Abstract

Two types of broadband and polarization independent graphene metamaterial absorbers are designed. One is a composite four-ring structure with azimuthally symmetry, the other is a nested multi-ring structure. The nested structure is more compact and has a broader band of absorption. The bandwidth with over 90% absorption is 7.1 THz for the composite four-ring structure. The bandwidth increases to 8.7 THz and 11.9 THz for the nested dual-ring and three-ring absorber, respectively. The wide bandwidth and polarization independent absorption owe to the combination of symmetric multi-resonators with different sizes in unit cell. Physical mechanisms of the broadband absorbers are given by the impedance matching theory as well as the surface current distributions. Instead of one single layer graphene as papers reported before, multilayers of graphene are coated on the dielectric surface to form the metal resonant-multilayer graphene-dielectric-metal ground structure. It is found that both the absorbing width and magnitude increase greatly as the graphene layers increase while a large dip appears when the number of graphene layers is large enough. Moreover, by investigating the absorptions under different graphene permittivities, we find that the reduced graphene permittivity is better to simplify the calculation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
An ultra-broadband multilayered graphene absorber

Muhammad Amin, Mohamed Farhat, and Hakan Bağcı
Opt. Express 21(24) 29938-29948 (2013)

Broadband tunable graphene-based metamaterial absorber

Ying Zhang, Yan Shi, and Chang-Hong Liang
Opt. Mater. Express 6(9) 3036-3044 (2016)

Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials

Yan Liu, Renbin Zhong, Jiebiao Huang, Yilin Lv, Chen Han, and Shenggang Liu
Opt. Express 27(5) 7393-7404 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
    [Crossref]
  2. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  7. Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
    [Crossref] [PubMed]
  8. X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
    [Crossref] [PubMed]
  9. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
    [Crossref] [PubMed]
  10. L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
    [Crossref]
  11. M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
    [Crossref]
  12. Y. Jiang, H. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
    [Crossref] [PubMed]
  13. J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
    [Crossref]
  14. X. Huang, Z. Hu, and P. Liu, “Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction,” AIP Adv. 4(11), 117103 (2014).
    [Crossref]
  15. D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
    [Crossref] [PubMed]
  16. W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
    [Crossref]
  17. H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
    [Crossref] [PubMed]
  18. P. A. Huidobro, S. A. Maier, and J. B. Pendr, “Tunable plasmonic metasurface for perfect absorption,” EPJ Applied Metamaterials 4, 6 (2017).
    [Crossref]
  19. Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
    [Crossref] [PubMed]
  20. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
    [Crossref] [PubMed]
  21. Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32(6), 068101 (2015).
    [Crossref]
  22. R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
    [Crossref]
  23. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref] [PubMed]
  24. S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
    [Crossref]
  25. A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Opt. Soc. Am. B 32(9), 1941 (2015).
    [Crossref]
  26. G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  27. Y. Zhang, Y. Shi, and C. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036 (2016).
    [Crossref]
  28. K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 1 (2016).
  29. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
    [Crossref] [PubMed]
  30. K. Delihacioglu, S. Uckun, and T. Ege, “L–shaped frequency selective surfaces as conducting elements on chiral slab,” J. Optoelectron. Adv. Mater. 8, 1398 (2006).
  31. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  32. C. Liu, L. Qi, and X. Zhang, “Broadband graphene-based metamaterial absorbers,” AIP Adv. 8(1), 015301 (2018).
    [Crossref]
  33. J. Fan, D. Xiao, Q. Wang, Q. Liu, and Z. Ouyang, “Wide-angle broadband terahertz metamaterial absorber with a multilayered heterostructure,” Appl. Opt. 56(15), 4388–4391 (2017).
    [Crossref] [PubMed]
  34. J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
    [Crossref]
  35. S. Agarwal and Y. K. Prajapati, “Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(6), 19 (2016).
    [Crossref]
  36. B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley and Sons Inc, 2000), p. 5, 393.
  37. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref] [PubMed]
  38. Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
    [Crossref] [PubMed]
  39. M. Faraji, M. K. Morawej-Farshi, and L. Yousefi, “Tunable THz perfect absorber using graphene-based metamaterials,” Opt. Commun. 355, 352–355 (2015).
    [Crossref]
  40. J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
    [Crossref] [PubMed]

2019 (2)

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

2018 (7)

Y. Jiang, H. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
[Crossref] [PubMed]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

C. Liu, L. Qi, and X. Zhang, “Broadband graphene-based metamaterial absorbers,” AIP Adv. 8(1), 015301 (2018).
[Crossref]

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

2017 (4)

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

J. Fan, D. Xiao, Q. Wang, Q. Liu, and Z. Ouyang, “Wide-angle broadband terahertz metamaterial absorber with a multilayered heterostructure,” Appl. Opt. 56(15), 4388–4391 (2017).
[Crossref] [PubMed]

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

P. A. Huidobro, S. A. Maier, and J. B. Pendr, “Tunable plasmonic metasurface for perfect absorption,” EPJ Applied Metamaterials 4, 6 (2017).
[Crossref]

2016 (10)

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
[Crossref] [PubMed]

S. Agarwal and Y. K. Prajapati, “Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(6), 19 (2016).
[Crossref]

Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
[Crossref] [PubMed]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Y. Zhang, Y. Shi, and C. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036 (2016).
[Crossref]

K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 1 (2016).

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

2015 (6)

A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Opt. Soc. Am. B 32(9), 1941 (2015).
[Crossref]

M. Faraji, M. K. Morawej-Farshi, and L. Yousefi, “Tunable THz perfect absorber using graphene-based metamaterials,” Opt. Commun. 355, 352–355 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32(6), 068101 (2015).
[Crossref]

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

2014 (1)

X. Huang, Z. Hu, and P. Liu, “Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction,” AIP Adv. 4(11), 117103 (2014).
[Crossref]

2013 (2)

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

2009 (1)

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2006 (1)

K. Delihacioglu, S. Uckun, and T. Ege, “L–shaped frequency selective surfaces as conducting elements on chiral slab,” J. Optoelectron. Adv. Mater. 8, 1398 (2006).

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Abdollahramezani, S.

K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 1 (2016).

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Agarwal, S.

S. Agarwal and Y. K. Prajapati, “Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(6), 19 (2016).
[Crossref]

Akwuruoha, C. N.

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

Amin, M.

Arik, K.

K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 1 (2016).

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Bagci, H.

Cai, G.

Cao, W. P.

Chae, J.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Chen, Q.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Chen, T.

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

Chen, Y.

Dai, L.

Delihacioglu, K.

K. Delihacioglu, S. Uckun, and T. Ege, “L–shaped frequency selective surfaces as conducting elements on chiral slab,” J. Optoelectron. Adv. Mater. 8, 1398 (2006).

Deng, H.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

Deng, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Ding, C.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Ege, T.

K. Delihacioglu, S. Uckun, and T. Ege, “L–shaped frequency selective surfaces as conducting elements on chiral slab,” J. Optoelectron. Adv. Mater. 8, 1398 (2006).

Fan, J.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Faraji, M.

M. Faraji, M. K. Morawej-Farshi, and L. Yousefi, “Tunable THz perfect absorber using graphene-based metamaterials,” Opt. Commun. 355, 352–355 (2015).
[Crossref]

Farhat, M.

Gao, C. N.

Y. Jiang, H. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
[Crossref] [PubMed]

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

Gao, R.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Gu, C.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Guo, C.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Guo, X.

Han, S. Y.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

He, S.

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

Hu, Z.

X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
[Crossref] [PubMed]

X. Huang, Z. Hu, and P. Liu, “Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction,” AIP Adv. 4(11), 117103 (2014).
[Crossref]

Huang, X.

X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32(6), 068101 (2015).
[Crossref]

X. Huang, Z. Hu, and P. Liu, “Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction,” AIP Adv. 4(11), 117103 (2014).
[Crossref]

Huidobro, P. A.

P. A. Huidobro, S. A. Maier, and J. B. Pendr, “Tunable plasmonic metasurface for perfect absorption,” EPJ Applied Metamaterials 4, 6 (2017).
[Crossref]

Jeong, Y.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Ji, J.

Jiang, Y.

Jiang, Y. N.

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

Jung, G. Y.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Khavasi, A.

K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 1 (2016).

A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Opt. Soc. Am. B 32(9), 1941 (2015).
[Crossref]

Kim, K.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Lee, D.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, J. H.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Li, H.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Li, J.

Li, T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32(6), 068101 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Li, Y.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

Liang, C.

Ling, F.

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

Liu, C.

C. Liu, L. Qi, and X. Zhang, “Broadband graphene-based metamaterial absorbers,” AIP Adv. 8(1), 015301 (2018).
[Crossref]

Liu, K.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Liu, N.

Liu, P.

X. Huang, Z. Hu, and P. Liu, “Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction,” AIP Adv. 4(11), 117103 (2014).
[Crossref]

Liu, Q.

Liu, Q. H.

Liu, S.

Liu, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Long, Y.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

Luo, C.

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Luo, Q.

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Lv, H.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32(6), 068101 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Ma, H.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Maier, S. A.

P. A. Huidobro, S. A. Maier, and J. B. Pendr, “Tunable plasmonic metasurface for perfect absorption,” EPJ Applied Metamaterials 4, 6 (2017).
[Crossref]

Morawej-Farshi, M. K.

M. Faraji, M. K. Morawej-Farshi, and L. Yousefi, “Tunable THz perfect absorber using graphene-based metamaterials,” Opt. Commun. 355, 352–355 (2015).
[Crossref]

Mun, J.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Nguyen, D. M.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Ok, J. G.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Ouyang, Z.

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pan, K.

X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
[Crossref] [PubMed]

Park, H. J.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Pendr, J. B.

P. A. Huidobro, S. A. Maier, and J. B. Pendr, “Tunable plasmonic metasurface for perfect absorption,” EPJ Applied Metamaterials 4, 6 (2017).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Prajapati, Y. K.

S. Agarwal and Y. K. Prajapati, “Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(6), 19 (2016).
[Crossref]

Qi, L.

C. Liu, L. Qi, and X. Zhang, “Broadband graphene-based metamaterial absorbers,” AIP Adv. 8(1), 015301 (2018).
[Crossref]

Qin, S.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Qu, S.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Rho, J.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, L.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

Shi, Y.

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Song, Z.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
[Crossref] [PubMed]

Su, Z.

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Uckun, S.

K. Delihacioglu, S. Uckun, and T. Ege, “L–shaped frequency selective surfaces as conducting elements on chiral slab,” J. Optoelectron. Adv. Mater. 8, 1398 (2006).

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, J.

Y. Jiang, H. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
[Crossref] [PubMed]

Y. Jiang, H. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
[Crossref] [PubMed]

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Wang, K.

Wang, L.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Wang, Q.

Wang, W.

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

Wang, Z.

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Wei, M.

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Wu, L.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Wu, X.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Xiao, D.

Xu, H.

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

Xu, S.

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32(6), 068101 (2015).
[Crossref]

Xu, W.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Xu, Z.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Yang, J.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Yang, Y.

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

Yao, G.

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

Yao, J.

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Ye, L.

Yin, J.

Yoon, G.

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Yousefi, L.

M. Faraji, M. K. Morawej-Farshi, and L. Yousefi, “Tunable THz perfect absorber using graphene-based metamaterials,” Opt. Commun. 355, 352–355 (2015).
[Crossref]

Yuan, X.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Yue, J.

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Zeng, B.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhai, X.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Zhang, H.

Y. Jiang, H. Zhang, J. Wang, C. N. Gao, J. Wang, and W. P. Cao, “Design and performance of a terahertz absorber based on patterned graphene,” Opt. Lett. 43(17), 4296–4299 (2018).
[Crossref] [PubMed]

L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32(6), 068101 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, J.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Zhang, W.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Zhang, X.

C. Liu, L. Qi, and X. Zhang, “Broadband graphene-based metamaterial absorbers,” AIP Adv. 8(1), 015301 (2018).
[Crossref]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32(6), 068101 (2015).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhang, Y.

L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, and H. Zhang, “Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals,” Opt. Mater. Express 8(10), 3238–3249 (2018).
[Crossref]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

Y. Zhang, Y. Shi, and C. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036 (2016).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32(6), 068101 (2015).
[Crossref]

Zhao, X.

Zhao, Y.

Zhu, J.

Zhu, Z.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

AIP Adv. (2)

X. Huang, Z. Hu, and P. Liu, “Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction,” AIP Adv. 4(11), 117103 (2014).
[Crossref]

C. Liu, L. Qi, and X. Zhang, “Broadband graphene-based metamaterial absorbers,” AIP Adv. 8(1), 015301 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

S. Agarwal and Y. K. Prajapati, “Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(6), 19 (2016).
[Crossref]

Chin. Phys. B (1)

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
[Crossref]

Chin. Phys. Lett. (1)

Y. Zhang, T. Li, H. Lv, X. Huang, X. Zhang, S. Xu, and H. Zhang, “Graphene-based tunable polarization insensitive dual-band metamaterial absorber at mid-infrared frequencies,” Chin. Phys. Lett. 32(6), 068101 (2015).
[Crossref]

EPJ Applied Metamaterials (1)

P. A. Huidobro, S. A. Maier, and J. B. Pendr, “Tunable plasmonic metasurface for perfect absorption,” EPJ Applied Metamaterials 4, 6 (2017).
[Crossref]

IEEE Photonics J. (1)

G. Yao, F. Ling, J. Yue, C. Luo, Q. Luo, and J. Yao, “Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. Terahertz Sci. Technol. 3(6), 757–763 (2013).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Magn. Magn. Mater. (1)

J. Wang, S. Qu, Z. Xu, H. Ma, Y. Yang, C. Gu, and X. Wu, “A polarization-dependent wide-angle three-dimensional metamaterial absorber,” J. Magn. Magn. Mater. 321(18), 2805–2809 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

K. Delihacioglu, S. Uckun, and T. Ege, “L–shaped frequency selective surfaces as conducting elements on chiral slab,” J. Optoelectron. Adv. Mater. 8, 1398 (2006).

Mater. Lett. (2)

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Nanoscale (1)

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7(29), 12682–12688 (2015).
[Crossref] [PubMed]

Opt. Commun. (2)

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

M. Faraji, M. K. Morawej-Farshi, and L. Yousefi, “Tunable THz perfect absorber using graphene-based metamaterials,” Opt. Commun. 355, 352–355 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Physica B (1)

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

Plasmonics (1)

K. Arik, S. Abdollahramezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12, 1 (2016).

Sci. Rep. (6)

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref] [PubMed]

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref] [PubMed]

Y. Long, L. Shen, H. Xu, H. Deng, and Y. Li, “Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals,” Sci. Rep. 6(1), 32312 (2016).
[Crossref] [PubMed]

X. Huang, K. Pan, and Z. Hu, “Experimental demonstration of printed graphene nano-flakes enabled flexible and conformable wideband radar absorbers,” Sci. Rep. 6(1), 38197 (2016).
[Crossref] [PubMed]

D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok, G. Y. Jung, H. J. Park, K. Kim, and J. Rho, “Polarization-sensitive tunable absorber in visible and near-infrared regimes,” Sci. Rep. 8(1), 12393 (2018).
[Crossref] [PubMed]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Other (1)

B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley and Sons Inc, 2000), p. 5, 393.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic of the single-ring graphene-based absorber. Parameters are listed as follows: P = 3.6 μm, R1 = 1.6 μm, R2 = 0.25 μm, td = 0.3 μm, tg = 0.34 nm and tm = 0.1 μm.
Fig. 2
Fig. 2 (a) Absorption spectra of the single-ring absorber. (b) real and imaginary parts of the relative impedance z of the single-ring absorber.
Fig. 3
Fig. 3 (a) Absorption of the single-ring structure with dielectric thickness td = 0.1 μm, 0.3 μm and 0.7 μm, and (b) color map of the absorption versus td varying from 0.1 μm to 1 μm.
Fig. 4
Fig. 4 (a) Absorption of the single-ring structure for R1 = 1.2 μm, 1.4 μm and 1.6 μm. and (b) colormap of absorption with R1 varying from 0.3 μm to 1.8 μm.
Fig. 5
Fig. 5 (a) Absorption of the single-ring structure for R2 = 0.25 μm, 0.7 μm and 1.2 μm, and (b) color map of absorption with R2 varying from 0.1 μm to 1.5 μm.
Fig. 6
Fig. 6 Schematic of the four-ring absorber. The parameters are as follows: P = 3.6 μm, R1 = 1.6 μm, R2 = 0.25 μm, R3 = 1.4 μm, R4 = 0.25 μm, tg = 0.34 nm, td = 0.3 μm, tm = 0.1 μm, T = 300 K, μc = 0.6 eV, and Γ = 2π × 2.42 THz.
Fig. 7
Fig. 7 (a) Absorption of the four-ring absorber. (b) Top view of surface current distribution of the four-ring absorber at the resonant frequency of 40.2 THz under the TE polarization. (c) Top view of surface current distribution of the four-ring absorber at the resonant frequency of 44.5 THz under the TE polarization.
Fig. 8
Fig. 8 (a) Absorption of the four-ring absorber with μc = 0.2 eV, 0.6 eV and 1.0 eV. (b) Color map of the absorption with μc varying from 0.1 eV to 1.0 eV.
Fig. 9
Fig. 9 (a) Real part and (b) imaginary part of the relative permittivity of graphene calculated by different method (c) Absorption of the four-ring absorber using three forms of permittivity
Fig. 10
Fig. 10 (a) Absorption of the four-ring absorber using none, one-layer, four-layer, and eight-layer of graphene (b) Color map of the absorption with layers varying from 1 to 10.
Fig. 11
Fig. 11 Top view of distributions of the z-component of electric field Ez for (a) without graphene at 34.6 THz (b) with one-layer graphene at 35.3 THz, (c) with four-layer graphene at 40.2 THz, and (d) with eight-layer graphene at 39.8 THz. Ez distribution in yoz plane at x = 0 (e) without graphene (f) with one-layer graphene (g) with four-layer graphene, and (h) with eight-layer graphene.
Fig. 12
Fig. 12 Schematic of the nested dual-ring and three-ring absorber. The parameters are as follows: P = 3.9 μm, R0 = 0.3 μm, R1 = 1.55 μm, R2 = 1.5 μm, R3 = 1.4 μm, R4 = 1.25 μm, R5 = 1.2 μm.
Fig. 13
Fig. 13 Absorption of the nested dual-ring and three-ring graphene-based absorber.
Fig. 14
Fig. 14 (a) Surface current distribution of the nested dual-ring absorber at the resonant frequency of 47 THz under the normal y-polarized incidence. (b) Surface current distribution of the nested three-ring absorber at the resonant frequency of 47 THz under the normal y-polarized incidence.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε G = 1 + j σ ( ω ) ε 0 ω t g
σ i n t r a = j e 2 k B T π 2 ( ω j Γ ) ( μ c k B T + 2 ln ( e μ c k B T + 1 ) )
σ i n t e r = j e 2 4 π ln ( 2 μ c ( ω j Γ ) 2 μ c + ( ω j Γ ) )
2 π r = λ = c f ε e f f
σ ( ω ) = σ i n t r a = j e 2 k B T π 2 ( ω j Γ ) ( μ c k B T + 2 ln ( e μ c k B T + 1 ) )
ε G ( ω ) = 1 + j σ G ( ω ) ε 0 ω ω p 2 ω ( ω + j Γ / )

Metrics