Abstract

Computer-generated geometric phase holograms (GPHs) can be manufactured with high efficiency and high fidelity using photo-aligned liquidvcrystals. GPHs are diffractive elements, which therefore have a wavelength-dependent output and can generally not be used for the production of color imagery. We implement a two-stage approach that first uses the wavelength-dependent diffraction to separate colors, and second, directs these colors through separate holographic patterns. Moreover, by utilizing the geometric phase, we obtain diffraction efficiencies close to 100% for all wavelengths. We successfully create a white light hologram from RGB input in the lab. We demonstrate that this schematic allows for full control over individual (RGB) channels and can be used for wide-gamut holography by selecting any combination of wavelengths. In addition, we show with simulations how this two-stage element could be used for of true-color holograms.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Producing true-color rainbows with patterned multi-layer liquid-crystal polarization gratings

Frans Snik, Michiel Rodenhuis, Michael J. Escuti, Leandra Brickson, Kathryn Hornburg, Jihwan Kim, Chris Kievid, Sebastiaan Groenhuijsen, and Daan Roosegaarde
Opt. Mater. Express 9(4) 1583-1589 (2019)

Self-interference digital holography with a geometric-phase hologram lens

KiHong Choi, Junkyu Yim, Seunghwi Yoo, and Sung-Wook Min
Opt. Lett. 42(19) 3940-3943 (2017)

Pancharatnam–Berry optical elements for head-up and near-eye displays [Invited]

Tao Zhan, Yun-Han Lee, Guanjun Tan, Jianghao Xiong, Kun Yin, Fangwang Gou, Junyu Zou, Nannan Zhang, Dongfeng Zhao, Jilin Yang, Sheng Liu, and Shin-Tson Wu
J. Opt. Soc. Am. B 36(5) D52-D65 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
    [Crossref] [PubMed]
  2. B. Brown and A. Lohmann, “Computer-generated binary holograms,” IBM J. research Dev. 13, 160–168 (1969).
    [Crossref]
  3. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
    [Crossref]
  4. A. W. Lohmann, “A pre-history of computer-generated holography,” Opt. Photonics News 19, 36–47 (2008).
    [Crossref]
  5. F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” Journal of display technology 6, 443–454 (2010).
    [Crossref]
  6. M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27, 22–29 (2016).
    [Crossref]
  7. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
    [Crossref]
  8. E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam–berry phase diffractive optics,” Appl. physics letters 82, 328–330 (2003).
    [Crossref]
  9. L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. express 24, 18297–18306 (2016).
    [Crossref] [PubMed]
  10. S. Pancharatnam, “Achromatic combinations of birefringent plates,” in Proceedings of the Indian Academy of Sciences-Section A, vol. 41 (Springer, 1955), pp. 137–144.
    [Crossref]
  11. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45–57 (1984).
    [Crossref]
  12. J. Anandan, “The geometric phase,” Nature 360, 307 (1992).
    [Crossref]
  13. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
    [Crossref]
  14. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. communications 4, 2807 (2013).
    [Crossref]
  15. J. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. review letters 118, 113901 (2017).
    [Crossref]
  16. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. nanotechnology 10, 308 (2015).
    [Crossref]
  17. K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
    [Crossref]
  18. V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications, vol. 17 (John Wiley & Sons, 2008).
    [Crossref]
  19. M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22, 12691–12706 (2014).
    [Crossref] [PubMed]
  20. R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21, 404–420 (2013).
    [Crossref] [PubMed]
  21. X. Xiang, J. Kim, and M. J. Escuti, “Far-field and fresnel liquid crystal geometric phase holograms via direct-write photo-alignment,” Crystals 7, 383 (2017).
    [Crossref]
  22. X. Xiang, J. Kim, and M. J. Escuti, “Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles,” Sci. Reports 8, 7202 (2018).
    [Crossref]
  23. X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25, 19298–19308 (2017).
    [Crossref] [PubMed]
  24. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. letters 33, 2287–2289 (2008).
    [Crossref]
  25. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an slm by exploiting its full phase modulation range,” Opt. express 22, 20530–20541 (2014).
    [Crossref] [PubMed]
  26. E. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
    [Crossref] [PubMed]
  27. T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. review 10, 339–341 (2003).
    [Crossref]
  28. Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using rgb color filters,” Opt. express 25, 2016–2030 (2017).
    [Crossref]
  29. M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. express 16, 11618–11623 (2008).
    [PubMed]
  30. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004).
    [Crossref] [PubMed]
  31. A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. express 17, 16038–16045 (2009).
    [Crossref] [PubMed]
  32. D. S. Doelman, F. Snik, N. Z. Warriner, and M. J. Escuti, “Patterned liquid-crystal optics for broadband coronagraphy and wavefront sensing,” in Techniques and Instrumentation for Detection of Exoplanets VIII, vol. 10400 (International Society for Optics and Photonics, 2017), p. 104000U.
  33. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  34. E. H. Por, S. Y. Haffert, V. M. Radhakrishnan, D. S. Doelman, M. Van Kooten, and S. P. Bos, “High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator,” in Adaptive Optics Systems VI, vol. 10703 of Proc. SPIE (2018).
    [Crossref]
  35. A. P. Kowalczyk, M. Makowski, I. Ducin, M. Sypek, and A. Kolodziejczyk, “Collective matrix of spatial light modulators for increased resolution in holographic image projection,” Opt. Express 26, 17158–17169 (2018).
    [Crossref] [PubMed]
  36. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
    [Crossref] [PubMed]
  37. J.-W. Pan and C.-H. Shih, “Speckle reduction and maintaining contrast in a laser pico-projector using a vibrating symmetric diffuser,” Opt. express 22, 6464–6477 (2014).
    [Crossref] [PubMed]
  38. C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, and J. Chen, “Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint gerchberg–saxton algorithm,” Appl. Opt. 54, 6994–7001 (2015).
    [Crossref] [PubMed]
  39. M. S. Peercy and L. Hesselink, “Wavelength selection for true-color holography,” Appl. Opt. 33, 6811–6817 (1994).
    [Crossref] [PubMed]
  40. H. I. Bjelkhagen and E. Mirlis, “Color holography to produce highly realistic three-dimensional images,” Appl. Opt. 47, A123–A133 (2008).
    [Crossref] [PubMed]
  41. K. Bazargan, “Factors affecting the choice of optimum recording wavelengths in true-color holography,” in Intl Symp on Display Holography, vol. 1600 (International Society for Optics and Photonics, 1992), pp. 178–182.
    [Crossref]
  42. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. review 6, 24–27 (1999).
    [Crossref]
  43. D. G. Grier, “Multi-color holographic optical trapping,” (2012). US Patent8,298,727
  44. J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
    [Crossref]
  45. D. Palima and J. Glückstad, “Multi-wavelength spatial light shaping using generalized phase contrast,” Opt. express 16, 1331–1342 (2008).
    [Crossref] [PubMed]

2018 (2)

X. Xiang, J. Kim, and M. J. Escuti, “Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles,” Sci. Reports 8, 7202 (2018).
[Crossref]

A. P. Kowalczyk, M. Makowski, I. Ducin, M. Sypek, and A. Kolodziejczyk, “Collective matrix of spatial light modulators for increased resolution in holographic image projection,” Opt. Express 26, 17158–17169 (2018).
[Crossref] [PubMed]

2017 (4)

X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25, 19298–19308 (2017).
[Crossref] [PubMed]

X. Xiang, J. Kim, and M. J. Escuti, “Far-field and fresnel liquid crystal geometric phase holograms via direct-write photo-alignment,” Crystals 7, 383 (2017).
[Crossref]

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using rgb color filters,” Opt. express 25, 2016–2030 (2017).
[Crossref]

J. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. review letters 118, 113901 (2017).
[Crossref]

2016 (3)

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27, 22–29 (2016).
[Crossref]

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. express 24, 18297–18306 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

2013 (3)

R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21, 404–420 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. communications 4, 2807 (2013).
[Crossref]

2010 (2)

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” Journal of display technology 6, 443–454 (2010).
[Crossref]

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (5)

2005 (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

2004 (1)

2003 (2)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. review 10, 339–341 (2003).
[Crossref]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam–berry phase diffractive optics,” Appl. physics letters 82, 328–330 (2003).
[Crossref]

1999 (1)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. review 6, 24–27 (1999).
[Crossref]

1996 (1)

J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]

1994 (1)

1992 (1)

J. Anandan, “The geometric phase,” Nature 360, 307 (1992).
[Crossref]

1984 (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45–57 (1984).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

1969 (1)

B. Brown and A. Lohmann, “Computer-generated binary holograms,” IBM J. research Dev. 13, 160–168 (1969).
[Crossref]

1966 (2)

Anandan, J.

J. Anandan, “The geometric phase,” Nature 360, 307 (1992).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

Bazargan, K.

K. Bazargan, “Factors affecting the choice of optimum recording wavelengths in true-color holography,” in Intl Symp on Display Holography, vol. 1600 (International Society for Optics and Photonics, 1992), pp. 178–182.
[Crossref]

Bernet, S.

Berry, M. V.

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45–57 (1984).
[Crossref]

Biener, G.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam–berry phase diffractive optics,” Appl. physics letters 82, 328–330 (2003).
[Crossref]

Bjelkhagen, H. I.

Bos, S. P.

E. H. Por, S. Y. Haffert, V. M. Radhakrishnan, D. S. Doelman, M. Van Kooten, and S. P. Bos, “High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator,” in Adaptive Optics Systems VI, vol. 10703 of Proc. SPIE (2018).
[Crossref]

Brown, B.

B. Brown and A. Lohmann, “Computer-generated binary holograms,” IBM J. research Dev. 13, 160–168 (1969).
[Crossref]

Brown, B. R.

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Capasso, F.

J. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. review letters 118, 113901 (2017).
[Crossref]

Chang, C.

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

Chen, J.

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

Chigrinov, V. G.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications, vol. 17 (John Wiley & Sons, 2008).
[Crossref]

De Sio, L.

Devlin, R. C.

J. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. review letters 118, 113901 (2017).
[Crossref]

Doelman, D. S.

D. S. Doelman, F. Snik, N. Z. Warriner, and M. J. Escuti, “Patterned liquid-crystal optics for broadband coronagraphy and wavefront sensing,” in Techniques and Instrumentation for Detection of Exoplanets VIII, vol. 10400 (International Society for Optics and Photonics, 2017), p. 104000U.

E. H. Por, S. Y. Haffert, V. M. Radhakrishnan, D. S. Doelman, M. Van Kooten, and S. P. Bos, “High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator,” in Adaptive Optics Systems VI, vol. 10703 of Proc. SPIE (2018).
[Crossref]

Dong, Z.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Ducin, I.

Escuti, M. J.

X. Xiang, J. Kim, and M. J. Escuti, “Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles,” Sci. Reports 8, 7202 (2018).
[Crossref]

X. Xiang, J. Kim, and M. J. Escuti, “Far-field and fresnel liquid crystal geometric phase holograms via direct-write photo-alignment,” Crystals 7, 383 (2017).
[Crossref]

X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25, 19298–19308 (2017).
[Crossref] [PubMed]

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27, 22–29 (2016).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22, 12691–12706 (2014).
[Crossref] [PubMed]

R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21, 404–420 (2013).
[Crossref] [PubMed]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. letters 33, 2287–2289 (2008).
[Crossref]

D. S. Doelman, F. Snik, N. Z. Warriner, and M. J. Escuti, “Patterned liquid-crystal optics for broadband coronagraphy and wavefront sensing,” in Techniques and Instrumentation for Detection of Exoplanets VIII, vol. 10400 (International Society for Optics and Photonics, 2017), p. 104000U.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Glückstad, J.

Grier, D. G.

D. G. Grier, “Multi-color holographic optical trapping,” (2012). US Patent8,298,727

Groever, B.

J. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. review letters 118, 113901 (2017).
[Crossref]

Haffert, S. Y.

E. H. Por, S. Y. Haffert, V. M. Radhakrishnan, D. S. Doelman, M. Van Kooten, and S. P. Bos, “High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator,” in Adaptive Optics Systems VI, vol. 10703 of Proc. SPIE (2018).
[Crossref]

Hasman, E.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam–berry phase diffractive optics,” Appl. physics letters 82, 328–330 (2003).
[Crossref]

Hayasaki, Y.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. review 6, 24–27 (1999).
[Crossref]

Hesselink, L.

Huang, K.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

Ichihashi, Y.

Ito, T.

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. review 6, 24–27 (1999).
[Crossref]

Jesacher, A.

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

Kang, H.

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” Journal of display technology 6, 443–454 (2010).
[Crossref]

Katagiri, B.

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
[Crossref] [PubMed]

Kawakami, T.

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
[Crossref] [PubMed]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. nanotechnology 10, 308 (2015).
[Crossref]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. communications 4, 2807 (2013).
[Crossref]

Kim, J.

X. Xiang, J. Kim, and M. J. Escuti, “Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles,” Sci. Reports 8, 7202 (2018).
[Crossref]

X. Xiang, J. Kim, and M. J. Escuti, “Far-field and fresnel liquid crystal geometric phase holograms via direct-write photo-alignment,” Crystals 7, 383 (2017).
[Crossref]

X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25, 19298–19308 (2017).
[Crossref] [PubMed]

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27, 22–29 (2016).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

Kimball, B. R.

Kleiner, V.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam–berry phase diffractive optics,” Appl. physics letters 82, 328–330 (2003).
[Crossref]

Kolodziejczyk, A.

Komanduri, R.

Komanduri, R. K.

Kowalczyk, A. P.

Kozenkov, V. M.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications, vol. 17 (John Wiley & Sons, 2008).
[Crossref]

Kozma, A.

Kudenov, M. W.

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27, 22–29 (2016).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

Kuratomi, Y.

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
[Crossref] [PubMed]

Kwok, H.-S.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications, vol. 17 (John Wiley & Sons, 2008).
[Crossref]

Lawler, K. F.

Lei, W.

Leith, E.

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. nanotechnology 10, 308 (2015).
[Crossref]

Li, Y.

Liao, Z.

Liu, H.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Liu, Y.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Lohmann, A.

B. Brown and A. Lohmann, “Computer-generated binary holograms,” IBM J. research Dev. 13, 160–168 (1969).
[Crossref]

Lohmann, A. W.

A. W. Lohmann, “A pre-history of computer-generated holography,” Opt. Photonics News 19, 36–47 (2008).
[Crossref]

B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
[Crossref] [PubMed]

Luk’yanchuk, B.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Makowski, M.

Marks, J.

Massey, N.

Masuda, N.

Matsushima, K.

Mei, S.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Mirlis, E.

Miskiewicz, M. N.

Mueller, J. B.

J. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. review letters 118, 113901 (2017).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. nanotechnology 10, 308 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

Nersisyan, S.

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. communications 4, 2807 (2013).
[Crossref]

Nishida, N.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. review 6, 24–27 (1999).
[Crossref]

Niv, A.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam–berry phase diffractive optics,” Appl. physics letters 82, 328–330 (2003).
[Crossref]

Niwa, M.

Oh, C.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. letters 33, 2287–2289 (2008).
[Crossref]

Okano, K.

Onural, L.

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” Journal of display technology 6, 443–454 (2010).
[Crossref]

Palima, D.

Pan, J.-W.

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates,” in Proceedings of the Indian Academy of Sciences-Section A, vol. 41 (Springer, 1955), pp. 137–144.
[Crossref]

Peercy, M. S.

Por, E. H.

E. H. Por, S. Y. Haffert, V. M. Radhakrishnan, D. S. Doelman, M. Van Kooten, and S. P. Bos, “High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator,” in Adaptive Optics Systems VI, vol. 10703 of Proc. SPIE (2018).
[Crossref]

Qiu, C.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

Radhakrishnan, V. M.

E. H. Por, S. Y. Haffert, V. M. Radhakrishnan, D. S. Doelman, M. Van Kooten, and S. P. Bos, “High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator,” in Adaptive Optics Systems VI, vol. 10703 of Proc. SPIE (2018).
[Crossref]

Ritsch-Marte, M.

Roberts, D. E.

Rubin, N. A.

J. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. review letters 118, 113901 (2017).
[Crossref]

Satoh, H.

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
[Crossref] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Sekiya, K.

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
[Crossref] [PubMed]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. communications 4, 2807 (2013).
[Crossref]

Shih, C.-H.

Shimobaba, T.

Shiraki, A.

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Snik, F.

D. S. Doelman, F. Snik, N. Z. Warriner, and M. J. Escuti, “Patterned liquid-crystal optics for broadband coronagraphy and wavefront sensing,” in Techniques and Instrumentation for Detection of Exoplanets VIII, vol. 10400 (International Society for Optics and Photonics, 2017), p. 104000U.

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Steeves, D. M.

Suzuki, Y.

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
[Crossref] [PubMed]

Sypek, M.

Tabiryan, N.

Takada, N.

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

Teng, J.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Tomiyama, T.

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
[Crossref] [PubMed]

Tsuchiyama, Y.

Uchida, T.

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
[Crossref] [PubMed]

Upatnieks, J.

Uskova, O.

Van Kooten, M.

E. H. Por, S. Y. Haffert, V. M. Radhakrishnan, D. S. Doelman, M. Van Kooten, and S. P. Bos, “High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator,” in Adaptive Optics Systems VI, vol. 10703 of Proc. SPIE (2018).
[Crossref]

Warriner, N. Z.

D. S. Doelman, F. Snik, N. Z. Warriner, and M. J. Escuti, “Patterned liquid-crystal optics for broadband coronagraphy and wavefront sensing,” in Techniques and Instrumentation for Detection of Exoplanets VIII, vol. 10400 (International Society for Optics and Photonics, 2017), p. 104000U.

Wickboldt, L.

Xia, J.

Xiang, X.

X. Xiang, J. Kim, and M. J. Escuti, “Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles,” Sci. Reports 8, 7202 (2018).
[Crossref]

X. Xiang, J. Kim, and M. J. Escuti, “Far-field and fresnel liquid crystal geometric phase holograms via direct-write photo-alignment,” Crystals 7, 383 (2017).
[Crossref]

X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25, 19298–19308 (2017).
[Crossref] [PubMed]

Yang, J. K.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Yang, L.

Yang, Z.

Yaras, F.

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” Journal of display technology 6, 443–454 (2010).
[Crossref]

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. review 6, 24–27 (1999).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. nanotechnology 10, 308 (2015).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

Zhang, L.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Zhang, S.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. nanotechnology 10, 308 (2015).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. nanotechnology 10, 308 (2015).
[Crossref]

Zhu, H.

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Appl. Opt. (5)

Appl. physics letters (1)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized pancharatnam–berry phase diffractive optics,” Appl. physics letters 82, 328–330 (2003).
[Crossref]

Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Crystals (1)

X. Xiang, J. Kim, and M. J. Escuti, “Far-field and fresnel liquid crystal geometric phase holograms via direct-write photo-alignment,” Crystals 7, 383 (2017).
[Crossref]

IBM J. research Dev. (1)

B. Brown and A. Lohmann, “Computer-generated binary holograms,” IBM J. research Dev. 13, 160–168 (1969).
[Crossref]

JOSA A (1)

Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” JOSA A 27, 1812–1817 (2010).
[Crossref] [PubMed]

Journal of display technology (1)

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” Journal of display technology 6, 443–454 (2010).
[Crossref]

Laser & Photonics Rev. (1)

K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. Yang, and et al., “Silicon multi-meta-holograms for the broadband visible light,” Laser & Photonics Rev. 10, 500–509 (2016).
[Crossref]

Nat. communications (2)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, and et al., “Three-dimensional optical holography using a plasmonic metasurface,” Nat. communications 4, 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. communications 4, 2807 (2013).
[Crossref]

Nat. nanotechnology (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. nanotechnology 10, 308 (2015).
[Crossref]

Nature (1)

J. Anandan, “The geometric phase,” Nature 360, 307 (1992).
[Crossref]

Opt. Commun. (1)

J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]

Opt. express (7)

D. Palima and J. Glückstad, “Multi-wavelength spatial light shaping using generalized phase contrast,” Opt. express 16, 1331–1342 (2008).
[Crossref] [PubMed]

A. P. Kowalczyk, M. Makowski, I. Ducin, M. Sypek, and A. Kolodziejczyk, “Collective matrix of spatial light modulators for increased resolution in holographic image projection,” Opt. Express 26, 17158–17169 (2018).
[Crossref] [PubMed]

M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22, 12691–12706 (2014).
[Crossref] [PubMed]

R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21, 404–420 (2013).
[Crossref] [PubMed]

L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. express 24, 18297–18306 (2016).
[Crossref] [PubMed]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Colour hologram projection with an slm by exploiting its full phase modulation range,” Opt. express 22, 20530–20541 (2014).
[Crossref] [PubMed]

X. Xiang, J. Kim, R. Komanduri, and M. J. Escuti, “Nanoscale liquid crystal polymer Bragg polarization gratings,” Opt. Express 25, 19298–19308 (2017).
[Crossref] [PubMed]

J.-W. Pan and C.-H. Shih, “Speckle reduction and maintaining contrast in a laser pico-projector using a vibrating symmetric diffuser,” Opt. express 22, 6464–6477 (2014).
[Crossref] [PubMed]

Y. Tsuchiyama and K. Matsushima, “Full-color large-scaled computer-generated holograms using rgb color filters,” Opt. express 25, 2016–2030 (2017).
[Crossref]

M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. express 16, 11618–11623 (2008).
[PubMed]

T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004).
[Crossref] [PubMed]

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. express 17, 16038–16045 (2009).
[Crossref] [PubMed]

Opt. letters (1)

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. letters 33, 2287–2289 (2008).
[Crossref]

Opt. Photonics News (2)

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photonics News 27, 22–29 (2016).
[Crossref]

A. W. Lohmann, “A pre-history of computer-generated holography,” Opt. Photonics News 19, 36–47 (2008).
[Crossref]

Opt. review (2)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. review 10, 339–341 (2003).
[Crossref]

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. review 6, 24–27 (1999).
[Crossref]

Optica (1)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Phys. review letters (1)

J. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. review letters 118, 113901 (2017).
[Crossref]

Proc. R. Soc. Lond. A (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45–57 (1984).
[Crossref]

Sci. Reports (1)

X. Xiang, J. Kim, and M. J. Escuti, “Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles,” Sci. Reports 8, 7202 (2018).
[Crossref]

Other (6)

E. H. Por, S. Y. Haffert, V. M. Radhakrishnan, D. S. Doelman, M. Van Kooten, and S. P. Bos, “High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator,” in Adaptive Optics Systems VI, vol. 10703 of Proc. SPIE (2018).
[Crossref]

D. S. Doelman, F. Snik, N. Z. Warriner, and M. J. Escuti, “Patterned liquid-crystal optics for broadband coronagraphy and wavefront sensing,” in Techniques and Instrumentation for Detection of Exoplanets VIII, vol. 10400 (International Society for Optics and Photonics, 2017), p. 104000U.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications, vol. 17 (John Wiley & Sons, 2008).
[Crossref]

S. Pancharatnam, “Achromatic combinations of birefringent plates,” in Proceedings of the Indian Academy of Sciences-Section A, vol. 41 (Springer, 1955), pp. 137–144.
[Crossref]

D. G. Grier, “Multi-color holographic optical trapping,” (2012). US Patent8,298,727

K. Bazargan, “Factors affecting the choice of optimum recording wavelengths in true-color holography,” in Intl Symp on Display Holography, vol. 1600 (International Society for Optics and Photonics, 1992), pp. 178–182.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the multi-color geometric phase hologram. A polarization grating (PG1) separates the multi-color input. A second stage collimates the beams with a polarization grating (PG2) and add the individual computer generated geometric phase hologram (GPH) to the pupils with different colors. A lens combines both circular polarizations to form one multi-color hologram. The second stage can be composed of two separate elements or comined into one single element.
Fig. 2
Fig. 2 The phase designs for the computer generated holograms tested in the lab. The left panel shows the phase design for the blue laser ( 450 n m), as indicated by the colormap. Similarly, the two center panels show the green and red phase design. The right panel shows the zoomed pattern corresponding to the polarization grating.
Fig. 3
Fig. 3 Measured properties of the fabricated PG: (a) diffraction efficiencies of the zero-, total first- and second-orders; (b) polarizing optical micrograph, where the scale bar indicates 50 μm; and (c) the PSF of the PG at 532nm that includes the first two diffraction orders, showing that the second-order diffraction efficiency is < < 1 %.
Fig. 4
Fig. 4 Lab setup used to test the multi-color GPH. The three lasers are combined with two beam splitters (BS) and imaged with a lens (L1) on a single mode fiber (SMF). The light from the SMF is collimated with a second lens (L2). Two irises create the pupil and select a single circular polarization from the two polarization gratings (PGs). A circular polarizer (CP) is used to filter leakage and third lens (L3) images the hologram on the detector.
Fig. 5
Fig. 5 Measured intensity of the holograms for each combination of the RGB input colors. The multi-panel image on the left shows the first structure of the hologram, a 2D polygon. On the right is the one dimensional second structure with varying intensities, producing multiple colors.
Fig. 6
Fig. 6 Simulation of a true-color hologram with a two-stage geometric phase hologram (GPH). A square pupil is dispersed by the first grating over a width of four pupil diameters when arriving at the GPH. Top left: the central color of the pupils is indicated by the color bar and the phase pattern is shown below. Top right: the design of the hologram, were the intersection of the RGB circles are purposely altered. Center left: Three pupils are selected and with Fourier propagation the intensities are calculated. Bottom right: The summed intensities multiplied in the six regions indicated for the six different colors as function of wavelength (solid line). The normalized spectrum of the center (white light) is shown in black. The images show reasonable agreement with the input spectra (dotted line). Bottom right: the combined hologram, integrated over all colors, converted to RGB. The simulation shows that using a two-stage GPH is capable of producing true-color holograms.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ ( x , y ) = ± 2 Φ ( x , y ) .
Δ L = d ( tan  ( n λ 2 ) tan  ( n λ 1 ) ) > D ,

Metrics