikov, I. A.

A. S. Baburin, A. I. Ivanov, I. A. Ryzhikov, I. V. Trofimov, A. R. Gabidullin, D. O. Moskalev, Y. V. Panfilov, and I. A. Rodionov, “Crystalline structure dependence on optical properties of silver thin film over time,” in “Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017,” (IEEE, 2017), pp. 1497–1502.

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

Ryzhova, E.

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

Ryzhova, E. V.

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

Sandoval, Y.

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

Sayrin, C.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Comm. 5, 5713 (2014).
[Crossref]

Schneeweiss, P.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Comm. 5, 5713 (2014).
[Crossref]

Schulz, K.

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

Segerink, F. B.

K. Van der Molen, F. B. Segerink, N. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

Shah, A. S.

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. materials 11, 69 (2012).
[Crossref]

Sinton, D.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41, 1049–1057 (2008).
[Crossref] [PubMed]

Smith, S. W.

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Tang, B.

F. Ma, Y. Li, B. Tang, and C.-y. Zhang, “Fluorescent biosensors based on single-molecule counting,” Acc. Chem. Res. 49, 1722–1730 (2016).
[Crossref] [PubMed]

Taylor, A. B.

A. B. Taylor and P. Zijlstra, “Single-molecule plasmon sensing: current status and future prospects,” ACS Sensors 2, 1103–1122 (2017).
[Crossref] [PubMed]

Thio, T.

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature. 391, 667 (1998).
[Crossref]

H. Ghaemi, T. Thio, D. e. a. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

Trofimov, I. V.

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

A. S. Baburin, A. I. Ivanov, I. A. Ryzhikov, I. V. Trofimov, A. R. Gabidullin, D. O. Moskalev, Y. V. Panfilov, and I. A. Rodionov, “Crystalline structure dependence on optical properties of silver thin film over time,” in “Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017,” (IEEE, 2017), pp. 1497–1502.

Van der Molen, K.

K. Van der Molen, F. B. Segerink, N. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

Van Hulst, N.

K. Van der Molen, F. B. Segerink, N. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

Vinogradov, A.

A. Zyablovskii, A. Pavlov, V. Klimov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyanskii, “Extraordinary light transmission through a metal film perforated by a subwavelength hole array,” J. Exp. Theor. Phys. 125, 175–188 (2017).
[Crossref]

Vinogradov, A. P.

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

Walt, D. R.

D. R. Walt, Optical methods for single molecule detection and analysis (ACS Publications, 2012).

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Wheaton, S.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Williams, L.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology. 15, 1368 (2004).
[Crossref]

Wolff, P.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature. 391, 667 (1998).
[Crossref]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. materials 11, 69 (2012).
[Crossref]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. materials 11, 69 (2012).
[Crossref]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano letters 10, 4962–4969 (2010).
[Crossref] [PubMed]

Yu, C.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
[Crossref] [PubMed]

Zander, C.

C. Zander, J. Enderlein, and R. A. Keller, Single molecule detection in solution: methods and applications (Wiley-VCH, 2002).
[Crossref]

Zhang, C.-y.

F. Ma, Y. Li, B. Tang, and C.-y. Zhang, “Fluorescent biosensors based on single-molecule counting,” Acc. Chem. Res. 49, 1722–1730 (2016).
[Crossref] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Zibrov, A.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
[Crossref] [PubMed]

Zijlstra, P.

A. B. Taylor and P. Zijlstra, “Single-molecule plasmon sensing: current status and future prospects,” ACS Sensors 2, 1103–1122 (2017).
[Crossref] [PubMed]

Zverev, A.

A. Baburin, A. Gabidullin, A. Zverev, I. Rodionov, I. Ryzhikov, and Y. Panfilov, “Silver films deposited by electron-beam evaporation for application in nanoplasmonics,” Her. Bauman Mosc. State Tech. Univ. Instrum. Eng 6, 4–14 (2016).

Zverev, A. V.

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

Zyablovskii, A.

A. Zyablovskii, A. Pavlov, V. Klimov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyanskii, “Extraordinary light transmission through a metal film perforated by a subwavelength hole array,” J. Exp. Theor. Phys. 125, 175–188 (2017).
[Crossref]

Acc. Chem. Res. (2)

F. Ma, Y. Li, B. Tang, and C.-y. Zhang, “Fluorescent biosensors based on single-molecule counting,” Acc. Chem. Res. 49, 1722–1730 (2016).
[Crossref] [PubMed]

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41, 1049–1057 (2008).
[Crossref] [PubMed]

ACS Sensors (1)

A. B. Taylor and P. Zijlstra, “Single-molecule plasmon sensing: current status and future prospects,” ACS Sensors 2, 1103–1122 (2017).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Anal.Chem (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal.Chem 79, 4729–4735 (2007).

Appl. Phys. Lett. (2)

P. Melentiev, A. Kalmykov, A. Gritchenko, A. Afanasiev, V. Balykin, A. Baburin, E. Ryzhova, I. Filippov, I. Rodionov, and I. Nechepurenko, “Plasmonic nanolaser for intracavity spectroscopy and sensorics,” Appl. Phys. Lett. 111, 213104 (2017).
[Crossref]

K. Van der Molen, F. B. Segerink, N. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316–4318 (2004).
[Crossref]

Her. Bauman Mosc. State Tech. Univ. Instrum. Eng (1)

A. Baburin, A. Gabidullin, A. Zverev, I. Rodionov, I. Ryzhikov, and Y. Panfilov, “Silver films deposited by electron-beam evaporation for application in nanoplasmonics,” Her. Bauman Mosc. State Tech. Univ. Instrum. Eng 6, 4–14 (2016).

J. Chem. Phys. (1)

E. G. McRae and M. Kasha, “Enhancement of phosphorescence ability upon aggregation of dye molecules,” J. Chem. Phys. 28, 721–722 (1958).
[Crossref]

J. Exp. Theor. Phys. (1)

A. Zyablovskii, A. Pavlov, V. Klimov, A. Pukhov, A. Dorofeenko, A. Vinogradov, and A. Lisyanskii, “Extraordinary light transmission through a metal film perforated by a subwavelength hole array,” J. Exp. Theor. Phys. 125, 175–188 (2017).
[Crossref]

Langmuir. (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir. 20, 4813–4815 (2004).
[Crossref]

Nano Lett. (1)

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4, 2015–2018 (2004).
[Crossref]

Nano letters (1)

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano letters 10, 4962–4969 (2010).
[Crossref] [PubMed]

Nanotechnology. (1)

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology. 15, 1368 (2004).
[Crossref]

Nat. Comm. (1)

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Comm. 5, 5713 (2014).
[Crossref]

Nat. communications (1)

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. communications 4, 2154 (2013).
[Crossref]

Nat. materials (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. materials 11, 69 (2012).
[Crossref]

Nature (1)

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
[Crossref] [PubMed]

Nature. (2)

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature. 391, 667 (1998).
[Crossref]

C. Genet and T. Ebbesen, “Light in tiny holes,” Nature. 445, 39 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

A. Afanasiev, P. Melentiev, A. Kuzin, A. Y. Kalatskiy, and V. Balykin, “Photon transport through a nanohole by a moving atom,” New J. Phys. 18, 053015 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

H. Ghaemi, T. Thio, D. e. a. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[Crossref]

Phys. Rev. Lett. (2)

L. Martin-Moreno, F. Garcia-Vidal, H. Lezec, K. Pellerin, T. Thio, J. Pendry, and T. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667 (1997).
[Crossref]

Phys. Usp. (1)

V. I. Balykin and P. N. Melentiev, “Optics and spectroscopy of a single plasmonic nanostructure,” Phys. Usp. 61, 133 (2018).
[Crossref]

Quantum Electron. (1)

P. Melentiev, A. Kuzin, and V. Balykin, “Control of spp propagation and focusing through scattering from nanostructures,” Quantum Electron. 47, 266–271 (2017).
[Crossref]

Sensors. (1)

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors,” Sensors. 11, 1565–1588 (2011).
[Crossref]

T. Faraday Soc. (1)

P. J. Hillson and R. B. McKay, “Aggregation of dye molecules in aqueous solution a polarographic study,” T. Faraday Soc. 61, 374–382 (1965).
[Crossref]

Other (7)

Y. Sandoval, S. W. Smith, A. S. Shah, A. Anand, A. R. Chapman, S. A. Love, K. Schulz, J. Cao, N. L. Mills, and F. S. Apple, “Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin i measurement,” Clin. Chem. (2016).

I. A. Rodionov, A. S. Baburin, A. V. Zverev, I. A. Philippov, A. R. Gabidulin, A. A. Dobronosova, E. V. Ryzhova, A. P. Vinogradov, A. I. Ivanov, and S. S. Maklakov, “Mass production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonics devices,” in “Metamaterials, Metadevices, and Metasystems 2017,”, vol. 10343 (International Society for Optics and Photonics, 2017), vol. 10343, p. 1034337.

A. S. Baburin, A. I. Ivanov, I. V. Trofimov, A. A. Dobronosovaa, P. N. Melentiev, V. I. Balykin, D. O. Moskalev, A. A. Pishchimova, L. A. Ganieva, and I. A. Ryzhikov, “Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal,” in “Nanophotonics VII,”, vol. 10672 (International Society for Optics and Photonics, 2018), vol. 10672, p. 106724D.

P. Melentiev and V. Balykin, “Nano optical elements for surface plasmon waves,” Phys. Usp.accepted, DOI: (2018).
[Crossref]

A. S. Baburin, A. I. Ivanov, I. A. Ryzhikov, I. V. Trofimov, A. R. Gabidullin, D. O. Moskalev, Y. V. Panfilov, and I. A. Rodionov, “Crystalline structure dependence on optical properties of silver thin film over time,” in “Progress In Electromagnetics Research Symposium-Spring (PIERS), 2017,” (IEEE, 2017), pp. 1497–1502.

D. R. Walt, Optical methods for single molecule detection and analysis (ACS Publications, 2012).

C. Zander, J. Enderlein, and R. A. Keller, Single molecule detection in solution: methods and applications (Wiley-VCH, 2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Plasmonic sensor based on Ebbesen effect: (a) schematic diagram of sensor; (b) electron microscope image of PC formed by a matrix of nanoholes perforated in 100 nm thick silver film.
Fig. 2
Fig. 2 Spectral selectivity of plasmonic sensor based on Ebbesen effect: (a) excitation spectra of Cy-5; (b) transmission spectra of nanohole arrays with different pitch (Λ). Dashed line indicates laser wavelength λ = 628 nm.
Fig. 3
Fig. 3 Detection of Cy-5 molecules in DMSO solution with plasmonic sensor: (a) measured by 2D CCD camera luminescence of a pure DMSO solution without Cy-5 molecules in plasmonic sensor; (b) measured luminescence of Cy-5 molecule solution with a concentration of n = 40 pg/ml in plasmonic sensor; (c) amplitudes of luminescence with different concentrations of Cy-5 molecule solution introduced in plasmonic sensor, as measured by 2D CCD camera. Light-green curves in (a) and (b) indicate optical image sections.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k spp = ( 2 n x π Λ ) i + ( 2 n y π Λ ) j

Metrics