Abstract

In this paper, we present an anisotropic metamaterial (AMM) composed of a sub-wavelength metal grating sandwiched with bi-layered double-arrow-shaped (DAS) structure array, which can achieve high-efficiency circular polarization (CP) conversion via giant asymmetric transmission (AT) in terahertz (THz) region. Numerical simulation results indicate that near complete CP conversion with cross-polarization transmission coefficients can reach 0.91 and 0.93, which can be observed at 0.31 and 0.55 THz, respectively. Based on the combination of polarization conversion effects and Fabry-Perot-like cavity-enhanced effect of AMMs, the AT parameter for CP wave can reach a maximum of 0.83 at 0.30 THz, and 0.87 at 0.56 THz, respectively. With appropriate geometric parameters design of each unit-cell, embedded in the proposed AMM, the cross-polarization transmission coefficient and AT parameter for CP waves can be increased to the maximal values of 0.98 and 0.9, respectively. The proposed AMM shows great potential applications in high performance dual-band CP convertor and isolator in THz region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves

Yongzhi Cheng, Haoran Chen, Jingcheng Zhao, Xuesong Mao, and Zhengze Cheng
Opt. Mater. Express 8(5) 1399-1409 (2018)

Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band

Deng Fei Tang, Chuan Wang, Wei Kang Pan, Min Hua Li, and Jian Feng Dong
Opt. Express 25(10) 11329-11339 (2017)

Dual and broadband terahertz metamaterial absorber based on a compact resonator structure

Yongzhi Cheng, Haijun Zou, Jiaji Yang, Xuesong Mao, and Rongzhou Gong
Opt. Mater. Express 8(10) 3104-3114 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref] [PubMed]
  3. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  4. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  5. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
    [Crossref] [PubMed]
  6. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic Wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  7. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
    [Crossref]
  8. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
    [Crossref] [PubMed]
  9. Y. Z. Cheng, C. J. Wu, Z. Z. Cheng, and R. Z. Gong, “Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator,” Prog. In Electromagn. Research 155, 105–113 (2016).
  10. C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
    [Crossref]
  11. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref] [PubMed]
  12. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
    [Crossref] [PubMed]
  13. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
    [Crossref]
  14. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
    [Crossref]
  15. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  16. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
    [Crossref]
  17. M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
    [Crossref] [PubMed]
  18. C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
    [Crossref]
  19. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
    [Crossref] [PubMed]
  20. J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
    [Crossref]
  21. Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagn. Waves Appl. 27(14), 1850–1858 (2013).
    [Crossref]
  22. D. Y. Liu, M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, “Enhanced asymmetric transmission due to Fabry-Perot-like cavity,” Opt. Express 22(10), 11707–11712 (2014).
    [Crossref] [PubMed]
  23. X. J. Huang, B. Xiao, D. Yang, and H. L. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
    [Crossref]
  24. D. J. Liu, Z. Y. Xiao, X. L. Ma, Q. W. Ma, X. X. Xu, and Z. H. Wang, “Asymmetric transmission of chiral metamaterial slab with double L resonators,” Opt. Commun. 338, 359–365 (2015).
    [Crossref]
  25. L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
    [Crossref]
  26. L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
    [Crossref]
  27. Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagnetics Res. 160, 89–101 (2017).
    [Crossref]
  28. Y. Z. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
    [Crossref]
  29. S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
    [Crossref]
  30. D. J. Liu, Z. Y. Xiao, X. L. Ma, and Z. H. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
    [Crossref]
  31. J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
    [Crossref]
  32. R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
    [Crossref] [PubMed]
  33. C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
    [Crossref] [PubMed]
  34. D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25(10), 11329–11339 (2017).
    [Crossref] [PubMed]
  35. H. B. Wang, X. Zhou, D. F. Tang, and J. F. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 7, 1–10 (2017).
    [Crossref]
  36. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  37. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [Crossref]
  38. Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
    [Crossref] [PubMed]
  39. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  40. Z. Y. Xiao, D. J. Liu, X. L. Ma, and Z. H. Wang, “Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators,” Opt. Express 23(6), 7053–7061 (2015).
    [Crossref] [PubMed]
  41. Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
    [Crossref]
  42. Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
    [Crossref]
  43. M. Maeda, “An analysis of gap in microstrip transmission lines,” IEEE Trans. Microw. Theory Tech. 20(6), 390–396 (1972).
    [Crossref]

2019 (1)

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

2018 (1)

2017 (5)

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagnetics Res. 160, 89–101 (2017).
[Crossref]

Y. Z. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25(10), 11329–11339 (2017).
[Crossref] [PubMed]

H. B. Wang, X. Zhou, D. F. Tang, and J. F. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 7, 1–10 (2017).
[Crossref]

2016 (3)

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
[Crossref] [PubMed]

2015 (4)

Z. Y. Xiao, D. J. Liu, X. L. Ma, and Z. H. Wang, “Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators,” Opt. Express 23(6), 7053–7061 (2015).
[Crossref] [PubMed]

X. J. Huang, B. Xiao, D. Yang, and H. L. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

D. J. Liu, Z. Y. Xiao, X. L. Ma, Q. W. Ma, X. X. Xu, and Z. H. Wang, “Asymmetric transmission of chiral metamaterial slab with double L resonators,” Opt. Commun. 338, 359–365 (2015).
[Crossref]

D. J. Liu, Z. Y. Xiao, X. L. Ma, and Z. H. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

2014 (4)

D. Y. Liu, M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, “Enhanced asymmetric transmission due to Fabry-Perot-like cavity,” Opt. Express 22(10), 11707–11712 (2014).
[Crossref] [PubMed]

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

2013 (6)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagn. Waves Appl. 27(14), 1850–1858 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

2012 (2)

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

2011 (4)

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
[Crossref] [PubMed]

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref] [PubMed]

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

2010 (2)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

2009 (1)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

2008 (2)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

2007 (2)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic Wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

1972 (1)

M. Maeda, “An analysis of gap in microstrip transmission lines,” IEEE Trans. Microw. Theory Tech. 20(6), 390–396 (1972).
[Crossref]

Akosman, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Alù, A.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Cao, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Castaldi, G.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic Wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chang, S. J.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Chen, H. R.

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, J.

Chen, M.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Chen, S.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
[Crossref] [PubMed]

Chen, Y.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Cheng, H.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
[Crossref] [PubMed]

Cheng, Y. Z.

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagnetics Res. 160, 89–101 (2017).
[Crossref]

Y. Z. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagn. Waves Appl. 27(14), 1850–1858 (2013).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Cheng, Z. Z.

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagn. Waves Appl. 27(14), 1850–1858 (2013).
[Crossref]

Cheville, R. A.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Chin, J. Y.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cui, H. X.

Cui, T. J.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Dong, J. F.

Duan, J.

L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Engheta, N.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Fan, F.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Fan, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Fedotov, V. A.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Feng, Y. J.

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Galdi, V.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Gong, R.

Y. Z. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagnetics Res. 160, 89–101 (2017).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagn. Waves Appl. 27(14), 1850–1858 (2013).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Grbic, A.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

Guo, L. J.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Hao, J.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic Wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

He, Q.

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hu, F. T.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Huang, C.

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Huang, X. J.

X. J. Huang, B. Xiao, D. Yang, and H. L. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

Ji, R.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Jiang, T.

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic Wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Kang, M.

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic Wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Li, H.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Li, M. H.

Li, Y.

Li, Z.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
[Crossref] [PubMed]

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Liu, D. J.

D. J. Liu, Z. Y. Xiao, X. L. Ma, and Z. H. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

D. J. Liu, Z. Y. Xiao, X. L. Ma, Q. W. Ma, X. X. Xu, and Z. H. Wang, “Asymmetric transmission of chiral metamaterial slab with double L resonators,” Opt. Commun. 338, 359–365 (2015).
[Crossref]

Z. Y. Xiao, D. J. Liu, X. L. Ma, and Z. H. Wang, “Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators,” Opt. Express 23(6), 7053–7061 (2015).
[Crossref] [PubMed]

Liu, D. Y.

Liu, J.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Liu, W.

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
[Crossref] [PubMed]

Liu, X.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Liu, X. C.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Lu, M.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Lu, W.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Lv, T. T.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Ma, H. F.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Ma, Q. W.

D. J. Liu, Z. Y. Xiao, X. L. Ma, Q. W. Ma, X. X. Xu, and Z. H. Wang, “Asymmetric transmission of chiral metamaterial slab with double L resonators,” Opt. Commun. 338, 359–365 (2015).
[Crossref]

Ma, X. L.

D. J. Liu, Z. Y. Xiao, X. L. Ma, and Z. H. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

D. J. Liu, Z. Y. Xiao, X. L. Ma, Q. W. Ma, X. X. Xu, and Z. H. Wang, “Asymmetric transmission of chiral metamaterial slab with double L resonators,” Opt. Commun. 338, 359–365 (2015).
[Crossref]

Z. Y. Xiao, D. J. Liu, X. L. Ma, and Z. H. Wang, “Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators,” Opt. Express 23(6), 7053–7061 (2015).
[Crossref] [PubMed]

Maeda, M.

M. Maeda, “An analysis of gap in microstrip transmission lines,” IEEE Trans. Microw. Theory Tech. 20(6), 390–396 (1972).
[Crossref]

Mao, X. S.

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagnetics Res. 160, 89–101 (2017).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Monticone, F.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Mutlu, M.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Nie, Y.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagn. Waves Appl. 27(14), 1850–1858 (2013).
[Crossref]

Ozbay, E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Pan, W. K.

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

Plum, E.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic Wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Ray, V.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Serebryannikov, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shi, J. H.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Silva, A.

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Singh, R.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Sun, W.

Tang, D. F.

H. B. Wang, X. Zhou, D. F. Tang, and J. F. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 7, 1–10 (2017).
[Crossref]

D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25(10), 11329–11339 (2017).
[Crossref] [PubMed]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Tian, J.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 3142–3145 (2016).
[Crossref] [PubMed]

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Wang, C.

Wang, H. B.

H. B. Wang, X. Zhou, D. F. Tang, and J. F. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 7, 1–10 (2017).
[Crossref]

Wang, H. T.

Wang, S. W.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Wang, X.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagn. Waves Appl. 27(14), 1850–1858 (2013).
[Crossref]

Wang, Z. B.

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Wang, Z. H.

D. J. Liu, Z. Y. Xiao, X. L. Ma, Q. W. Ma, X. X. Xu, and Z. H. Wang, “Asymmetric transmission of chiral metamaterial slab with double L resonators,” Opt. Commun. 338, 359–365 (2015).
[Crossref]

D. J. Liu, Z. Y. Xiao, X. L. Ma, and Z. H. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

Z. Y. Xiao, D. J. Liu, X. L. Ma, and Z. H. Wang, “Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators,” Opt. Express 23(6), 7053–7061 (2015).
[Crossref] [PubMed]

Wei, Z.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Wu, L.

Y. Z. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Xiao, B.

X. J. Huang, B. Xiao, D. Yang, and H. L. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

Xiao, Z. Y.

D. J. Liu, Z. Y. Xiao, X. L. Ma, Q. W. Ma, X. X. Xu, and Z. H. Wang, “Asymmetric transmission of chiral metamaterial slab with double L resonators,” Opt. Commun. 338, 359–365 (2015).
[Crossref]

D. J. Liu, Z. Y. Xiao, X. L. Ma, and Z. H. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

Z. Y. Xiao, D. J. Liu, X. L. Ma, and Z. H. Wang, “Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators,” Opt. Express 23(6), 7053–7061 (2015).
[Crossref] [PubMed]

Xu, S. T.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Xu, X. X.

D. J. Liu, Z. Y. Xiao, X. L. Ma, Q. W. Ma, X. X. Xu, and Z. H. Wang, “Asymmetric transmission of chiral metamaterial slab with double L resonators,” Opt. Commun. 338, 359–365 (2015).
[Crossref]

Yang, D.

X. J. Huang, B. Xiao, D. Yang, and H. L. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

Yang, H. L.

X. J. Huang, B. Xiao, D. Yang, and H. L. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

Yang, Z. Y.

L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Yao, L. F.

Yu, S. W.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Yu, X.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Yuan, X.

L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

Yuan, X. H.

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic Wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhai, X. M.

Zhang, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Zhang, W.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhao, J. C.

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagnetics Res. 160, 89–101 (2017).
[Crossref]

Zhao, J. M.

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Zhao, M.

L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zheludev, N. I.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Zheng, Y.

L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhou, L.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic Wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhou, X.

H. B. Wang, X. Zhou, D. F. Tang, and J. F. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 7, 1–10 (2017).
[Crossref]

Zhu, Z.

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Adv. Opt. Mater. (1)

J. Liu, Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces,” Adv. Opt. Mater. 4(12), 2028–2034 (2016).
[Crossref]

Ann. Phys. (1)

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband terahertz polarization converter and asymmetric transmission based on coupled dielectric-metal grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Appl. Phys. Express (1)

D. J. Liu, Z. Y. Xiao, X. L. Ma, and Z. H. Wang, “Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking,” Appl. Phys. Express 8(5), 052001 (2015).
[Crossref]

Appl. Phys. Lett. (5)

J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

L. Wu, Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. Duan, and X. H. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett. 102(23), 231116 (2013).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

L. Wu, Z. Y. Yang, Y. Z. Cheng, R. Z. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, “Circular polarization converters based on bi-Layered asymmetrical split ring metamaterials,” Appl. Phys., A Mater. Sci. Process. 116(2), 643–648 (2014).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory Tech. (1)

M. Maeda, “An analysis of gap in microstrip transmission lines,” IEEE Trans. Microw. Theory Tech. 20(6), 390–396 (1972).
[Crossref]

J. Electromagn. Waves Appl. (1)

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagn. Waves Appl. 27(14), 1850–1858 (2013).
[Crossref]

J. Mod. Opt. (1)

H. B. Wang, X. Zhou, D. F. Tang, and J. F. Dong, “Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry–Perot-like resonators,” J. Mod. Opt. 7, 1–10 (2017).
[Crossref]

Nano Lett. (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Nanoscale (1)

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Opt. Commun. (3)

X. J. Huang, B. Xiao, D. Yang, and H. L. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

D. J. Liu, Z. Y. Xiao, X. L. Ma, Q. W. Ma, X. X. Xu, and Z. H. Wang, “Asymmetric transmission of chiral metamaterial slab with double L resonators,” Opt. Commun. 338, 359–365 (2015).
[Crossref]

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

C. Huang, Y. J. Feng, J. M. Zhao, Z. B. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153104 (2009).
[Crossref]

Phys. Rev. Lett. (5)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic Wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Plasmonics (1)

Y. Z. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Prog. Electromagnetics Res. (1)

Y. Z. Cheng, J. C. Zhao, X. S. Mao, and R. Z. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagnetics Res. 160, 89–101 (2017).
[Crossref]

Science (4)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343(6167), 160–163 (2014).
[Crossref] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Y. Z. Cheng, C. J. Wu, Z. Z. Cheng, and R. Z. Gong, “Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator,” Prog. In Electromagn. Research 155, 105–113 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed tri-layer structure AMM: (a) the periodic array structure, (b) perspective view of the unit-cell structure, (c,d) lattice and front view of tri-layer structure, and (e) middle metallic pattern.
Fig. 2
Fig. 2 (a) Transmission coefficients of single layer structure A, (b) transmission and (c) reflection coefficients of bi-layer structure AB for forward ( + z) propagation with LCP and RCP waves, (d) the schematic of Fabry-Perot-like resonance cavity in a bi-layer structure.
Fig. 3
Fig. 3 Simulated transmission coefficients of the four matrix components for (a) forward ( + z) and (b) backward (-z) propagation, (c,d) the schematic of the Fabry-Perot-like resonance cavity in structure ABA at 0.31 THz and 0.55 THz.
Fig. 4
Fig. 4 Simulated electric field (Ez) distribution of the AMM under incident (a1,a2,c1,c2) RCP and (b1,b2,d1,d2) LCP waves at (a1,a2,b1,b2) 0.31 THz and (c1,c2,d1,d2) 0.55 THz.
Fig. 5
Fig. 5 (a) Simulated total transmittance T+ for RCP waves propagating along the forward ( + z) and backward (-z) directions through the AMM structure, (b) AT parameter ( Δ cir + and Δ cir ) for LP and CP waves.
Fig. 6
Fig. 6 (a1-d1) Cross-polarization transmission coefficients ( t + and t + ) and (a2-d2) AT parameter ( Δ cir + and Δ cir ) of the CP waves propagating along the forward ( + z) direction of the proposed AMM with different geometric parameters: (a1,a2) thickness of dielectric substrate (ts), (b1,b2) wire width (w), (c1,c2) lattice length (l0) and (d1,d2) wire length (l) of the DAS structure.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E i (r,t)=( E x i E y i ) e i(kz-ωt)
E t (r,t)=( E x t E y t ) e i(kz-ωt)
( E x tf E y tf )= T lin f ( E x if E y if )=[ t xx f t xy f t yx f t yy f ]( E x if E y if )
( E x tb E y tb )= T lin b ( E x ib E y ib )=[ t xx b t xy b t yx b t yy b ]( E x ib E y ib )
T cir f(b) =( t ++ f(b) t + f(b) t + f(b) t f(b) )= 1 2 ×( ( t xx f(b) + t yy f(b) )+i( t xy f(b) t yx f(b) ) ( t xx f(b) t yy f(b) )i( t xy f(b) + t yx f(b) ) ( t xx f(b) t yy f(b) )+i( t xy f(b) + t yx f(b) ) ( t xx f(b) + t yy f(b) )i( t xy f(b) t yx f(b) ) )
T x f(b) =| t xx f(b) | 2 +| t xy f(b) | 2
T y f(b) =| t yy f(b) | 2 +| t yx f(b) | 2
T + f(b) =| t ++ f(b) | 2 +| t + f(b) | 2
T f(b) =| t f(b) | 2 +| t + f(b) | 2
Δ lin x,f(b) =| t yx f(b) | 2 | t xy f(b) | 2 = Δ lin y,f(b) 0
Δ cir +,f(b) =| t + f(b) | 2 | t + f(b) | 2 = Δ cir ,f(b) 0

Metrics