Abstract

Here, we demonstrate that transformation optics can be used to produce 2-D non-magnetic waveguide couplers with no reflections. Our approach consists of using a scaling function for reflection suppression and introducing an auxiliary function in the transformation optics formulation to achieve a non-magnetic medium for coupling the TM polarization. To demonstrate the potential of this method, two non-magnetic waveguide couplers are designed. The first one satisfies the Brewster angle condition for any arbitrary incidence angle (TMn modes), extending the performance of couplers previously reported in the literature that only operate for TEM (TM0 mode), i.e. waves with normal incidence. Our method can be applied to match any given dielectric constant. Our results demonstrate that for a given mode (angle), we achieve a perfect match to a defined dielectric constant. The second design removes the dependence of the reflectionless condition to the incident angle at the boundary. Hence, this coupler works for all incident angles (TMn modes). It is used to compress all the modes into a region with a higher predefined refractive index.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reflectionless compact nonmagnetic optical waveguide coupler design based on transformation optics

Hossein Eskandari, Mohammad Saeed Majedi, and Amir Reza Attari
Appl. Opt. 56(20) 5599-5606 (2017)

Squeezing and expanding light without reflections via transformation optics

C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez
Opt. Express 19(4) 3562-3575 (2011)

Reflectionless design of a nonmagnetic homogeneous optical waveguide coupler based on transformation optics

Hossein Eskandari, Amir Reza Attari, and Mohammad Saeed Majedi
J. Opt. Soc. Am. B 35(1) 54-60 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [Crossref] [PubMed]
  3. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
    [Crossref]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  5. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
    [Crossref]
  6. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
    [Crossref]
  7. W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect invisibility cloaks with arbitrary shape,” New J. Phys. 10, 043040 (2008).
    [Crossref]
  8. W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
    [Crossref]
  9. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
    [Crossref]
  10. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
    [Crossref] [PubMed]
  11. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 1–6 (2010).
  12. D.-H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16, 18731 (2008).
    [Crossref]
  13. S. S. S. Mousavi, M. S. Majedi, and H. Eskandari, “Design and simulation of polarization transformers using transformation electromagnetics,” Optik 130, 1099–1106 (2017).
    [Crossref]
  14. H. Eskandari, M. S. Majedi, and A. R. Attari, “Non-reflecting non-magnetic homogeneous polarization splitter and polarization deflector design based on transformation electromagnetics,” Optik 135, 407–416 (2017).
    [Crossref]
  15. H. Eskandari, M. S. Majedi, and A. R. Attari, “Design of reflectionless non-magnetic homogeneous polarization splitters with minimum anisotropy based on transformation electromagnetics,” J. Opt. Soc. Am. B 34, 1191 (2017).
    [Crossref]
  16. P. A. Teixeira, D. G. Silva, L. H. Gabrielli, D. H. Spadoti, and M. A. F. C. Junqueira, “General multimode polarization splitter design in uniaxial media,” Opt. Eng. 57, 1 (2018).
    [Crossref]
  17. H. Eskandari, A. R. Attari, and M. S. Majedi, “Design of polarization splitting devices with ideal transmission and anisotropy considerations,” J. Opt. Soc. Am. B 35, 1585 (2018).
    [Crossref]
  18. H. Ma, S. Qu, Z. Xu, and J. Wang, “General method for designing wave shape transformers,” Opt. Express 16, 22072 (2008).
    [Crossref] [PubMed]
  19. L. Lin, W. Wang, J. Cui, C. Du, and X. Luo, “Design of electromagnetic refractor and phase transformer using coordinate transformation theory,” Opt. Express 16, 6815 (2008).
    [Crossref] [PubMed]
  20. W. Shu, S. Yang, W. Yan, Y. Ke, and T. Smith, “Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics,” Opt. Commun. 338, 307–312 (2015).
    [Crossref]
  21. D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys. 10, 115023 (2008).
    [Crossref]
  22. D.-H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17, 7807 (2009).
    [Crossref] [PubMed]
  23. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2009).
    [Crossref] [PubMed]
  24. D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17, 16535 (2009).
    [Crossref] [PubMed]
  25. H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010).
    [Crossref] [PubMed]
  26. W. Tang, C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Transactions on Antennas Propag. 58, 3795–3804 (2010).
    [Crossref]
  27. Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Transactions on Antennas Propag. 61, 5910–5922 (2013).
    [Crossref]
  28. C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat luneburg lens via transformation optics for directive antenna applications,” IEEE Transactions on Antennas Propag. 62, 1945–1953 (2014).
    [Crossref]
  29. S. Jain, R. Mittra, and S. Pandey, “Flat-base broadband multibeam luneburg lens for wide-angle scan,” J. Electromagn. Waves Appl. 29, 1329–1341 (2015).
    [Crossref]
  30. M. Ebrahimpouri and O. Quevedo-Teruel, “Bespoke lenses based on quasi-conformal transformation optics technique,” IEEE Transactions on Antennas Propag. 65, 2256–2264 (2017).
    [Crossref]
  31. Y. Su and Z. N. Chen, “A flat dual-polarized transformation-optics beamscanning luneburg lens antenna using PCB-stacked gradient index metamaterials,” IEEE Transactions on Antennas Propag. 66, 5088–5097 (2018).
    [Crossref]
  32. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
    [Crossref]
  33. H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
    [Crossref]
  34. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations,” Photonics Nanostructures - Fundamentals Appl. 6, 87–95 (2008).
    [Crossref]
  35. B. Bian, S. Liu, S. Wang, X. Kong, Y. Guo, X. Zhao, B. Ma, and C. Chen, “Cylindrical optimized nonmagnetic concentrator with minimized scattering,” Opt. Express 21, A231 (2013).
    [Crossref] [PubMed]
  36. S.-Y. Wang, B. Yu, S. Liu, and B. Bian, “Optimization for nonmagnetic concentrator with minimized scattering,” J. Opt. Soc. Am. A 30, 1563 (2013).
    [Crossref]
  37. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555 (2008).
    [Crossref] [PubMed]
  38. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 2232 (2012).
    [Crossref] [PubMed]
  39. S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93, 085429 (2016).
    [Crossref]
  40. C. D. Emiroglu and D.-H. Kwon, “Impedance-matched three-dimensional beam expander and compressor designs via transformation optics,” J. Appl. Phys. 107, 084502 (2010).
    [Crossref]
  41. C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Squeezing and expanding light without reflections via transformation optics,” Opt. Express 19, 3562 (2011).
    [Crossref] [PubMed]
  42. H. Y. Xu, B. Zhang, G. Barbastathis, and H. D. Sun, “Compact optical waveguide coupler using homogeneous uniaxial medium,” J. Opt. Soc. Am. B 28, 2633 (2011).
    [Crossref]
  43. P. Markov, J. G. Valentine, and S. M. Weiss, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express 20, 14705 (2012).
    [Crossref] [PubMed]
  44. J. Cao, L. Zhang, S. Yan, and X. Sun, “Reflectionless design of optical elements using impedance-tunable transformation optics,” Appl. Phys. Lett. 104, 191102 (2014).
    [Crossref]
  45. H. Eskandari, M. S. Majedi, and A. R. Attari, “Reflectionless compact nonmagnetic optical waveguide coupler design based on transformation optics,” Appl. Opt. 56, 5599 (2017).
    [Crossref] [PubMed]
  46. H. Eskandari, A. R. Attari, and M. S. Majedi, “Reflectionless design of a nonmagnetic homogeneous optical waveguide coupler based on transformation optics,” J. Opt. Soc. Am. B 35, 54 (2017).
    [Crossref]
  47. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref] [PubMed]
  48. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light. Sci. & Appl. 2, e72 (2013).
    [Crossref]
  49. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
    [Crossref] [PubMed]
  50. Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
    [Crossref] [PubMed]
  51. R. C. Mitchell-Thomas and O. Quevedo-Teruel, Transformation Optics Applied to Antennas and Focusing Systems (Springer International Publishing, 2018), pp. 387–406.
  52. D. M. Pozar, Microwave Engineering (Wiley, 2011), 4th ed.
  53. O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
    [Crossref]

2018 (4)

P. A. Teixeira, D. G. Silva, L. H. Gabrielli, D. H. Spadoti, and M. A. F. C. Junqueira, “General multimode polarization splitter design in uniaxial media,” Opt. Eng. 57, 1 (2018).
[Crossref]

Y. Su and Z. N. Chen, “A flat dual-polarized transformation-optics beamscanning luneburg lens antenna using PCB-stacked gradient index metamaterials,” IEEE Transactions on Antennas Propag. 66, 5088–5097 (2018).
[Crossref]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

H. Eskandari, A. R. Attari, and M. S. Majedi, “Design of polarization splitting devices with ideal transmission and anisotropy considerations,” J. Opt. Soc. Am. B 35, 1585 (2018).
[Crossref]

2017 (6)

H. Eskandari, M. S. Majedi, and A. R. Attari, “Design of reflectionless non-magnetic homogeneous polarization splitters with minimum anisotropy based on transformation electromagnetics,” J. Opt. Soc. Am. B 34, 1191 (2017).
[Crossref]

H. Eskandari, M. S. Majedi, and A. R. Attari, “Reflectionless compact nonmagnetic optical waveguide coupler design based on transformation optics,” Appl. Opt. 56, 5599 (2017).
[Crossref] [PubMed]

H. Eskandari, A. R. Attari, and M. S. Majedi, “Reflectionless design of a nonmagnetic homogeneous optical waveguide coupler based on transformation optics,” J. Opt. Soc. Am. B 35, 54 (2017).
[Crossref]

M. Ebrahimpouri and O. Quevedo-Teruel, “Bespoke lenses based on quasi-conformal transformation optics technique,” IEEE Transactions on Antennas Propag. 65, 2256–2264 (2017).
[Crossref]

S. S. S. Mousavi, M. S. Majedi, and H. Eskandari, “Design and simulation of polarization transformers using transformation electromagnetics,” Optik 130, 1099–1106 (2017).
[Crossref]

H. Eskandari, M. S. Majedi, and A. R. Attari, “Non-reflecting non-magnetic homogeneous polarization splitter and polarization deflector design based on transformation electromagnetics,” Optik 135, 407–416 (2017).
[Crossref]

2016 (1)

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93, 085429 (2016).
[Crossref]

2015 (3)

S. Jain, R. Mittra, and S. Pandey, “Flat-base broadband multibeam luneburg lens for wide-angle scan,” J. Electromagn. Waves Appl. 29, 1329–1341 (2015).
[Crossref]

W. Shu, S. Yang, W. Yan, Y. Ke, and T. Smith, “Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics,” Opt. Commun. 338, 307–312 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

2014 (2)

C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat luneburg lens via transformation optics for directive antenna applications,” IEEE Transactions on Antennas Propag. 62, 1945–1953 (2014).
[Crossref]

J. Cao, L. Zhang, S. Yan, and X. Sun, “Reflectionless design of optical elements using impedance-tunable transformation optics,” Appl. Phys. Lett. 104, 191102 (2014).
[Crossref]

2013 (5)

O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
[Crossref]

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Transactions on Antennas Propag. 61, 5910–5922 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light. Sci. & Appl. 2, e72 (2013).
[Crossref]

B. Bian, S. Liu, S. Wang, X. Kong, Y. Guo, X. Zhao, B. Ma, and C. Chen, “Cylindrical optimized nonmagnetic concentrator with minimized scattering,” Opt. Express 21, A231 (2013).
[Crossref] [PubMed]

S.-Y. Wang, B. Yu, S. Liu, and B. Bian, “Optimization for nonmagnetic concentrator with minimized scattering,” J. Opt. Soc. Am. A 30, 1563 (2013).
[Crossref]

2012 (3)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 2232 (2012).
[Crossref] [PubMed]

P. Markov, J. G. Valentine, and S. M. Weiss, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express 20, 14705 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (4)

C. D. Emiroglu and D.-H. Kwon, “Impedance-matched three-dimensional beam expander and compressor designs via transformation optics,” J. Appl. Phys. 107, 084502 (2010).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010).
[Crossref] [PubMed]

W. Tang, C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Transactions on Antennas Propag. 58, 3795–3804 (2010).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 1–6 (2010).

2009 (5)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2009).
[Crossref] [PubMed]

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[Crossref]

D.-H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17, 7807 (2009).
[Crossref] [PubMed]

D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17, 16535 (2009).
[Crossref] [PubMed]

2008 (9)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations,” Photonics Nanostructures - Fundamentals Appl. 6, 87–95 (2008).
[Crossref]

L. Lin, W. Wang, J. Cui, C. Du, and X. Luo, “Design of electromagnetic refractor and phase transformer using coordinate transformation theory,” Opt. Express 16, 6815 (2008).
[Crossref] [PubMed]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555 (2008).
[Crossref] [PubMed]

D.-H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16, 18731 (2008).
[Crossref]

H. Ma, S. Qu, Z. Xu, and J. Wang, “General method for designing wave shape transformers,” Opt. Express 16, 22072 (2008).
[Crossref] [PubMed]

D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys. 10, 115023 (2008).
[Crossref]

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect invisibility cloaks with arbitrary shape,” New J. Phys. 10, 043040 (2008).
[Crossref]

W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
[Crossref]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref]

2007 (3)

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

2006 (4)

J. B. Pendry, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Ao, X.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[Crossref]

Argyropoulos, C.

W. Tang, C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Transactions on Antennas Propag. 58, 3795–3804 (2010).
[Crossref]

Attari, A. R.

Barbastathis, G.

Bian, B.

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Cao, J.

J. Cao, L. Zhang, S. Yan, and X. Sun, “Reflectionless design of optical elements using impedance-tunable transformation optics,” Appl. Phys. Lett. 104, 191102 (2014).
[Crossref]

Cao, Y.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Capasso, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Chan, C. T.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[Crossref]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

Chen, C.

Chen, H.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[Crossref]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

Chen, S.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[Crossref]

Chen, Z. N.

Y. Su and Z. N. Chen, “A flat dual-polarized transformation-optics beamscanning luneburg lens antenna using PCB-stacked gradient index metamaterials,” IEEE Transactions on Antennas Propag. 66, 5088–5097 (2018).
[Crossref]

Cheng, X.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

Chi, Y.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

Cui, J.

Cui, T. J.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 1–6 (2010).

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations,” Photonics Nanostructures - Fundamentals Appl. 6, 87–95 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Danckaert, J.

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93, 085429 (2016).
[Crossref]

Deng, J.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Deng, Z.-L.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Du, C.

Dyke, A.

C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat luneburg lens via transformation optics for directive antenna applications,” IEEE Transactions on Antennas Propag. 62, 1945–1953 (2014).
[Crossref]

O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
[Crossref]

Dyke, H.

C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat luneburg lens via transformation optics for directive antenna applications,” IEEE Transactions on Antennas Propag. 62, 1945–1953 (2014).
[Crossref]

O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
[Crossref]

Ebrahimpouri, M.

M. Ebrahimpouri and O. Quevedo-Teruel, “Bespoke lenses based on quasi-conformal transformation optics technique,” IEEE Transactions on Antennas Propag. 65, 2256–2264 (2017).
[Crossref]

Emiroglu, C. D.

C. D. Emiroglu and D.-H. Kwon, “Impedance-matched three-dimensional beam expander and compressor designs via transformation optics,” J. Appl. Phys. 107, 084502 (2010).
[Crossref]

Eskandari, H.

Gabrielli, L. H.

P. A. Teixeira, D. G. Silva, L. H. Gabrielli, D. H. Spadoti, and M. A. F. C. Junqueira, “General multimode polarization splitter design in uniaxial media,” Opt. Eng. 57, 1 (2018).
[Crossref]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 2232 (2012).
[Crossref] [PubMed]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Galán, J. V.

García-Meca, C.

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Ginis, V.

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93, 085429 (2016).
[Crossref]

Guo, Y.

Hao, Y.

C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat luneburg lens via transformation optics for directive antenna applications,” IEEE Transactions on Antennas Propag. 62, 1945–1953 (2014).
[Crossref]

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Transactions on Antennas Propag. 61, 5910–5922 (2013).
[Crossref]

O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
[Crossref]

W. Tang, C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Transactions on Antennas Propag. 58, 3795–3804 (2010).
[Crossref]

Haq, S.

C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat luneburg lens via transformation optics for directive antenna applications,” IEEE Transactions on Antennas Propag. 62, 1945–1953 (2014).
[Crossref]

O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
[Crossref]

Hou, B.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[Crossref]

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light. Sci. & Appl. 2, e72 (2013).
[Crossref]

Jain, S.

S. Jain, R. Mittra, and S. Pandey, “Flat-base broadband multibeam luneburg lens for wide-angle scan,” J. Electromagn. Waves Appl. 29, 1329–1341 (2015).
[Crossref]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

Jiang, Z. H.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Transactions on Antennas Propag. 61, 5910–5922 (2013).
[Crossref]

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 2232 (2012).
[Crossref] [PubMed]

Junqueira, M. A. F. C.

P. A. Teixeira, D. G. Silva, L. H. Gabrielli, D. H. Spadoti, and M. A. F. C. Junqueira, “General multimode polarization splitter design in uniaxial media,” Opt. Eng. 57, 1 (2018).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kallos, E.

W. Tang, C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Transactions on Antennas Propag. 58, 3795–3804 (2010).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Ke, Y.

W. Shu, S. Yang, W. Yan, Y. Ke, and T. Smith, “Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics,” Opt. Commun. 338, 307–312 (2015).
[Crossref]

Kildishev, A. V.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light. Sci. & Appl. 2, e72 (2013).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

Kong, X.

Kundtz, N.

Kwon, D.-H.

C. D. Emiroglu and D.-H. Kwon, “Impedance-matched three-dimensional beam expander and compressor designs via transformation optics,” J. Appl. Phys. 107, 084502 (2010).
[Crossref]

D.-H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17, 7807 (2009).
[Crossref] [PubMed]

D.-H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16, 18731 (2008).
[Crossref]

D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys. 10, 115023 (2008).
[Crossref]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[Crossref]

Li, G.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Li, J.

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref]

Li, K.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Li, X.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Lin, L.

Lipson, M.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 2232 (2012).
[Crossref] [PubMed]

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 2232 (2012).
[Crossref] [PubMed]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

Liu, S.

Luo, X.

Ma, B.

Ma, H.

Ma, H. F.

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 1–6 (2010).

Majedi, M. S.

Markov, P.

Martí, J.

Martínez, A.

Mateo-Segura, C.

C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat luneburg lens via transformation optics for directive antenna applications,” IEEE Transactions on Antennas Propag. 62, 1945–1953 (2014).
[Crossref]

Milton, G. W.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

Mitchell-Thomas, R. C.

O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
[Crossref]

R. C. Mitchell-Thomas and O. Quevedo-Teruel, Transformation Optics Applied to Antennas and Focusing Systems (Springer International Publishing, 2018), pp. 387–406.

Mittra, R.

S. Jain, R. Mittra, and S. Pandey, “Flat-base broadband multibeam luneburg lens for wide-angle scan,” J. Electromagn. Waves Appl. 29, 1329–1341 (2015).
[Crossref]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Mousavi, S. S. S.

S. S. S. Mousavi, M. S. Majedi, and H. Eskandari, “Design and simulation of polarization transformers using transformation electromagnetics,” Optik 130, 1099–1106 (2017).
[Crossref]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light. Sci. & Appl. 2, e72 (2013).
[Crossref]

Ortuño, R.

Pandey, S.

S. Jain, R. Mittra, and S. Pandey, “Flat-base broadband multibeam luneburg lens for wide-angle scan,” J. Electromagn. Waves Appl. 29, 1329–1341 (2015).
[Crossref]

Pendry, J. B.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations,” Photonics Nanostructures - Fundamentals Appl. 6, 87–95 (2008).
[Crossref]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[Crossref]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Wiley, 2011), 4th ed.

Qiu, M.

W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
[Crossref]

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect invisibility cloaks with arbitrary shape,” New J. Phys. 10, 043040 (2008).
[Crossref]

Qu, S.

Quevedo-Teruel, O.

M. Ebrahimpouri and O. Quevedo-Teruel, “Bespoke lenses based on quasi-conformal transformation optics technique,” IEEE Transactions on Antennas Propag. 65, 2256–2264 (2017).
[Crossref]

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Transactions on Antennas Propag. 61, 5910–5922 (2013).
[Crossref]

O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
[Crossref]

R. C. Mitchell-Thomas and O. Quevedo-Teruel, Transformation Optics Applied to Antennas and Focusing Systems (Springer International Publishing, 2018), pp. 387–406.

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations,” Photonics Nanostructures - Fundamentals Appl. 6, 87–95 (2008).
[Crossref]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555 (2008).
[Crossref] [PubMed]

Roberts, D. A.

D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17, 16535 (2009).
[Crossref] [PubMed]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555 (2008).
[Crossref] [PubMed]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations,” Photonics Nanostructures - Fundamentals Appl. 6, 87–95 (2008).
[Crossref]

Rodríguez-Fortuño, F. J.

Ruan, Z.

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect invisibility cloaks with arbitrary shape,” New J. Phys. 10, 043040 (2008).
[Crossref]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations,” Photonics Nanostructures - Fundamentals Appl. 6, 87–95 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light. Sci. & Appl. 2, e72 (2013).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

Shu, W.

W. Shu, S. Yang, W. Yan, Y. Ke, and T. Smith, “Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics,” Opt. Commun. 338, 307–312 (2015).
[Crossref]

Silva, D. G.

P. A. Teixeira, D. G. Silva, L. H. Gabrielli, D. H. Spadoti, and M. A. F. C. Junqueira, “General multimode polarization splitter design in uniaxial media,” Opt. Eng. 57, 1 (2018).
[Crossref]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2009).
[Crossref] [PubMed]

D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17, 16535 (2009).
[Crossref] [PubMed]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555 (2008).
[Crossref] [PubMed]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations,” Photonics Nanostructures - Fundamentals Appl. 6, 87–95 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Smith, T.

W. Shu, S. Yang, W. Yan, Y. Ke, and T. Smith, “Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics,” Opt. Commun. 338, 307–312 (2015).
[Crossref]

Song, W.

W. Tang, C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Transactions on Antennas Propag. 58, 3795–3804 (2010).
[Crossref]

Spadoti, D. H.

P. A. Teixeira, D. G. Silva, L. H. Gabrielli, D. H. Spadoti, and M. A. F. C. Junqueira, “General multimode polarization splitter design in uniaxial media,” Opt. Eng. 57, 1 (2018).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Su, Y.

Y. Su and Z. N. Chen, “A flat dual-polarized transformation-optics beamscanning luneburg lens antenna using PCB-stacked gradient index metamaterials,” IEEE Transactions on Antennas Propag. 66, 5088–5097 (2018).
[Crossref]

Sun, H. D.

Sun, X.

J. Cao, L. Zhang, S. Yan, and X. Sun, “Reflectionless design of optical elements using impedance-tunable transformation optics,” Appl. Phys. Lett. 104, 191102 (2014).
[Crossref]

Tang, W.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Transactions on Antennas Propag. 61, 5910–5922 (2013).
[Crossref]

O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
[Crossref]

W. Tang, C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Transactions on Antennas Propag. 58, 3795–3804 (2010).
[Crossref]

Tassin, P.

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93, 085429 (2016).
[Crossref]

Teixeira, P. A.

P. A. Teixeira, D. G. Silva, L. H. Gabrielli, D. H. Spadoti, and M. A. F. C. Junqueira, “General multimode polarization splitter design in uniaxial media,” Opt. Eng. 57, 1 (2018).
[Crossref]

Tung, M. M.

Turpin, J. P.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Transactions on Antennas Propag. 61, 5910–5922 (2013).
[Crossref]

Valentine, J. G.

Viaene, S.

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93, 085429 (2016).
[Crossref]

Wang, G. P.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Wang, J.

Wang, S.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

B. Bian, S. Liu, S. Wang, X. Kong, Y. Guo, X. Zhao, B. Ma, and C. Chen, “Cylindrical optimized nonmagnetic concentrator with minimized scattering,” Opt. Express 21, A231 (2013).
[Crossref] [PubMed]

Wang, S.-Y.

Wang, W.

Wang, X.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Wang, Y.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

Weiss, S. M.

Wen, W.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[Crossref]

Werner, D. H.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Transactions on Antennas Propag. 61, 5910–5922 (2013).
[Crossref]

D.-H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17, 7807 (2009).
[Crossref] [PubMed]

D.-H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16, 18731 (2008).
[Crossref]

D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys. 10, 115023 (2008).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

Wu, Q.

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Transactions on Antennas Propag. 61, 5910–5922 (2013).
[Crossref]

Xu, H. Y.

Xu, J.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Xu, Z.

Yan, M.

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect invisibility cloaks with arbitrary shape,” New J. Phys. 10, 043040 (2008).
[Crossref]

W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
[Crossref]

Yan, S.

J. Cao, L. Zhang, S. Yan, and X. Sun, “Reflectionless design of optical elements using impedance-tunable transformation optics,” Appl. Phys. Lett. 104, 191102 (2014).
[Crossref]

Yan, W.

W. Shu, S. Yang, W. Yan, Y. Ke, and T. Smith, “Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics,” Opt. Commun. 338, 307–312 (2015).
[Crossref]

W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
[Crossref]

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect invisibility cloaks with arbitrary shape,” New J. Phys. 10, 043040 (2008).
[Crossref]

Yang, S.

W. Shu, S. Yang, W. Yan, Y. Ke, and T. Smith, “Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics,” Opt. Commun. 338, 307–312 (2015).
[Crossref]

Ye, X.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Yu, B.

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Zhang, B.

Zhang, L.

J. Cao, L. Zhang, S. Yan, and X. Sun, “Reflectionless design of optical elements using impedance-tunable transformation optics,” Appl. Phys. Lett. 104, 191102 (2014).
[Crossref]

O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
[Crossref]

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

Zhao, R.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Zhao, X.

Zhuang, X.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. Cao, L. Zhang, S. Yan, and X. Sun, “Reflectionless design of optical elements using impedance-tunable transformation optics,” Appl. Phys. Lett. 104, 191102 (2014).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[Crossref]

W. Yan, M. Yan, and M. Qiu, “Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering,” Appl. Phys. Lett. 93, 021909 (2008).
[Crossref]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[Crossref]

IEEE Transactions on Antennas Propag. (5)

M. Ebrahimpouri and O. Quevedo-Teruel, “Bespoke lenses based on quasi-conformal transformation optics technique,” IEEE Transactions on Antennas Propag. 65, 2256–2264 (2017).
[Crossref]

Y. Su and Z. N. Chen, “A flat dual-polarized transformation-optics beamscanning luneburg lens antenna using PCB-stacked gradient index metamaterials,” IEEE Transactions on Antennas Propag. 66, 5088–5097 (2018).
[Crossref]

W. Tang, C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Transactions on Antennas Propag. 58, 3795–3804 (2010).
[Crossref]

Q. Wu, Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, “Transformation optics inspired multibeam lens antennas for broadband directive radiation,” IEEE Transactions on Antennas Propag. 61, 5910–5922 (2013).
[Crossref]

C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat luneburg lens via transformation optics for directive antenna applications,” IEEE Transactions on Antennas Propag. 62, 1945–1953 (2014).
[Crossref]

J. Appl. Phys. (1)

C. D. Emiroglu and D.-H. Kwon, “Impedance-matched three-dimensional beam expander and compressor designs via transformation optics,” J. Appl. Phys. 107, 084502 (2010).
[Crossref]

J. Electromagn. Waves Appl. (1)

S. Jain, R. Mittra, and S. Pandey, “Flat-base broadband multibeam luneburg lens for wide-angle scan,” J. Electromagn. Waves Appl. 29, 1329–1341 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

Light. Sci. & Appl. (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light. Sci. & Appl. 2, e72 (2013).
[Crossref]

Nano Lett. (2)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic metasurface for vectorial holography,” Nano Lett. 18, 2885–2892 (2018).
[Crossref] [PubMed]

Nat. Commun. (3)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 2232 (2012).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 1–6 (2010).

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[Crossref]

New J. Phys. (3)

W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Coordinate transformations make perfect invisibility cloaks with arbitrary shape,” New J. Phys. 10, 043040 (2008).
[Crossref]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006).
[Crossref]

D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys. 10, 115023 (2008).
[Crossref]

Opt. Commun. (1)

W. Shu, S. Yang, W. Yan, Y. Ke, and T. Smith, “Flat designs of impedance-matched nonmagnetic phase transformer and wave-shaping polarization splitter via transformation optics,” Opt. Commun. 338, 307–312 (2015).
[Crossref]

Opt. Eng. (1)

P. A. Teixeira, D. G. Silva, L. H. Gabrielli, D. H. Spadoti, and M. A. F. C. Junqueira, “General multimode polarization splitter design in uniaxial media,” Opt. Eng. 57, 1 (2018).
[Crossref]

Opt. Express (9)

H. Ma, S. Qu, Z. Xu, and J. Wang, “General method for designing wave shape transformers,” Opt. Express 16, 22072 (2008).
[Crossref] [PubMed]

L. Lin, W. Wang, J. Cui, C. Du, and X. Luo, “Design of electromagnetic refractor and phase transformer using coordinate transformation theory,” Opt. Express 16, 6815 (2008).
[Crossref] [PubMed]

D.-H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16, 18731 (2008).
[Crossref]

B. Bian, S. Liu, S. Wang, X. Kong, Y. Guo, X. Zhao, B. Ma, and C. Chen, “Cylindrical optimized nonmagnetic concentrator with minimized scattering,” Opt. Express 21, A231 (2013).
[Crossref] [PubMed]

D.-H. Kwon and D. H. Werner, “Flat focusing lens designs having minimized reflection based on coordinate transformation techniques,” Opt. Express 17, 7807 (2009).
[Crossref] [PubMed]

D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17, 16535 (2009).
[Crossref] [PubMed]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555 (2008).
[Crossref] [PubMed]

P. Markov, J. G. Valentine, and S. M. Weiss, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express 20, 14705 (2012).
[Crossref] [PubMed]

C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Squeezing and expanding light without reflections via transformation optics,” Opt. Express 19, 3562 (2011).
[Crossref] [PubMed]

Optik (2)

S. S. S. Mousavi, M. S. Majedi, and H. Eskandari, “Design and simulation of polarization transformers using transformation electromagnetics,” Optik 130, 1099–1106 (2017).
[Crossref]

H. Eskandari, M. S. Majedi, and A. R. Attari, “Non-reflecting non-magnetic homogeneous polarization splitter and polarization deflector design based on transformation electromagnetics,” Optik 135, 407–416 (2017).
[Crossref]

Photonics Nanostructures - Fundamentals Appl. (1)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations,” Photonics Nanostructures - Fundamentals Appl. 6, 87–95 (2008).
[Crossref]

Phys. Rev. B (1)

S. Viaene, V. Ginis, J. Danckaert, and P. Tassin, “Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides,” Phys. Rev. B 93, 085429 (2016).
[Crossref]

Phys. Rev. Lett. (2)

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[Crossref]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[Crossref]

Sci. reports (1)

O. Quevedo-Teruel, W. Tang, R. C. Mitchell-Thomas, A. Dyke, H. Dyke, L. Zhang, S. Haq, and Y. Hao, “Transformation optics for antennas: why limit the bandwidth with metamaterials?” Sci. reports 3, 1903 (2013).
[Crossref]

Science (5)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349, 1310–1314 (2015).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

Other (2)

R. C. Mitchell-Thomas and O. Quevedo-Teruel, Transformation Optics Applied to Antennas and Focusing Systems (Springer International Publishing, 2018), pp. 387–406.

D. M. Pozar, Microwave Engineering (Wiley, 2011), 4th ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scheme of the physical space for a waveguide coupler with a cosine transition function, m(x), with power of 2.
Fig. 2
Fig. 2 Output matched dielectric constant versus the Brewster angle based on Eq. (8) for a device with scaled parameters and M = 0.5. (a) M2s(d) < 1 and “+” sign and (b) M2s(d) < 1 and “−” sign. (c) M2s(d) > 1 and “+” sign and (d) M2s(d) > 1 and “−” sign.
Fig. 3
Fig. 3 Simulated magnetic field for the TM0 mode. The medium in both left and right waveguides is a vacuum. (a) Real part and (b) magnitude of Hz without the non-magnetic coupler. (c) Real part and (d) magnitude of Hz for the non-magnetic coupler with the Brewster angle of zero.
Fig. 4
Fig. 4 Simulated magnetic field for the non-magnetic Brewster-angle coupler for the TM3 mode. The medium in both left and right waveguides is a vacuum. (a) Real part and (b) magnitude of Hz for the design with Brewster angle of 49°. (c) Real part and (d) magnitude of Hz for the design with Brewster angle of 0 (normal incidence).
Fig. 5
Fig. 5 Simulated magnetic field for the non-magnetic all-mode coupler impedance-matched to ε2 = M−2 = 4. (a) Real part and (b) magnitude of Hz for TM0 mode. (c) Real part and (d) magnitude of Hz for TM1 mode.
Fig. 6
Fig. 6 Simulated magnetic field for the non-magnetic all-mode coupler impedance-matched to ε2 = M−2 = 4. (a) Real part and (b) magnitude of Hz for TM2 mode. (c) Real part and (d) magnitude of Hz for TM3 mode.
Fig. 7
Fig. 7 Coupling efficiency of the non-magnetic coupler versus the incidence angle for TM3 mode.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

m 1 ( x ) = ( 1 M ) n = 1 N α n ( 1 x / d ) n + M .
m 2 ( x ) = ( 1 M ) n = 1 N α n cos n ( π x / 2 d ) + M .
m 3 ( x ) = n = 1 N α n M ( x / d ) n .
ε = μ = J J T det ( J ) .
cos 2 θ B = ε i ( μ z z ε x x | i ε i ) ε u ε v | i ε i 2 ,
ε u ε v | i = ε i 2 .
ε x x μ z z | i = ε i .
cos 2 θ B | x = d = ε 2 ( 1 / M 2 ε 2 ) s 2 ( d ) ε 2 2 ε 2 = 1 ± 1 M 4 s 2 ( d ) sin 2 ( 2 θ B ) 2 M 2 sin 2 θ B .
{ ε u ε v | x = 0 = s 2 ( 0 ) ε u ε v | x = d = s 2 ( d )
{ ε x x μ z z | x = 0 = 1 ε x x μ z z | x = d = 1 / M 2
m ( x ) = ( 1 M ) ( 3 ( 1 x / d ) 2 2 ( 1 x / d ) 3 ) + M ,
s ( x ) = ( 1 s ( d ) ) ( 3 ( 1 x / d ) 2 2 ( 1 x / d ) 3 ) + s ( d ) .
m ( x ) = ( 1 M ) cos 2 ( π x / 2 d ) + M .
f ( x ) = m ( x ) d x = x ( M + 1 ) / 2 d ( M 1 ) sin ( π x / d ) / ( 2 π ) .

Metrics