Abstract

A metasurface antireflection coating (meta-ARC) consisting of a gold disk array (GDA) and a dielectric layer greatly provides the flexibility to reduce the undesired reflection of light at the interface of the incident medium (air) and the surface plasmon polariton (SPP) structures such as a metallic hole array (MHA). Due to the possibility of changing the coupling strength between two different kinds of resonances (in GDA and MHA) caused by fabrication imperfections, we investigate the impacts of resonance coupling to the performance of antireflection by varying the shape of gold disks in meta-ARC and the alignment-shift between GDA and MHA. Simulation results show that (1) the amplitude of transmitted light through meta-ARC (with fabrication-induced shape-variation in GD) and MHA is only changed by small amount as compared to the meta-ARC with ideal-shaped GDs, (2) the transmission through MHA can be improved in the range of 44% (maximally alignment-shifted GDs) up to 83% (perfectly aligned GDs) by suppressing the reflected light owing to the meta-ARC, which indicates that MHA transmission light can be enhanced by more than 44% regardless of any imperfections in the fabrication of GDs while the SPP resonance wavelengths remain invariant in both cases. Our work can pave the way for a robust ARC method, leading to efficiently improving the performance of plasmonic optoelectronic devices when the meta-ARC is integrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Selective enhancement of infrared absorption with metal hole arrays

Yoshiaki Nishijima, Hiroki Nigorinuma, Lorenzo Rosa, and Saulius Juodkazis
Opt. Mater. Express 2(10) 1367-1377 (2012)

First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence

Asaf Pesach, Salam Sakr, Etienne Giraud, Ofir Sorias, Lior Gal, Maria Tchernycheva, Meir Orenstein, Nicolas Grandjean, Francois H. Julien, and Gad Bahir
Opt. Express 22(17) 21069-21078 (2014)

Extraordinary optical transmission through incommensurate metal hole arrays in the terahertz region

Yoji Jimba, Keisuke Takano, Masanori Hangyo, and Hiroshi Miyazaki
J. Opt. Soc. Am. B 30(9) 2476-2482 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  2. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  3. K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
    [Crossref] [PubMed]
  4. J. Jeon, K. Bhattarai, D.-K. Kim, J. O. Kim, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure,” Sci. Rep. 6(1), 36190 (2016).
    [Crossref] [PubMed]
  5. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
    [Crossref] [PubMed]
  6. A. Kabiri, E. Girgis, and F. Capasso, “Buried Nanoantenna Arrays: Versatile Antireflection Coating,” Nano Lett. 13(12), 6040–6047 (2013).
    [Crossref] [PubMed]
  7. H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
    [Crossref] [PubMed]
  8. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  9. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  11. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
    [Crossref] [PubMed]
  12. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
    [Crossref]
  13. K. Bhattarai, S. Silva, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Angle-Dependent Spoof Surface Plasmons in Metallic Hole Arrays at Terahertz Frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–6 (2017).
    [Crossref]
  14. S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
    [Crossref] [PubMed]
  15. Z. Ku, W.-Y. Jang, J. Zhou, J. O. Kim, A. V. Barve, S. Silva, S. Krishna, S. R. J. Brueck, R. Nelson, A. Urbas, S. Kang, and S. J. Lee, “Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors,” Opt. Express 21(4), 4709–4716 (2013).
    [Crossref] [PubMed]
  16. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  17. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
    [Crossref]
  18. L. Rao, D. Yang, L. Zhang, T. Li, and S. Xia, “Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays,” Appl. Opt. 51(7), 912–916 (2012).
    [Crossref] [PubMed]
  19. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
    [Crossref] [PubMed]
  20. F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of Plasmonic Perfect Absorbers for Quantum-well Infrared Photodetection,” Plasmonics 9(6), 1397–1400 (2014).
    [Crossref]
  21. C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38(20), 4037–4039 (2013).
    [Crossref] [PubMed]
  22. M.-S. Park, K. Bhattarai, D.-K. Kim, S.-W. Kang, J. O. Kim, J. Zhou, W.-Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
    [Crossref] [PubMed]

2017 (2)

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

K. Bhattarai, S. Silva, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Angle-Dependent Spoof Surface Plasmons in Metallic Hole Arrays at Terahertz Frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–6 (2017).
[Crossref]

2016 (1)

J. Jeon, K. Bhattarai, D.-K. Kim, J. O. Kim, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure,” Sci. Rep. 6(1), 36190 (2016).
[Crossref] [PubMed]

2015 (1)

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (3)

2012 (4)

2011 (1)

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

2010 (3)

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

2009 (1)

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2005 (1)

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Azad, A. K.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Barve, A.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

Barve, A. V.

Bhattarai, K.

K. Bhattarai, S. Silva, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Angle-Dependent Spoof Surface Plasmons in Metallic Hole Arrays at Terahertz Frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–6 (2017).
[Crossref]

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

J. Jeon, K. Bhattarai, D.-K. Kim, J. O. Kim, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure,” Sci. Rep. 6(1), 36190 (2016).
[Crossref] [PubMed]

M.-S. Park, K. Bhattarai, D.-K. Kim, S.-W. Kang, J. O. Kim, J. Zhou, W.-Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
[Crossref] [PubMed]

Brueck, S. R. J.

Z. Ku, W.-Y. Jang, J. Zhou, J. O. Kim, A. V. Barve, S. Silva, S. Krishna, S. R. J. Brueck, R. Nelson, A. Urbas, S. Kang, and S. J. Lee, “Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors,” Opt. Express 21(4), 4709–4716 (2013).
[Crossref] [PubMed]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Bur, J. A.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Capasso, F.

A. Kabiri, E. Girgis, and F. Capasso, “Buried Nanoantenna Arrays: Versatile Antireflection Coating,” Nano Lett. 13(12), 6040–6047 (2013).
[Crossref] [PubMed]

Chang, C.-C.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Chang, H.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of Plasmonic Perfect Absorbers for Quantum-well Infrared Photodetection,” Plasmonics 9(6), 1397–1400 (2014).
[Crossref]

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38(20), 4037–4039 (2013).
[Crossref] [PubMed]

Chen, F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Chen, S.

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref] [PubMed]

Cheng, H.

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, W.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Girgis, E.

A. Kabiri, E. Girgis, and F. Capasso, “Buried Nanoantenna Arrays: Versatile Antireflection Coating,” Nano Lett. 13(12), 6040–6047 (2013).
[Crossref] [PubMed]

Hu, X.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of Plasmonic Perfect Absorbers for Quantum-well Infrared Photodetection,” Plasmonics 9(6), 1397–1400 (2014).
[Crossref]

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38(20), 4037–4039 (2013).
[Crossref] [PubMed]

Huang, D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Jang, W.-Y.

Jeon, J.

J. Jeon, K. Bhattarai, D.-K. Kim, J. O. Kim, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure,” Sci. Rep. 6(1), 36190 (2016).
[Crossref] [PubMed]

Kabiri, A.

A. Kabiri, E. Girgis, and F. Capasso, “Buried Nanoantenna Arrays: Versatile Antireflection Coating,” Nano Lett. 13(12), 6040–6047 (2013).
[Crossref] [PubMed]

Kang, S.

Kang, S.-W.

Kim, D.-K.

J. Jeon, K. Bhattarai, D.-K. Kim, J. O. Kim, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure,” Sci. Rep. 6(1), 36190 (2016).
[Crossref] [PubMed]

M.-S. Park, K. Bhattarai, D.-K. Kim, S.-W. Kang, J. O. Kim, J. Zhou, W.-Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
[Crossref] [PubMed]

Kim, J. O.

Kim, Y.-S.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Krishna, S.

Z. Ku, W.-Y. Jang, J. Zhou, J. O. Kim, A. V. Barve, S. Silva, S. Krishna, S. R. J. Brueck, R. Nelson, A. Urbas, S. Kang, and S. J. Lee, “Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors,” Opt. Express 21(4), 4709–4716 (2013).
[Crossref] [PubMed]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Ku, Z.

K. Bhattarai, S. Silva, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Angle-Dependent Spoof Surface Plasmons in Metallic Hole Arrays at Terahertz Frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–6 (2017).
[Crossref]

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

J. Jeon, K. Bhattarai, D.-K. Kim, J. O. Kim, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure,” Sci. Rep. 6(1), 36190 (2016).
[Crossref] [PubMed]

M.-S. Park, K. Bhattarai, D.-K. Kim, S.-W. Kang, J. O. Kim, J. Zhou, W.-Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
[Crossref] [PubMed]

Z. Ku, W.-Y. Jang, J. Zhou, J. O. Kim, A. V. Barve, S. Silva, S. Krishna, S. R. J. Brueck, R. Nelson, A. Urbas, S. Kang, and S. J. Lee, “Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors,” Opt. Express 21(4), 4709–4716 (2013).
[Crossref] [PubMed]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, S. J.

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

K. Bhattarai, S. Silva, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Angle-Dependent Spoof Surface Plasmons in Metallic Hole Arrays at Terahertz Frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–6 (2017).
[Crossref]

J. Jeon, K. Bhattarai, D.-K. Kim, J. O. Kim, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure,” Sci. Rep. 6(1), 36190 (2016).
[Crossref] [PubMed]

M.-S. Park, K. Bhattarai, D.-K. Kim, S.-W. Kang, J. O. Kim, J. Zhou, W.-Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
[Crossref] [PubMed]

Z. Ku, W.-Y. Jang, J. Zhou, J. O. Kim, A. V. Barve, S. Silva, S. Krishna, S. R. J. Brueck, R. Nelson, A. Urbas, S. Kang, and S. J. Lee, “Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors,” Opt. Express 21(4), 4709–4716 (2013).
[Crossref] [PubMed]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

Li, T.

Lin, S.-Y.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Liu, Z.

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref] [PubMed]

Malloy, K. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Minhas, B.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Montoya, J.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

Nelson, R.

Noh, S. K.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

Noyola, M.

O’Hara, J. F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Park, M.-S.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Rao, L.

Reisinger, A.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sharma, Y. D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Shenoi, R. V.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Silva, S.

K. Bhattarai, S. Silva, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Angle-Dependent Spoof Surface Plasmons in Metallic Hole Arrays at Terahertz Frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–6 (2017).
[Crossref]

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

Z. Ku, W.-Y. Jang, J. Zhou, J. O. Kim, A. V. Barve, S. Silva, S. Krishna, S. R. J. Brueck, R. Nelson, A. Urbas, S. Kang, and S. J. Lee, “Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors,” Opt. Express 21(4), 4709–4716 (2013).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, K.

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Sundaram, M.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

Taylor, A. J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Tian, J.

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref] [PubMed]

Urbas, A.

K. Bhattarai, S. Silva, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Angle-Dependent Spoof Surface Plasmons in Metallic Hole Arrays at Terahertz Frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–6 (2017).
[Crossref]

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

J. Jeon, K. Bhattarai, D.-K. Kim, J. O. Kim, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure,” Sci. Rep. 6(1), 36190 (2016).
[Crossref] [PubMed]

M.-S. Park, K. Bhattarai, D.-K. Kim, S.-W. Kang, J. O. Kim, J. Zhou, W.-Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
[Crossref] [PubMed]

Z. Ku, W.-Y. Jang, J. Zhou, J. O. Kim, A. V. Barve, S. Silva, S. Krishna, S. R. J. Brueck, R. Nelson, A. Urbas, S. Kang, and S. J. Lee, “Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors,” Opt. Express 21(4), 4709–4716 (2013).
[Crossref] [PubMed]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Xia, S.

Yang, D.

Zhang, C.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of Plasmonic Perfect Absorbers for Quantum-well Infrared Photodetection,” Plasmonics 9(6), 1397–1400 (2014).
[Crossref]

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38(20), 4037–4039 (2013).
[Crossref] [PubMed]

Zhang, L.

Zhang, S.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Zhao, F.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of Plasmonic Perfect Absorbers for Quantum-well Infrared Photodetection,” Plasmonics 9(6), 1397–1400 (2014).
[Crossref]

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38(20), 4037–4039 (2013).
[Crossref] [PubMed]

Zhou, J.

K. Bhattarai, S. Silva, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Angle-Dependent Spoof Surface Plasmons in Metallic Hole Arrays at Terahertz Frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–6 (2017).
[Crossref]

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

J. Jeon, K. Bhattarai, D.-K. Kim, J. O. Kim, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure,” Sci. Rep. 6(1), 36190 (2016).
[Crossref] [PubMed]

M.-S. Park, K. Bhattarai, D.-K. Kim, S.-W. Kang, J. O. Kim, J. Zhou, W.-Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S. J. Lee, “Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths,” Opt. Express 22(24), 30161–30169 (2014).
[Crossref] [PubMed]

Z. Ku, W.-Y. Jang, J. Zhou, J. O. Kim, A. V. Barve, S. Silva, S. Krishna, S. R. J. Brueck, R. Nelson, A. Urbas, S. Kang, and S. J. Lee, “Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors,” Opt. Express 21(4), 4709–4716 (2013).
[Crossref] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Bhattarai, S. Silva, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Angle-Dependent Spoof Surface Plasmons in Metallic Hole Arrays at Terahertz Frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–6 (2017).
[Crossref]

Nano Lett. (2)

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

A. Kabiri, E. Girgis, and F. Capasso, “Buried Nanoantenna Arrays: Versatile Antireflection Coating,” Nano Lett. 13(12), 6040–6047 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2(1), 286 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6(7), 409–411 (2012).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection Coating Using Metamaterials and Identification of Its Mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Plasmonics (1)

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of Plasmonic Perfect Absorbers for Quantum-well Infrared Photodetection,” Plasmonics 9(6), 1397–1400 (2014).
[Crossref]

Sci. Rep. (2)

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

J. Jeon, K. Bhattarai, D.-K. Kim, J. O. Kim, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure,” Sci. Rep. 6(1), 36190 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Scanning electron microscope (SEM) images and illustration of meta-ARC (GDA on BCB layer) on MHA structure with fabrication induced alignment-shift and shape-variation. (a) Developed photoresist pattern, followed by e-beam deposition of gold. (b) Nonzero sidewall angled GDs (using a lift-off process with acetone to remove the photoresist layer shown in (a). (c) Cross-sectional view of alignment-shifted GDA to MHA. (d) Schematic view and geometrical parameters of meta-ARC on MHA.
Fig. 2
Fig. 2 Simulated transmission spectra due to shape-variation of GDs. Δ i (symbols) represents the difference in transmission between meta-ARC:MHA with ideal-shaped and imperfectly-shaped GDs. Shape-variation is described with ( t ring , θ), where t ring is additional gold thickness (0 and 0.02 μm) and θ is the sidewall-angle (0° and 45°) of GDs as displayed in Fig. 1(d). The color convention is as follows: black for (0 μm, 0°), red for (0.02 μm, 0°) and blue for (0.02 μm, 45°).
Fig. 3
Fig. 3 Difference of transmission enhancement factors (TEFs) between experiment and simulation at (a) first-order and (b) second-order SPP resonance as a function of ( a, b) resulting from the alignment-shifted GDA and MHA.
Fig. 4
Fig. 4 (a) Simulated normal incidence transmission spectra of MHA on GaAs substrate (Sample A, black), a BCB coated MHA (Sample B, green), the maximally alignment-shifted meta-ARC on MHA (Sample C, red: ( a, b) = (0.9 μm, 0.9 μm)), the alignment-shifted meta-ARC on MHA (Sample D, blue: ( a, b) = (0.9 μm, 0 μm)), and a perfectly aligned meta-ARC on MHA (Sample E, light blue: ( a, b) = (0 μm, 0 μm)). Here, a 0.35 μm BCB layer was used for sample B-E. Inset shows that the schematic views of sample A-E. The dash and solid black lines denote the MHA and GDA position, respectively. (b) Diagram of sample structure to calculate the electric field intensity ( | E i j (z) | 2 I i j (z), where i=x,  z and j= Sample A-E). (c) Calculated | E z | at the half thickness of BCB layer ( z=20.2 μm), y/p=0, 0.25, 0.35, 0.5 along x-direction and the simulated E z distributions of sample C-E at each of the first-order SPP resonance wavelength in the plane y=0. (d) Enhancement ratio of x-component of electric field intensity at the first-order SPP resonance, at the position of x = 0 μm and y = 0 μm in z -direction, as compared with I x (z) of Sample A ( I x j (z)/ I x A (z), where j = B, C, D and E samples) (e) z-component of electric field intensity at x = 0.54 μm and y = 0 μm in z-direction for all samples ( I z j (z), where j = Samples A-E), mainly displayed with a range of penetration depth ( ~1/ e 2 ). Inset shows that the enhancement ratio of transmission (vs. Sample A, MHA) is well matched with one calculated using I x  (z=0 μm).

Metrics