Abstract

Selective filtering of guided modes in an all-solid bandgap cladding optical fiber based on the coupling between the cladding modes and surface plasmon polariton (SPP) modes of gold wires are investigated. The SPP mode was found to have a strong effect on the mode transmission loss of the guided modes, even when the index difference between the SPP mode and the guided mode is large. The results show that the introduction of metal wires in the fiber leads to ultra-high confinement loss for a specific guided mode, and low confinement loss for the other guided modes operating at the wavelength covering the entire C band.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes

Akira Nagasaki, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 19(4) 3799-3808 (2011)

Broadband bandgap guidance and mode filtering in radially hybrid photonic crystal fiber

Yacoub Ould-Agha, Aurelie Bétourné, Olivier Vanvincq, Géraud Bouwmans, and Yves Quiquempois
Opt. Express 20(6) 6746-6760 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
    [Crossref] [PubMed]
  3. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  4. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
    [Crossref] [PubMed]
  5. A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
    [Crossref] [PubMed]
  6. H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25(11), 12722–12732 (2017).
    [Crossref] [PubMed]
  7. S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23(11), 3426–3443 (2005).
    [Crossref]
  8. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
    [Crossref]
  9. M.-Y. Chen, Y.-R. Li, Y. Zhang, Y.-F. Zhu, Y.-K. Zhang, and J. Zhou, “Design of dual-mode optical fibres for the FTTH applications,” J. Opt. 13(1), 015402 (2011).
    [Crossref]
  10. H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
    [Crossref]
  11. J. D. Love and N. Riesen, “Mode-selective couplers for few-mode optical fiber networks,” Opt. Lett. 37(19), 3990–3992 (2012).
    [Crossref] [PubMed]
  12. T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
    [Crossref]
  13. P. Lu, M. Shipton, A. Wang, and Y. Xu, “Adaptive control of waveguide modes using a directional coupler,” Opt. Express 22(17), 20000–20007 (2014).
    [Crossref] [PubMed]
  14. G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J.-F. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
    [Crossref] [PubMed]
  15. J. Dong and K. S. Chiang, “Temperature-Insensitive Mode Converters With CO2-Laser Written Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
    [Crossref]
  16. M.-Y. Chen and J. Zhou, “Design of add-drop multiplexer based on multi-core optical fibers for mode-division multiplexing,” Opt. Express 22(2), 1440–1451 (2014).
    [Crossref] [PubMed]
  17. D. A. B. Miller, “Reconfigurable add-drop multiplexer for spatial modes,” Opt. Express 21(17), 20220–20229 (2013).
    [Crossref] [PubMed]
  18. M.-Y. Chen and K. S. Chiang, “Mode-Selective Characteristics of an Optical Fiber With a High-Index Core and a Photonic Bandgap Cladding,” IEEE J. Sel. Top. Quantum Electron. 22(2), 251–257 (2016).
    [Crossref]
  19. D. J. J. Hu and H. P. Ho, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9(2), 257–314 (2017).
    [Crossref]
  20. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
    [Crossref]
  21. C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
    [Crossref] [PubMed]
  22. A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
    [Crossref]
  23. J. J. Wu, S. G. Li, Q. Liu, and M. Shi, “Photonic crystal fiber polarization filter with two large apertures coated with gold layers,” Chin. Phys. B 26(11), 114209 (2017).
    [Crossref]
  24. B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire,” Plasmonics 8(2), 1253–1258 (2013).
    [Crossref]
  25. P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(6), 063016 (2011).
    [Crossref]
  26. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and Plasmon Resonances in Two-Dimensional Photonic Lattices of Gold and Silver Nanowires,” Phys. Rev. B 77(3), 33417 (2008).
  27. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
    [Crossref] [PubMed]
  28. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
    [Crossref] [PubMed]
  29. Website, https://refractiveindex.info/ .
  30. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  31. J. Xu, C. Peucheret, J. K. Lyngsø, and L. Leick, “Two-mode multiplexing at 2 × 10.7 Gbps over a 7-cell hollow-core photonic bandgap fiber,” Opt. Express 20(11), 12449–12456 (2012).
    [Crossref] [PubMed]
  32. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
    [Crossref] [PubMed]
  33. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
    [Crossref]
  34. V. Pureur, G. Bouwmans, M. Perrin, Y. Quiquempois, and M. Douay, “Impact of transversal defects on confinement loss of an all-solid 2-D photonic-bandgap fiber,” J. Lightwave Technol. 25(11), 3589–3596 (2007).
    [Crossref]
  35. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19(10), 2322–2330 (2002).
    [Crossref]
  36. P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express 21(5), 5232–5238 (2013).
    [Crossref] [PubMed]

2017 (5)

H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25(11), 12722–12732 (2017).
[Crossref] [PubMed]

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

D. J. J. Hu and H. P. Ho, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9(2), 257–314 (2017).
[Crossref]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref] [PubMed]

J. J. Wu, S. G. Li, Q. Liu, and M. Shi, “Photonic crystal fiber polarization filter with two large apertures coated with gold layers,” Chin. Phys. B 26(11), 114209 (2017).
[Crossref]

2016 (1)

M.-Y. Chen and K. S. Chiang, “Mode-Selective Characteristics of an Optical Fiber With a High-Index Core and a Photonic Bandgap Cladding,” IEEE J. Sel. Top. Quantum Electron. 22(2), 251–257 (2016).
[Crossref]

2015 (4)

J. Dong and K. S. Chiang, “Temperature-Insensitive Mode Converters With CO2-Laser Written Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
[Crossref] [PubMed]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

2014 (3)

2013 (4)

D. A. B. Miller, “Reconfigurable add-drop multiplexer for spatial modes,” Opt. Express 21(17), 20220–20229 (2013).
[Crossref] [PubMed]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express 21(5), 5232–5238 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (7)

M.-Y. Chen, Y.-R. Li, Y. Zhang, Y.-F. Zhu, Y.-K. Zhang, and J. Zhou, “Design of dual-mode optical fibres for the FTTH applications,” J. Opt. 13(1), 015402 (2011).
[Crossref]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[Crossref] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
[Crossref] [PubMed]

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

2010 (2)

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

2008 (2)

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and Plasmon Resonances in Two-Dimensional Photonic Lattices of Gold and Silver Nanowires,” Phys. Rev. B 77(3), 33417 (2008).

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

2007 (1)

2005 (1)

2002 (1)

2001 (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Adikan, F. R. M.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Ahmed, R.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Al Amin, A.

Astruc, M.

Bigo, S.

Birks, T. A.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Bolle, C. A.

Botten, L. C.

Boutin, A.

Bouwmans, G.

Brindel, P.

Cai, Z.-M.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

Cerou, F.

Chandrasekhar, S.

Charlet, G.

Chen, M.-Y.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

M.-Y. Chen and K. S. Chiang, “Mode-Selective Characteristics of an Optical Fiber With a High-Index Core and a Photonic Bandgap Cladding,” IEEE J. Sel. Top. Quantum Electron. 22(2), 251–257 (2016).
[Crossref]

M.-Y. Chen and J. Zhou, “Design of add-drop multiplexer based on multi-core optical fibers for mode-division multiplexing,” Opt. Express 22(2), 1440–1451 (2014).
[Crossref] [PubMed]

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

M.-Y. Chen, Y.-R. Li, Y. Zhang, Y.-F. Zhu, Y.-K. Zhang, and J. Zhou, “Design of dual-mode optical fibres for the FTTH applications,” J. Opt. 13(1), 015402 (2011).
[Crossref]

Chen, S.

Chen, X.

Chiang, K. S.

M.-Y. Chen and K. S. Chiang, “Mode-Selective Characteristics of an Optical Fiber With a High-Index Core and a Photonic Bandgap Cladding,” IEEE J. Sel. Top. Quantum Electron. 22(2), 251–257 (2016).
[Crossref]

J. Dong and K. S. Chiang, “Temperature-Insensitive Mode Converters With CO2-Laser Written Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

Chow, D. M.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, P. K.

Cucinotta, A.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

de Sterke, C. M.

Denolle, B.

Dimarcello, F. V.

Dong, J.

J. Dong and K. S. Chiang, “Temperature-Insensitive Mode Converters With CO2-Laser Written Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

Douay, M.

Essiambre, R.-J.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Fishteyn, M.

Fu, P.-P.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

Fu, S.

Gao, G.

Genevaux, P.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Gnauck, A. H.

Gris-Sánchez, I.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Ho, H. P.

D. J. J. Hu and H. P. Ho, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9(2), 257–314 (2017).
[Crossref]

Hu, D. J. J.

D. J. J. Hu and H. P. Ho, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9(2), 257–314 (2017).
[Crossref]

Hu, Q.

Jian, P.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joly, N.

Joly, N. Y.

Koebele, C.

Kuhlmey, B. T.

Labroille, G.

Lee, H. W.

Leick, L.

Leon-Saval, S. G.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Leviatan, Y.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Li, A.

Li, C.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Li, P.

Li, R.-H.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

Li, S. G.

J. J. Wu, S. G. Li, Q. Liu, and M. Shi, “Photonic crystal fiber polarization filter with two large apertures coated with gold layers,” Chin. Phys. B 26(11), 114209 (2017).
[Crossref]

Li, S.-Y.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

Li, Y.-R.

M.-Y. Chen, Y.-R. Li, Y. Zhang, Y.-F. Zhu, Y.-K. Zhang, and J. Zhou, “Design of dual-mode optical fibres for the FTTH applications,” J. Opt. 13(1), 015402 (2011).
[Crossref]

Liao, R.

Lingle, R.

Liu, C.

Liu, D.

Liu, Q.

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref] [PubMed]

J. J. Wu, S. G. Li, Q. Liu, and M. Shi, “Photonic crystal fiber polarization filter with two large apertures coated with gold layers,” Chin. Phys. B 26(11), 114209 (2017).
[Crossref]

Liu, X.

Love, J. D.

Lu, P.

Lu, X.

Lv, J.

Lyngsø, J. K.

Mahdiraji, G. A.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Mardoyan, H.

Maystre, D.

McCurdy, A.

McPhedran, R. C.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Miller, D. A. B.

Monberg, E. M.

Morizur, J.-F.

Mu, H.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Pan, S.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Peckham, D. W.

Perrin, M.

Peucheret, C.

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and Plasmon Resonances in Two-Dimensional Photonic Lattices of Gold and Silver Nanowires,” Phys. Rev. B 77(3), 33417 (2008).

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and Plasmon Resonances in Two-Dimensional Photonic Lattices of Gold and Silver Nanowires,” Phys. Rev. B 77(3), 33417 (2008).

Provost, L.

Pureur, V.

Qin, H.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

Quiquempois, Y.

Ramachandran, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23(11), 3426–3443 (2005).
[Crossref]

Randel, S.

Renversez, G.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Riesen, N.

Rifat, A. A.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Russell, P. S. J.

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and Plasmon Resonances in Two-Dimensional Photonic Lattices of Gold and Silver Nanowires,” Phys. Rev. B 77(3), 33417 (2008).

Russell, R. F.

Ryf, R.

Salsi, M.

Scharrer, M.

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

Schmidt, M. A.

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and Plasmon Resonances in Two-Dimensional Photonic Lattices of Gold and Silver Nanowires,” Phys. Rev. B 77(3), 33417 (2008).

Selleri, S.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Shee, Y. G.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Shi, M.

J. J. Wu, S. G. Li, Q. Liu, and M. Shi, “Photonic crystal fiber polarization filter with two large apertures coated with gold layers,” Chin. Phys. B 26(11), 114209 (2017).
[Crossref]

Shieh, W.

Shipton, M.

Shum, P.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Shum, P. P.

Sierra, A.

Sillard, P.

Sperti, D.

Sua, Y. M.

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Sun, B.

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

Sun, T.

Tang, M.

Taunay, T. F.

Thomson, R. R.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Tong, W.

Tran, P.

Treps, N.

Tyagi, H. K.

Uebel, P.

Verluise, F.

Vincetti, L.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Wang, A.

Wang, F.

Wang, H.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

Wang, M.

Wang, R.

Wang, Y.

Wei, J.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

White, T. P.

Winzer, P. J.

Wu, H.

Wu, J. J.

J. J. Wu, S. G. Li, Q. Liu, and M. Shi, “Photonic crystal fiber polarization filter with two large apertures coated with gold layers,” Chin. Phys. B 26(11), 114209 (2017).
[Crossref]

Wu, X.-S.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

Xu, J.

Xu, Y.

Yan, M.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Yan, M. F.

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Yang, C.

Yang, L.

Yerolatsitis, S.

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

Yin, P.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

Yu, X.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Zhang, Y.

M.-Y. Chen, Y.-R. Li, Y. Zhang, Y.-F. Zhu, Y.-K. Zhang, and J. Zhou, “Design of dual-mode optical fibres for the FTTH applications,” J. Opt. 13(1), 015402 (2011).
[Crossref]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Zhang, Y.-K.

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

M.-Y. Chen, Y.-R. Li, Y. Zhang, Y.-F. Zhu, Y.-K. Zhang, and J. Zhou, “Design of dual-mode optical fibres for the FTTH applications,” J. Opt. 13(1), 015402 (2011).
[Crossref]

Zhao, C.

Zhao, J.

Zhao, Z.

Zhou, J.

M.-Y. Chen and J. Zhou, “Design of add-drop multiplexer based on multi-core optical fibers for mode-division multiplexing,” Opt. Express 22(2), 1440–1451 (2014).
[Crossref] [PubMed]

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

M.-Y. Chen, Y.-R. Li, Y. Zhang, Y.-F. Zhu, Y.-K. Zhang, and J. Zhou, “Design of dual-mode optical fibres for the FTTH applications,” J. Opt. 13(1), 015402 (2011).
[Crossref]

Zhu, B.

Zhu, Y.-F.

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

M.-Y. Chen, Y.-R. Li, Y. Zhang, Y.-F. Zhu, Y.-K. Zhang, and J. Zhou, “Design of dual-mode optical fibres for the FTTH applications,” J. Opt. 13(1), 015402 (2011).
[Crossref]

Zoboli, M.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Adv. Opt. Photonics (2)

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photonics 7(2), 107–167 (2015).
[Crossref]

D. J. J. Hu and H. P. Ho, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9(2), 257–314 (2017).
[Crossref]

Chin. Phys. B (1)

J. J. Wu, S. G. Li, Q. Liu, and M. Shi, “Photonic crystal fiber polarization filter with two large apertures coated with gold layers,” Chin. Phys. B 26(11), 114209 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M.-Y. Chen and K. S. Chiang, “Mode-Selective Characteristics of an Optical Fiber With a High-Index Core and a Photonic Bandgap Cladding,” IEEE J. Sel. Top. Quantum Electron. 22(2), 251–257 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

J. Dong and K. S. Chiang, “Temperature-Insensitive Mode Converters With CO2-Laser Written Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (2)

M.-Y. Chen, Y.-R. Li, Y. Zhang, Y.-F. Zhu, Y.-K. Zhang, and J. Zhou, “Design of dual-mode optical fibres for the FTTH applications,” J. Opt. 13(1), 015402 (2011).
[Crossref]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

New J. Phys. (1)

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

Opt. Eng. (1)

H. Wang, M.-Y. Chen, Y.-F. Zhu, S.-Y. Li, P. Yin, X.-S. Wu, R.-H. Li, Z.-M. Cai, P.-P. Fu, H. Qin, and J. Wei, “Design and demonstration of single-mode operation in few-mode optical fiber with low-bending loss,” Opt. Eng. 56(1), 016103 (2017).
[Crossref]

Opt. Express (14)

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[Crossref] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
[Crossref] [PubMed]

A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
[Crossref] [PubMed]

H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25(11), 12722–12732 (2017).
[Crossref] [PubMed]

C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Opt. Express 25(13), 14227–14237 (2017).
[Crossref] [PubMed]

M.-Y. Chen and J. Zhou, “Design of add-drop multiplexer based on multi-core optical fibers for mode-division multiplexing,” Opt. Express 22(2), 1440–1451 (2014).
[Crossref] [PubMed]

D. A. B. Miller, “Reconfigurable add-drop multiplexer for spatial modes,” Opt. Express 21(17), 20220–20229 (2013).
[Crossref] [PubMed]

P. Lu, M. Shipton, A. Wang, and Y. Xu, “Adaptive control of waveguide modes using a directional coupler,” Opt. Express 22(17), 20000–20007 (2014).
[Crossref] [PubMed]

G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J.-F. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express 21(5), 5232–5238 (2013).
[Crossref] [PubMed]

J. Xu, C. Peucheret, J. K. Lyngsø, and L. Leick, “Two-mode multiplexing at 2 × 10.7 Gbps over a 7-cell hollow-core photonic bandgap fiber,” Opt. Express 20(11), 12449–12456 (2012).
[Crossref] [PubMed]

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and Plasmon Resonances in Two-Dimensional Photonic Lattices of Gold and Silver Nanowires,” Phys. Rev. B 77(3), 33417 (2008).

Plasmonics (1)

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface Plasmon Induced Polarization Splitting Based on Dual-Core Photonic Crystal Fiber with Metal Wire,” Plasmonics 8(2), 1253–1258 (2013).
[Crossref]

Other (1)

Website, https://refractiveindex.info/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Cross-section of an optical fiber composed of a high-index rod and a gold wire.
Fig. 2
Fig. 2 Normalized Electric field distributions of the configuration shown in Fig. 1 (dAu = 0.8μm), with (a) the fundamental core mode, (b) the coupling mode of the LP11a mode and the SPP mode, (c) the coupling mode of the LP11b mode and the SPP mode, (d) the fundamental SPP mode, (e) the first- order SPP mode.
Fig. 3
Fig. 3 Dependence of (a) effective index and (b) confinement losses on the diameter of metal wires dAu.
Fig. 4
Fig. 4 The cross-section of the proposed mode-filtering optical fiber, which is composed of a high-index fiber core and periodic arranged high-index rods, surrounded by gold wires.
Fig. 5
Fig. 5 Dispersion characteristics of the cladding modes and the core modes for the optical fiber shown in Fig. 4.
Fig. 6
Fig. 6 Normalized Electric field distributions of (a) LP01 mode, (b) LP11 mode, (c) LP21 mode and (b) LP02 mode of the proposed fiber at wavelength 1550 nm.
Fig. 7
Fig. 7 Confinement losses of the core modes as a function of the diameter of metal wires dAu.
Fig. 8
Fig. 8 Dependence of confinement loss of the core modes on the center-to-center distance between the gold wires and the fiber core Λ1.
Fig. 9
Fig. 9 Dependence of the losses of the core modes on wavelength λ.

Metrics