Abstract

We theoretically compare the energies and wave functions of the electron/hole states between InP- and CdSe-based core/shell/shell colloidal quantum dots (QDs) and investigate how the bandgap energy of the core material affects the light emission characteristics such as the photoluminescence quantum yield and linewidth. The band diagrams and electron/hole energies of InP/ZnSe/ZnS and CdSe/ZnSe/ZnS QDs, having the same emission wavelength, are calculated on the basis of strain-modified effective mass approximation (EMA). The QD strain distribution, caused by the lattice mismatch, is considered based on the continuum elasticity theory. The energies and wave functions of all the electron and hole states in the InP- and CdSe-based core/shell/shell QDs are obtained through the analytical solution of the Schrödinger equation under the EMA. Then, the emission spectra of the two QDs are calculated while considering the homogeneous and inhomogeneous broadening. Finally, we elucidate why the emission characteristics of InP-based QDs, such as the quantum efficiency and emission linewidth, are inferior to those of CdSe-based QDs, and how these can be improved by using the III-V ternary core materials with a bandgap energy comparable to or larger than that of CdSe.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Exciton states of II–VI tetrapod-shaped nanocrystals

Yuanzhao Yao, Takashi Kuroda, Dmitry N. Dirin, Anastasia A. Irkhina, Roman B. Vasiliev, and Kazuaki Sakoda
Opt. Mater. Express 3(7) 977-988 (2013)

Efficient light-emitting diodes based on reverse type-I quantum dots

Xiao Jin, Jinke Bai, Xiaobing Gu, Chun Chang, Huaibin Shen, Qin Zhang, Feng Li, Zhongping Chen, and Qinghua Li
Opt. Mater. Express 7(12) 4395-4407 (2017)

Increased shell thickness in indium phosphide multishell quantum dots leading to efficiency and stability enhancement in light-emitting diodes

Yohan Kim, Christian Ippen, Tonino Greco, Jeongno Lee, Min Suk Oh, Chul Jong Han, Armin Wedel, and Jiwan Kim
Opt. Mater. Express 4(7) 1436-1443 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
    [Crossref]
  2. H. Chen, J. He, and S.-T. Wu, “Recent advances on quantum-dot-enhanced liquid-crystal displays,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1900611 (2017).
    [Crossref]
  3. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
    [Crossref]
  4. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots,” ACS Nano 7(10), 9019–9026 (2013).
    [Crossref] [PubMed]
  5. X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
    [Crossref]
  6. H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
    [Crossref]
  7. D. Aldakov, A. Lefrançois, and P. Reiss, “Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3756–3776 (2013).
    [Crossref]
  8. X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
    [Crossref] [PubMed]
  9. Y. Wang and A. Hu, “Carbon quantum dots: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6921–6939 (2014).
    [Crossref]
  10. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
    [Crossref]
  11. E. Cho, H. Jang, J. Lee, and E. Jang, “Modeling on the size dependent properties of InP quantum dots: a hybrid functional study,” Nanotechnology 24(21), 215201 (2013).
    [Crossref] [PubMed]
  12. H. Fu and A. Zunger, “Excitons in InP quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(24), R15064 (1998).
    [Crossref]
  13. A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
    [Crossref] [PubMed]
  14. S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
    [Crossref]
  15. S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik, and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett. 92(11), 113110 (2008).
    [Crossref]
  16. K. Kim, H. Lee, J. Ahn, and S. Jeong, “Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS,” Appl. Phys. Lett. 101(7), 073107 (2012).
    [Crossref]
  17. T. E. Pahomi and T. O. Cheche, “Strain influence on optical absorption of giant semiconductor colloidal quantum dots,” Chem. Phys. Lett. 612, 33–38 (2014).
    [Crossref]
  18. D. Schooss, A. Mews, A. Eychmüller, and H. Weller, “Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment,” Phys. Rev. B Condens. Matter 49(24), 17072–17078 (1994).
    [Crossref] [PubMed]
  19. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
    [Crossref] [PubMed]
  20. S. L. Chuang, Physics of Photonic Devices, 2nd. (Wiley, 2009).
  21. P. N. Keating, “Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure,” Phys. Rev. 145(2), 637–645 (1966).
    [Crossref]
  22. C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots,” J. Appl. Phys. 83(5), 2548–2554 (1998).
    [Crossref]
  23. A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly, “Strain distributions in quantum dots of arbitrary shape,” J. Appl. Phys. 86(1), 297–305 (1999).
    [Crossref]
  24. J. Grönqvist, N. Søndergaard, F. Boxberg, T. Guhr, S. Åberg, and H. Q. Xu, “Strain in semiconductor core-shell nanowires,” J. Appl. Phys. 106(5), 053508 (2009).
    [Crossref]
  25. T. O. Cheche and Y.-C. Chang, “Efficient modeling of optical excitations of colloidal core-shell semiconductor quantum dots by using symmetrized orbitals,” J. Phys. Chem. A 122(51), 9910–9921 (2018).
    [Crossref] [PubMed]
  26. Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
    [Crossref]
  27. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
    [Crossref]
  28. L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, “Pseudopotential theory of Auger processes in CdSe quantum dots,” Phys. Rev. Lett. 91(5), 056404 (2003).
    [Crossref] [PubMed]
  29. J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron. 42(9), 942–952 (2006).
    [Crossref]
  30. V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
    [Crossref]
  31. https://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/backone/r5_1_4.html .
  32. M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, vol.1 (World Scientific, 1996).
  33. P. C. Sercel and K. J. Vahala, “Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation,” Phys. Rev. B Condens. Matter 42(6), 3690–3710 (1990).
    [Crossref] [PubMed]
  34. A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, and A. V. Rodina, “Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions,” J. Opt. Soc. Am. B 10(1), 100–107 (1993).
    [Crossref]
  35. H. Fu, L.-W. Wang, and A. Zunger, “Applicability of the k⋅p method to the electronic structure of quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(16), 3690–3710 (1998).
    [Crossref]
  36. T. O. Cheche and Y.-C. Chang, “Efficient modeling of optical excitations of colloidal core-shell semiconductor quantum dots by using symmetrized orbitals,” J. Phys. Chem. A 122(51), 9910–9921 (2018).
    [Crossref] [PubMed]

2018 (3)

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

T. O. Cheche and Y.-C. Chang, “Efficient modeling of optical excitations of colloidal core-shell semiconductor quantum dots by using symmetrized orbitals,” J. Phys. Chem. A 122(51), 9910–9921 (2018).
[Crossref] [PubMed]

T. O. Cheche and Y.-C. Chang, “Efficient modeling of optical excitations of colloidal core-shell semiconductor quantum dots by using symmetrized orbitals,” J. Phys. Chem. A 122(51), 9910–9921 (2018).
[Crossref] [PubMed]

2017 (1)

H. Chen, J. He, and S.-T. Wu, “Recent advances on quantum-dot-enhanced liquid-crystal displays,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1900611 (2017).
[Crossref]

2016 (1)

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

2014 (2)

Y. Wang and A. Hu, “Carbon quantum dots: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6921–6939 (2014).
[Crossref]

T. E. Pahomi and T. O. Cheche, “Strain influence on optical absorption of giant semiconductor colloidal quantum dots,” Chem. Phys. Lett. 612, 33–38 (2014).
[Crossref]

2013 (4)

E. Cho, H. Jang, J. Lee, and E. Jang, “Modeling on the size dependent properties of InP quantum dots: a hybrid functional study,” Nanotechnology 24(21), 215201 (2013).
[Crossref] [PubMed]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref] [PubMed]

D. Aldakov, A. Lefrançois, and P. Reiss, “Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3756–3776 (2013).
[Crossref]

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

2012 (2)

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

K. Kim, H. Lee, J. Ahn, and S. Jeong, “Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS,” Appl. Phys. Lett. 101(7), 073107 (2012).
[Crossref]

2011 (2)

H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
[Crossref]

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

2009 (3)

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

J. Grönqvist, N. Søndergaard, F. Boxberg, T. Guhr, S. Åberg, and H. Q. Xu, “Strain in semiconductor core-shell nanowires,” J. Appl. Phys. 106(5), 053508 (2009).
[Crossref]

2008 (1)

S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik, and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett. 92(11), 113110 (2008).
[Crossref]

2007 (1)

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

2006 (1)

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron. 42(9), 942–952 (2006).
[Crossref]

2003 (1)

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, “Pseudopotential theory of Auger processes in CdSe quantum dots,” Phys. Rev. Lett. 91(5), 056404 (2003).
[Crossref] [PubMed]

2000 (1)

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
[Crossref]

1999 (1)

A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly, “Strain distributions in quantum dots of arbitrary shape,” J. Appl. Phys. 86(1), 297–305 (1999).
[Crossref]

1998 (3)

H. Fu, L.-W. Wang, and A. Zunger, “Applicability of the k⋅p method to the electronic structure of quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(16), 3690–3710 (1998).
[Crossref]

C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots,” J. Appl. Phys. 83(5), 2548–2554 (1998).
[Crossref]

H. Fu and A. Zunger, “Excitons in InP quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(24), R15064 (1998).
[Crossref]

1997 (1)

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

1994 (1)

D. Schooss, A. Mews, A. Eychmüller, and H. Weller, “Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment,” Phys. Rev. B Condens. Matter 49(24), 17072–17078 (1994).
[Crossref] [PubMed]

1993 (1)

1990 (1)

P. C. Sercel and K. J. Vahala, “Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation,” Phys. Rev. B Condens. Matter 42(6), 3690–3710 (1990).
[Crossref] [PubMed]

1989 (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

1966 (1)

P. N. Keating, “Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure,” Phys. Rev. 145(2), 637–645 (1966).
[Crossref]

Åberg, S.

J. Grönqvist, N. Søndergaard, F. Boxberg, T. Guhr, S. Åberg, and H. Q. Xu, “Strain in semiconductor core-shell nanowires,” J. Appl. Phys. 106(5), 053508 (2009).
[Crossref]

Ahn, J.

K. Kim, H. Lee, J. Ahn, and S. Jeong, “Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS,” Appl. Phys. Lett. 101(7), 073107 (2012).
[Crossref]

Aldakov, D.

D. Aldakov, A. Lefrançois, and P. Reiss, “Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3756–3776 (2013).
[Crossref]

Amaratunga, G.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Andreev, A. D.

A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly, “Strain distributions in quantum dots of arbitrary shape,” J. Appl. Phys. 86(1), 297–305 (1999).
[Crossref]

Anni, M.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Bae, W. K.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref] [PubMed]

Bawendi, M. G.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Boxberg, F.

J. Grönqvist, N. Søndergaard, F. Boxberg, T. Guhr, S. Åberg, and H. Q. Xu, “Strain in semiconductor core-shell nanowires,” J. Appl. Phys. 106(5), 053508 (2009).
[Crossref]

Califano, M.

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, “Pseudopotential theory of Auger processes in CdSe quantum dots,” Phys. Rev. Lett. 91(5), 056404 (2003).
[Crossref] [PubMed]

Chae, J.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Chang, Y.-C.

T. O. Cheche and Y.-C. Chang, “Efficient modeling of optical excitations of colloidal core-shell semiconductor quantum dots by using symmetrized orbitals,” J. Phys. Chem. A 122(51), 9910–9921 (2018).
[Crossref] [PubMed]

T. O. Cheche and Y.-C. Chang, “Efficient modeling of optical excitations of colloidal core-shell semiconductor quantum dots by using symmetrized orbitals,” J. Phys. Chem. A 122(51), 9910–9921 (2018).
[Crossref] [PubMed]

Char, K.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref] [PubMed]

Cheche, T. O.

T. O. Cheche and Y.-C. Chang, “Efficient modeling of optical excitations of colloidal core-shell semiconductor quantum dots by using symmetrized orbitals,” J. Phys. Chem. A 122(51), 9910–9921 (2018).
[Crossref] [PubMed]

T. O. Cheche and Y.-C. Chang, “Efficient modeling of optical excitations of colloidal core-shell semiconductor quantum dots by using symmetrized orbitals,” J. Phys. Chem. A 122(51), 9910–9921 (2018).
[Crossref] [PubMed]

T. E. Pahomi and T. O. Cheche, “Strain influence on optical absorption of giant semiconductor colloidal quantum dots,” Chem. Phys. Lett. 612, 33–38 (2014).
[Crossref]

Chen, H.

H. Chen, J. He, and S.-T. Wu, “Recent advances on quantum-dot-enhanced liquid-crystal displays,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1900611 (2017).
[Crossref]

Chen, S.

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

Cho, E.

E. Cho, H. Jang, J. Lee, and E. Jang, “Modeling on the size dependent properties of InP quantum dots: a hybrid functional study,” Nanotechnology 24(21), 215201 (2013).
[Crossref] [PubMed]

Cho, K.-S.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Choi, B. L.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Chuang, S. L.

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron. 42(9), 942–952 (2006).
[Crossref]

Cingolani, R.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Cui, T.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Da Silva, J. L. F.

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

Dabbousi, B. O.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

De Giorgi, M.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Demir, H. V.

S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik, and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett. 92(11), 113110 (2008).
[Crossref]

Downes, J. R.

A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly, “Strain distributions in quantum dots of arbitrary shape,” J. Appl. Phys. 86(1), 297–305 (1999).
[Crossref]

Ekimov, A. I.

Eychmüller, A.

S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik, and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett. 92(11), 113110 (2008).
[Crossref]

D. Schooss, A. Mews, A. Eychmüller, and H. Weller, “Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment,” Phys. Rev. B Condens. Matter 49(24), 17072–17078 (1994).
[Crossref] [PubMed]

Fairclough, S. M.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Fan, F.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Fan, J. Z.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Faux, D. A.

A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly, “Strain distributions in quantum dots of arbitrary shape,” J. Appl. Phys. 86(1), 297–305 (1999).
[Crossref]

Flavell, W. R.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Flytzanis, C.

Franceschetti, A.

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, “Pseudopotential theory of Auger processes in CdSe quantum dots,” Phys. Rev. Lett. 91(5), 056404 (2003).
[Crossref] [PubMed]

Fu, H.

H. Fu, L.-W. Wang, and A. Zunger, “Applicability of the k⋅p method to the electronic structure of quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(16), 3690–3710 (1998).
[Crossref]

H. Fu and A. Zunger, “Excitons in InP quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(24), R15064 (1998).
[Crossref]

Gaponik, N.

S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik, and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett. 92(11), 113110 (2008).
[Crossref]

Gong, X.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Gong, X. G.

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

Graham, D. M.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Grönqvist, J.

J. Grönqvist, N. Søndergaard, F. Boxberg, T. Guhr, S. Åberg, and H. Q. Xu, “Strain in semiconductor core-shell nanowires,” J. Appl. Phys. 106(5), 053508 (2009).
[Crossref]

Guhr, T.

J. Grönqvist, N. Søndergaard, F. Boxberg, T. Guhr, S. Åberg, and H. Q. Xu, “Strain in semiconductor core-shell nanowires,” J. Appl. Phys. 106(5), 053508 (2009).
[Crossref]

Hache, F.

Han, J. Y.

H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
[Crossref]

Hardman, S. J. O.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

He, J.

H. Chen, J. He, and S.-T. Wu, “Recent advances on quantum-dot-enhanced liquid-crystal displays,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1900611 (2017).
[Crossref]

Heine, J. R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Hennies, F.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Hermans, Y.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Hoogland, S.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Hu, A.

Y. Wang and A. Hu, “Carbon quantum dots: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6921–6939 (2014).
[Crossref]

Jang, D. S.

H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
[Crossref]

Jang, E.

E. Cho, H. Jang, J. Lee, and E. Jang, “Modeling on the size dependent properties of InP quantum dots: a hybrid functional study,” Nanotechnology 24(21), 215201 (2013).
[Crossref] [PubMed]

Jang, H.

E. Cho, H. Jang, J. Lee, and E. Jang, “Modeling on the size dependent properties of InP quantum dots: a hybrid functional study,” Nanotechnology 24(21), 215201 (2013).
[Crossref] [PubMed]

Jensen, K. F.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Jeon, D. Y.

H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
[Crossref]

Jeong, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

K. Kim, H. Lee, J. Ahn, and S. Jeong, “Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS,” Appl. Phys. Lett. 101(7), 073107 (2012).
[Crossref]

Kalytchuk, S.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Kang, D. S.

H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
[Crossref]

Keating, P. N.

P. N. Keating, “Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure,” Phys. Rev. 145(2), 637–645 (1966).
[Crossref]

Kershaw, S. V.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Kim, D. H.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, H.

H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
[Crossref]

Kim, J.

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron. 42(9), 942–952 (2006).
[Crossref]

C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots,” J. Appl. Phys. 83(5), 2548–2554 (1998).
[Crossref]

Kim, J. M.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, J. W.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, K.

K. Kim, H. Lee, J. Ahn, and S. Jeong, “Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS,” Appl. Phys. Lett. 101(7), 073107 (2012).
[Crossref]

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kim, S. W.

H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
[Crossref]

Kim, T.-H.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kirakosyan, A.

H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
[Crossref]

Klimov, V. I.

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
[Crossref]

Kudera, S.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Kudryavtsev, I. A.

Kuk, Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Kwon, J.-Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lee, C.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref] [PubMed]

Lee, D.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref] [PubMed]

Lee, E. K.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lee, H.

K. Kim, H. Lee, J. Ahn, and S. Jeong, “Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS,” Appl. Phys. Lett. 101(7), 073107 (2012).
[Crossref]

Lee, J.

E. Cho, H. Jang, J. Lee, and E. Jang, “Modeling on the size dependent properties of InP quantum dots: a hybrid functional study,” Nanotechnology 24(21), 215201 (2013).
[Crossref] [PubMed]

Lee, S.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref] [PubMed]

Lee, S. J.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lee, S. Y.

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

Lefrançois, A.

D. Aldakov, A. Lefrançois, and P. Reiss, “Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3756–3776 (2013).
[Crossref]

Levina, L.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Li, J.

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

Li, X.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Li, Y.-H.

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

Lim, J.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref] [PubMed]

Lincheneau, C.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Liu, M.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Lu, Z.-H.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Lunt, P. J. B.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Manna, L.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Mattoussi, H.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Mews, A.

D. Schooss, A. Mews, A. Eychmüller, and H. Weller, “Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment,” Phys. Rev. B Condens. Matter 49(24), 17072–17078 (1994).
[Crossref] [PubMed]

Mikulec, F. V.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Moghal, J.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Mohs, A. M.

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Morello, G.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Mutlugun, E.

S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik, and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett. 92(11), 113110 (2008).
[Crossref]

Nie, S.

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Nizamoglu, S.

S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik, and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett. 92(11), 113110 (2008).
[Crossref]

O’Reilly, E. P.

A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly, “Strain distributions in quantum dots of arbitrary shape,” J. Appl. Phys. 86(1), 297–305 (1999).
[Crossref]

Ober, R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Özel, T.

S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik, and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett. 92(11), 113110 (2008).
[Crossref]

Pahomi, T. E.

T. E. Pahomi and T. O. Cheche, “Strain influence on optical absorption of giant semiconductor colloidal quantum dots,” Chem. Phys. Lett. 612, 33–38 (2014).
[Crossref]

Park, M.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref] [PubMed]

Pietzsch, A.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Pryor, C.

C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots,” J. Appl. Phys. 83(5), 2548–2554 (1998).
[Crossref]

Quan, L. N.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Quintero-Bermudez, R.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Reiss, P.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

D. Aldakov, A. Lefrançois, and P. Reiss, “Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3756–3776 (2013).
[Crossref]

Ricard, D.

Rodina, A. V.

Rodriguez-Viejo, J.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Rogach, A. L.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Sapra, S.

S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik, and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett. 92(11), 113110 (2008).
[Crossref]

Sargent, E. H.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Schanne-Klein, M. C.

Schooss, D.

D. Schooss, A. Mews, A. Eychmüller, and H. Weller, “Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment,” Phys. Rev. B Condens. Matter 49(24), 17072–17078 (1994).
[Crossref] [PubMed]

Sercel, P. C.

P. C. Sercel and K. J. Vahala, “Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation,” Phys. Rev. B Condens. Matter 42(6), 3690–3710 (1990).
[Crossref] [PubMed]

Smith, A. M.

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Smith, J. M.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Søndergaard, N.

J. Grönqvist, N. Søndergaard, F. Boxberg, T. Guhr, S. Åberg, and H. Q. Xu, “Strain in semiconductor core-shell nanowires,” J. Appl. Phys. 106(5), 053508 (2009).
[Crossref]

Suh, M.

H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
[Crossref]

Tamang, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Tyrrell, E. J.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Vahala, K. J.

P. C. Sercel and K. J. Vahala, “Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation,” Phys. Rev. B Condens. Matter 42(6), 3690–3710 (1990).
[Crossref] [PubMed]

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

Voznyy, O.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Walsh, A.

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

Wang, L. W.

C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots,” J. Appl. Phys. 83(5), 2548–2554 (1998).
[Crossref]

Wang, L.-W.

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, “Pseudopotential theory of Auger processes in CdSe quantum dots,” Phys. Rev. Lett. 91(5), 056404 (2003).
[Crossref] [PubMed]

H. Fu, L.-W. Wang, and A. Zunger, “Applicability of the k⋅p method to the electronic structure of quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(16), 3690–3710 (1998).
[Crossref]

Wang, P.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Wang and A. Hu, “Carbon quantum dots: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6921–6939 (2014).
[Crossref]

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Watt, A. A. R.

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Wei, S.-H.

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

Weller, H.

D. Schooss, A. Mews, A. Eychmüller, and H. Weller, “Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment,” Phys. Rev. B Condens. Matter 49(24), 17072–17078 (1994).
[Crossref] [PubMed]

Williamson, A. J.

C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots,” J. Appl. Phys. 83(5), 2548–2554 (1998).
[Crossref]

Wu, S.-T.

H. Chen, J. He, and S.-T. Wu, “Recent advances on quantum-dot-enhanced liquid-crystal displays,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1900611 (2017).
[Crossref]

Xu, H. Q.

J. Grönqvist, N. Søndergaard, F. Boxberg, T. Guhr, S. Åberg, and H. Q. Xu, “Strain in semiconductor core-shell nanowires,” J. Appl. Phys. 106(5), 053508 (2009).
[Crossref]

Yang, J.-H.

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

Yang, Z.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Yazeva, T. V.

Yin, W.-J.

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

Yu, W. W.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Zhang, H.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Zhang, T.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Zhang, Y.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Zhao, J.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Zhao, Y.

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Zhao, Y.-B.

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Zunger, A.

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, “Pseudopotential theory of Auger processes in CdSe quantum dots,” Phys. Rev. Lett. 91(5), 056404 (2003).
[Crossref] [PubMed]

H. Fu, L.-W. Wang, and A. Zunger, “Applicability of the k⋅p method to the electronic structure of quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(16), 3690–3710 (1998).
[Crossref]

C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots,” J. Appl. Phys. 83(5), 2548–2554 (1998).
[Crossref]

H. Fu and A. Zunger, “Excitons in InP quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(24), R15064 (1998).
[Crossref]

ACS Nano (2)

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref] [PubMed]

X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano 7(12), 11234–11241 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik, and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett. 92(11), 113110 (2008).
[Crossref]

K. Kim, H. Lee, J. Ahn, and S. Jeong, “Highly luminescing multi-shell semiconductor nanocrystals InP/ZnSe/ZnS,” Appl. Phys. Lett. 101(7), 073107 (2012).
[Crossref]

Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, J. L. F. Da Silva, X. G. Gong, and S.-H. Wei, “Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors,” Appl. Phys. Lett. 94(21), 212109 (2009).
[Crossref]

Chem. Mater. (1)

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Chem. Phys. Lett. (1)

T. E. Pahomi and T. O. Cheche, “Strain influence on optical absorption of giant semiconductor colloidal quantum dots,” Chem. Phys. Lett. 612, 33–38 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron. 42(9), 942–952 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Chen, J. He, and S.-T. Wu, “Recent advances on quantum-dot-enhanced liquid-crystal displays,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1900611 (2017).
[Crossref]

J. Appl. Phys. (3)

C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots,” J. Appl. Phys. 83(5), 2548–2554 (1998).
[Crossref]

A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly, “Strain distributions in quantum dots of arbitrary shape,” J. Appl. Phys. 86(1), 297–305 (1999).
[Crossref]

J. Grönqvist, N. Søndergaard, F. Boxberg, T. Guhr, S. Åberg, and H. Q. Xu, “Strain in semiconductor core-shell nanowires,” J. Appl. Phys. 106(5), 053508 (2009).
[Crossref]

J. Cryst. Growth (1)

H. Kim, J. Y. Han, D. S. Kang, S. W. Kim, D. S. Jang, M. Suh, A. Kirakosyan, and D. Y. Jeon, “Characteristics of CuInS2/ZnS quantum dots and its application on LED,” J. Cryst. Growth 326(1), 90–93 (2011).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

D. Aldakov, A. Lefrançois, and P. Reiss, “Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(24), 3756–3776 (2013).
[Crossref]

Y. Wang and A. Hu, “Carbon quantum dots: synthesis, properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6921–6939 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (2)

T. O. Cheche and Y.-C. Chang, “Efficient modeling of optical excitations of colloidal core-shell semiconductor quantum dots by using symmetrized orbitals,” J. Phys. Chem. A 122(51), 9910–9921 (2018).
[Crossref] [PubMed]

T. O. Cheche and Y.-C. Chang, “Efficient modeling of optical excitations of colloidal core-shell semiconductor quantum dots by using symmetrized orbitals,” J. Phys. Chem. A 122(51), 9910–9921 (2018).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
[Crossref]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

J. Phys. Chem. C (2)

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

S. M. Fairclough, E. J. Tyrrell, D. M. Graham, P. J. B. Lunt, S. J. O. Hardman, A. Pietzsch, F. Hennies, J. Moghal, W. R. Flavell, A. A. R. Watt, and J. M. Smith, “Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystals,” J. Phys. Chem. C 116(51), 26898–26907 (2012).
[Crossref]

Nanotechnology (1)

E. Cho, H. Jang, J. Lee, and E. Jang, “Modeling on the size dependent properties of InP quantum dots: a hybrid functional study,” Nanotechnology 24(21), 215201 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nat. Nanotechnol. 4(1), 56–63 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nat. Photonics 5(3), 176–182 (2011).
[Crossref]

X. Li, Y.-B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Z. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z.-H. Lu, and E. H. Sargent, “Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,” Nat. Photonics 12(3), 159–164 (2018).
[Crossref]

Phys. Rev. (1)

P. N. Keating, “Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure,” Phys. Rev. 145(2), 637–645 (1966).
[Crossref]

Phys. Rev. B Condens. Matter (3)

P. C. Sercel and K. J. Vahala, “Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation,” Phys. Rev. B Condens. Matter 42(6), 3690–3710 (1990).
[Crossref] [PubMed]

D. Schooss, A. Mews, A. Eychmüller, and H. Weller, “Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment,” Phys. Rev. B Condens. Matter 49(24), 17072–17078 (1994).
[Crossref] [PubMed]

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

H. Fu and A. Zunger, “Excitons in InP quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(24), R15064 (1998).
[Crossref]

H. Fu, L.-W. Wang, and A. Zunger, “Applicability of the k⋅p method to the electronic structure of quantum dots,” Phys. Rev. B Condens. Matter Mater. Phys. 57(16), 3690–3710 (1998).
[Crossref]

Phys. Rev. Lett. (1)

L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, “Pseudopotential theory of Auger processes in CdSe quantum dots,” Phys. Rev. Lett. 91(5), 056404 (2003).
[Crossref] [PubMed]

Other (3)

https://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/backone/r5_1_4.html .

M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, vol.1 (World Scientific, 1996).

S. L. Chuang, Physics of Photonic Devices, 2nd. (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Layer structures of InP/ZnSe/ZnS and CdSe/ZnSe/ZnS QDs along with the schematics of their energy diagrams. The thicknesses of all layers are determined to make the emission wavelengths of the two QDs equal. The InP QD, having a smaller bandgap energy than that of the CdSe QD, should have the smaller layer thickness to enhance the energies of QD electron and hole states caused by the quantum confinement of the three-dimensional QD electric potential.
Fig. 2
Fig. 2 Calculated strain distributions of (a) InP/ZnSe/ZnS and (b) CdSe/ZnSe/ZnS QDs. The positive and negative strain values represent tensile and compressive strains, respectively. The hydrostatic strains, inducing the change in the band-edge energy of conduction and valence bands, are compressive in the core and ZnSe inner shell regions and tensile in the ZnS outer shell region.
Fig. 3
Fig. 3 Calculated band diagrams without and with the consideration of the strain-induced band-edge energy change in (a) InP/ZnSe/ZnS and (b) CdSe/ZnSe/ZnS QDs. The strain-modified bandgaps of the core and ZnSe shell increase owing to the applied compressive strain. In the ZnS shell, the strain-modified bandgap decreases owing to the applied tensile strain.
Fig. 4
Fig. 4 Calculated energy levels of the electron and hole states for (a) InP/ZnSe/ZnS and (b) CdSe/ZnSe/ZnS QDs. The terms C and HH represent the electron and heavy hole, respectively. Because of the deep potential barrier and large radius, the ground states (C1 and HH1) of the CdSe/ZnSe/ZnS QD are closer to the band edge and more confined to the QD potential than those of the InP/ZnSe/ZnS QD.
Fig. 5
Fig. 5 Calculated radial probabilities of the electron and hole ground-state wave functions in (a) InP/ZnSe/ZnS and (b) CdSe/ZnSe/ZnS QDs. The wave functions of the electron and HH states in the CdSe QD are more confined to the core region than those in the InP QD. Therefore, the CdSe QD has a stronger overlap of the wave functions between the electron and hole states than that of the InP QD. The strong confinement of the wave functions to the ground state in the CdSe QD results in less carrier scattering and a smaller broadening linewidth of the CdSe QD than that of the InP QD.
Fig. 6
Fig. 6 Comparison of the calculated emission spectra of InP/ZnSe/ZnS and CdSe/ZnSe/ZnS QDs. The standard deviation of the inhomogeneous broadening is assumed to be σ = 40 meV for both QD ensembles because the degree of the fluctuation in the size or material composition of InP and CdSe QDs is assumed to be the same. The linewidth of the homogeneous broadening is assumed to be γ = 30 meV for the CdSe QD and γ = 40 meV for the InP QD on the basis that the ground-state carrier of the CdSe QD is more strongly confined than that of the InP QD. The CdSe QD shows larger emission intensity than that of the InP QD.
Fig. 7
Fig. 7 Bandgap energy versus lattice constant of III-V and II-VI materials [31]. The bandgap energy of InP is smaller than that of CdSe. The bandgap energy of InGaP increases with respect to the fraction of GaP and becomes comparable to or larger than the bandgap energy of CdSe. In this case, the optical characteristics of the Cd-free InGaP QD could be better than those of the CdSe QD.
Fig. 8
Fig. 8 Calculation results of the (a) strain distribution and (b) band diagram of In0.43Ga0.57P/ZnSe/ZnS QDs. The amount of the strain applied to the In0.43Ga0.57P QD decreases owing to the reduced lattice mismatch between the In0.43Ga0.57P core and ZnSe/ZnS shell materials.
Fig. 9
Fig. 9 (a) Calculated energy levels of the electron and HH states for the In0.43Ga0.57P/ZnSe/ZnS QD. (b) Calculated radial probabilities of the electron and HH ground-state wave functions in the In0.43Ga0.57P/ZnSe/ZnS QD. The wave-function overlap of 0.83 in the In0.43Ga0.57P/ZnSe/ZnS QD is very close to that of 0.861 in the CdSe/ZnSe/ZnS QD.
Fig. 10
Fig. 10 Comparison of the calculated emission spectra of InP/ZnSe/ZnS, CdSe/ZnSe/ZnS, and In0.43Ga0.57P/ZnSe/ZnS QDs. The standard deviation of the inhomogeneous broadening is assumed to be σ = 40 meV for all QD ensembles. The linewidth of the homogeneous broadening for InGaP QD is set to be γ = 30 meV because the degree of the ground-state carrier confinement in the InGaP, related to the wave-function overlap, is close to that in the CdSe QD.

Tables (1)

Tables Icon

Table 1 Simulation parameters used in calculation [17,19].

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Δ E c = a c ε hyd = a c ( ε rr + ε θθ + ε ϕϕ ),
Δ E v = a v ε hyd = a v ( ε rr + ε θθ + ε ϕϕ ).
[ 2 2 m * 2 +V( r ) ]ψ( r )=Eψ( r ),
ψ( r,θ,ϕ )= R nl ( r ) Y l m ( θ,ϕ ),
R nl q ( r )={ A nl 1 j l ( k nl 1 r )+ B nl 1 n l ( k nl 1 r ), r r 1 A nl 2 h l (1) ( i κ nl 2 r )+ B nl 2 h l (2) ( i κ nl 2 r ), r 1 <r r 2 A nl 3 h l (1) ( i κ nl 3 r )+ B nl 3 h l (2) ( i κ nl 3 r ), r 2 <r r 3 A nl 4 h l (1) ( i κ nl 4 r )+ B nl 4 h l (2) ( i κ nl 4 r ), r 3 <r
k nl q = 2 m q * ( E nl V q )/ 2 ,
κ nl q = 2 m q * ( V q E nl )/ 2 .
R nl q ( r q )= R nl q+1 ( r q ) 1 m q * d R nl q ( r ) dr | r= r q = 1 m q+1 * d R nl q+1 ( r ) dr | r= r q+1 .
det[ M( E nl ) ]=0.
E ex = e 2 4π ε 0 d r e d r h r e 2 r h 2 1 ε ¯ r ( r e , r h ) | R e ( r e ) | 2 | R h ( r h ) | 2 max( r e , r h ) ,
E e = E gap +Δ E c +Δ E v + E C1 + E H1 + E ex ,
E(ω)= C 0 0 d E | e ^ p cv | 2 | M env | 2 D( E )L( E ,ω),
| M env | 2 =| 0 dr R nl e (r) R n l h (r) r 2 |.
L( E ,ω)= 1 π γ ( E ω ) 2 + γ 2 ,
D( E )= 1 2π σ Exp[ ( E E QD,nl max ) 2 2 σ 2 ].

Metrics