Abstract

In this paper, a thermally tunable metamaterial absorber comprising a periodic array of metallic circle resonator with strontium titanate (STO) has been proposed in the terahertz regime. Due to the special active material, STO is adapted as the dielectric layer, thermally tunable is implemented in the absorber. A full-wave numerical simulation is performed and the results reveal that the peak absorption of the absorber reaches 99.9% at 2.48 THz when the temperature is set as 400K, and the central frequency can shift from 2.48 to 1.71 THz when the temperature varies from 400K to 200K. Furthermore, the electric field distribution and surface current distribution are investigated to better understand the absorption mechanism. Besides, the influence of the polarization angle and oblique incident angle to the absorber is studied and the results show that the peak absorption remains above 90% up to 60of the incidence angles for the TE mode and 55for the TM mode. The absorber can be scalable to the infrared and visible frequencies, and can be potentially applied to imaging, detection and tunable sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime

Xin Huang, Fan Yang, Bing Gao, Qi Yang, Jiamin Wu, and Wei He
Opt. Express 27(18) 25902-25911 (2019)

Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range

Yanjiao Zhao, Baiwei Li, Chuwen Lan, Ke Bi, and Zhaowei Qu
Opt. Express 25(18) 22158-22163 (2017)

Frequency tunable metamaterial absorber at deep-subwavelength scale

Ben-Xin Wang, Xiang Zhai, Gui-Zhen Wang, Wei-Qing Huang, and Ling-Ling Wang
Opt. Mater. Express 5(2) 227-235 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Suen, K. Fan, W. J. Padilla, and X. Liu, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601 (2017).
    [Crossref]
  2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  3. T. K. Todorov, K. B. Reuter, and D. B. Mitzi, “High-efficiency solar cell with Earth-abundant liquid-processed absorber,” Adv. Mater. 22(20), E156–E159 (2010).
    [Crossref] [PubMed]
  4. L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(1), 3055 (2014).
    [Crossref] [PubMed]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  6. X. Liu, C. Lan, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on artificial dielectric “molecules”,” Sci. Rep. 6(1), 28906 (2016).
    [Crossref] [PubMed]
  7. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  8. P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).
  9. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  10. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
    [Crossref]
  11. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref] [PubMed]
  12. S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
    [Crossref]
  13. J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
    [Crossref] [PubMed]
  14. X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W. L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
    [Crossref] [PubMed]
  15. Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, and H. Ye, “Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
    [Crossref] [PubMed]
  16. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  17. Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27(2), 381–391 (2017).
    [Crossref]
  18. Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2, 1–7 (2018).
  19. M. Gil, J. Bonache, and F. Martin, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
    [Crossref]
  20. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  21. Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4(1), 6301 (2015).
    [Crossref] [PubMed]
  22. J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
    [Crossref]
  23. Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
    [Crossref]
  24. X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
    [Crossref]
  25. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  26. Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
    [Crossref] [PubMed]
  27. Y. Zhang, Y. Shi, and C. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
    [Crossref]
  28. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref] [PubMed]
  29. Y. Zhao, B. Li, C. Lan, K. Bi, and Z. Qu, “Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range,” Opt. Express 25(18), 22158–22163 (2017).
    [Crossref] [PubMed]
  30. J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
    [Crossref]
  31. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
    [Crossref] [PubMed]
  32. P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
    [Crossref]
  33. H. Nĕmec, P. Kuzel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30(5), 549–551 (2005).
    [Crossref] [PubMed]
  34. L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
    [Crossref]

2019 (1)

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

2018 (6)

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

X. Huang, W. He, F. Yang, J. Ran, B. Gao, and W. L. Zhang, “Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime,” Opt. Express 26(20), 25558–25566 (2018).
[Crossref] [PubMed]

Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, and H. Ye, “Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref] [PubMed]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2, 1–7 (2018).

2017 (4)

2016 (3)

2015 (4)

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4(1), 6301 (2015).
[Crossref] [PubMed]

2014 (1)

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(1), 3055 (2014).
[Crossref] [PubMed]

2012 (3)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

2011 (4)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref] [PubMed]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

T. K. Todorov, K. B. Reuter, and D. B. Mitzi, “High-efficiency solar cell with Earth-abundant liquid-processed absorber,” Adv. Mater. 22(20), E156–E159 (2010).
[Crossref] [PubMed]

2009 (1)

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

2008 (3)

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

M. Gil, J. Bonache, and F. Martin, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

2005 (1)

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Averitt, R. D.

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Azad, A. K.

Besteiro, L. V.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Bi, K.

Bonache, J.

M. Gil, J. Bonache, and F. Martin, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Cai, G.

Chatzakis, I.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(1), 3055 (2014).
[Crossref] [PubMed]

Chen, H.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Chen, H. T.

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, S.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Chen, Y.

Chen, Z.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Cheng, H.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Cui, T. J.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Dressel, M.

Duan, G.

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Duan, X.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Duvillaret, L.

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fan, K.

Fan, X.

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4(1), 6301 (2015).
[Crossref] [PubMed]

Fu, L.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Gao, B.

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gil, M.

M. Gil, J. Bonache, and F. Martin, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Govorov, A. O.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Gu, C.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Gu, J.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Guo, C.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Han, J.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Hao, T.

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2, 1–7 (2018).

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27(2), 381–391 (2017).
[Crossref]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

He, W.

He, X.

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Huang, X.

Huang, Y.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Jagadish, C.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Jia, Q. X.

Jiang, W.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Kadlec, F.

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

Koschny, T.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(1), 3055 (2014).
[Crossref] [PubMed]

Kuzel, P.

Kužel, P.

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

Lan, C.

Y. Zhao, B. Li, C. Lan, K. Bi, and Z. Qu, “Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range,” Opt. Express 25(18), 22158–22163 (2017).
[Crossref] [PubMed]

X. Liu, C. Lan, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on artificial dielectric “molecules”,” Sci. Rep. 6(1), 28906 (2016).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Li, B.

Y. Zhao, B. Li, C. Lan, K. Bi, and Z. Qu, “Tunable silicon-based all-dielectric metamaterials with strontium titanate thin film in terahertz range,” Opt. Express 25(18), 22158–22163 (2017).
[Crossref] [PubMed]

X. Liu, C. Lan, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on artificial dielectric “molecules”,” Sci. Rep. 6(1), 28906 (2016).
[Crossref] [PubMed]

Li, J.

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Li, L.

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27(2), 381–391 (2017).
[Crossref]

Li, Y. C.

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27(2), 381–391 (2017).
[Crossref]

Liang, C.

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27(2), 381–391 (2017).
[Crossref]

Y. Zhang, Y. Shi, and C. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
[Crossref]

Liu, C.

Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, and H. Ye, “Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref] [PubMed]

Liu, K.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Liu, N.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, Q. H.

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Liu, X.

J. Y. Suen, K. Fan, W. J. Padilla, and X. Liu, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601 (2017).
[Crossref]

X. Liu, C. Lan, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on artificial dielectric “molecules”,” Sci. Rep. 6(1), 28906 (2016).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Liu, Y.

Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, and H. Ye, “Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref] [PubMed]

Luo, L.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(1), 3055 (2014).
[Crossref] [PubMed]

Ma, Y.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Martin, F.

M. Gil, J. Bonache, and F. Martin, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Meng, Z.

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2, 1–7 (2018).

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mitzi, D. B.

T. K. Todorov, K. B. Reuter, and D. B. Mitzi, “High-efficiency solar cell with Earth-abundant liquid-processed absorber,” Adv. Mater. 22(20), E156–E159 (2010).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nemec, H.

Niesler, F. B.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(1), 3055 (2014).
[Crossref] [PubMed]

Padilla, W. J.

J. Y. Suen, K. Fan, W. J. Padilla, and X. Liu, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601 (2017).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pashkin, A.

Qin, S.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Qu, Z.

Ran, J.

Reuter, K. B.

T. K. Todorov, K. B. Reuter, and D. B. Mitzi, “High-efficiency solar cell with Earth-abundant liquid-processed absorber,” Adv. Mater. 22(20), E156–E159 (2010).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schalch, J.

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Sebastian, M. T.

Shen, H.

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2, 1–7 (2018).

Shi, Y.

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2, 1–7 (2018).

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27(2), 381–391 (2017).
[Crossref]

Y. Zhang, Y. Shi, and C. Liang, “Broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036–3044 (2016).
[Crossref]

Simons, R. N.

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4(1), 6301 (2015).
[Crossref] [PubMed]

Singh, R.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, Z.

Soukoulis, C. M.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(1), 3055 (2014).
[Crossref] [PubMed]

Suen, J. Y.

Tan, H. H.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Taylor, A. J.

Tian, J.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Tian, Z.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Todorov, T. K.

T. K. Todorov, K. B. Reuter, and D. B. Mitzi, “High-efficiency solar cell with Earth-abundant liquid-processed absorber,” Adv. Mater. 22(20), E156–E159 (2010).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wang, J.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(1), 3055 (2014).
[Crossref] [PubMed]

Wang, K.

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

Wang, Z.

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Wegener, M.

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(1), 3055 (2014).
[Crossref] [PubMed]

Wei, M.

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wiederrecht, G. P.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Wilson, J. D.

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4(1), 6301 (2015).
[Crossref] [PubMed]

Wu, D.

Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, and H. Ye, “Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref] [PubMed]

Wu, J.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Xiao, J. Q.

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4(1), 6301 (2015).
[Crossref] [PubMed]

Xie, L.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Xie, Y.

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4(1), 6301 (2015).
[Crossref] [PubMed]

Xu, W.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Xu, Z.

Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, and H. Ye, “Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref] [PubMed]

Yang, F.

Yang, H.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Yang, J.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2, 1–7 (2018).

Yao, J.

Ye, H.

Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, and H. Ye, “Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref] [PubMed]

Ye, L.

Yin, G.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yin, S.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Ying, Y.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yu, L.

Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, and H. Ye, “Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref] [PubMed]

Yu, P.

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Yu, Z.

Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, and H. Ye, “Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref] [PubMed]

Yuan, J.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yuan, X.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Zhang, J.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Zhang, W.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Zhang, W. L.

Zhang, X.

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Zhang, Y.

Zhang, Z. M.

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

Zhao, Q.

X. Liu, C. Lan, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on artificial dielectric “molecules”,” Sci. Rep. 6(1), 28906 (2016).
[Crossref] [PubMed]

Zhao, X.

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Zhao, Y.

Zhou, J.

X. Liu, C. Lan, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on artificial dielectric “molecules”,” Sci. Rep. 6(1), 28906 (2016).
[Crossref] [PubMed]

Zhu, J.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Zhu, Z.

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

ACS Nano (1)

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

T. K. Todorov, K. B. Reuter, and D. B. Mitzi, “High-efficiency solar cell with Earth-abundant liquid-processed absorber,” Adv. Mater. 22(20), E156–E159 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

C. R. Phys. (1)

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

Carbon (1)

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Mater. Lett. (1)

Z. Song, Z. Wang, and M. Wei, “Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces,” Mater. Lett. 234, 138–141 (2019).
[Crossref]

Mater. Sci. (1)

Y. Shi, J. Yang, H. Shen, Z. Meng, and T. Hao, “Design of broadband metamaterial-based ferromagnetic absorber,” Mater. Sci. 2, 1–7 (2018).

Metamaterials (Amst.) (1)

M. Gil, J. Bonache, and F. Martin, “Metamaterial filters: A review,” Metamaterials (Amst.) 2(4), 186–197 (2008).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, and H. Ye, “Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons,” Nanoscale Res. Lett. 13(1), 143 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Luo, I. Chatzakis, J. Wang, F. B. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5(1), 3055 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (3)

X. Liu, C. Lan, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on artificial dielectric “molecules”,” Sci. Rep. 6(1), 28906 (2016).
[Crossref] [PubMed]

J. Yang, Z. Zhu, J. Zhang, C. Guo, W. Xu, K. Liu, X. Yuan, and S. Qin, “Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure,” Sci. Rep. 8(1), 3239 (2018).
[Crossref] [PubMed]

Y. Xie, X. Fan, J. D. Wilson, R. N. Simons, Y. Chen, and J. Q. Xiao, “A universal electromagnetic energy conversion adapter based on a metamaterial absorber,” Sci. Rep. 4(1), 6301 (2015).
[Crossref] [PubMed]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wave Random Complex (1)

Y. Shi, Y. C. Li, T. Hao, L. Li, and C. Liang, “A design of ultra-broadband metamaterial absorber,” Wave Random Complex 27(2), 381–391 (2017).
[Crossref]

Other (1)

P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, and Z. Wang, “Broadband Metamaterial Absorbers,” Adv. Opt. Mater.1800995 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Proposed tunable terahertz absorber with a classical sandwiched structure consisted of metallic top layer and ground plane, spaced by STO material film. (a) Schematic presentation of the geometrical parameters in the unit cell. (b) Top view of the unit cell. (c) Schematic of the absorber. The corresponding geometry parameters are set as (unit: μm): P x = P y =98, R=25, H=2, m=n=0.2.
Fig. 2
Fig. 2 Absorption spectra of the absorber under normal incidence with the primary temperature 400K in the TE mode.
Fig. 3
Fig. 3 The permittivity of STO material at different frequencies (1.5 to 3 THz) and temperatures (from 400 to 200K), (a) Real part of the permittivity, (b)The losses tanδ, (c) Real part of the permittivity changing with temperature at the resonance frequency of 2.48 THz.
Fig. 4
Fig. 4 Absorption spectra of the absorber with different temperature 200K, 250K, 300K, 350K, and 400K under normal incidence.
Fig. 5
Fig. 5 Electric field distribution of the proposed absorber at the resonance frequency 2.48 THz. (a) For the TE mode in the x-y plane. (b) For the TM mode in the x-y plane. (c) normal incidence of incidence wave, along the E z direction.
Fig. 6
Fig. 6 Surface current distribution at the peak absorption frequency point 2.48 THz with the temperature 400K. (a) Current on the back ground layer. (b) Current on the top layer.
Fig. 7
Fig. 7 Electric field distribution at different frequency points of 2.48, 2.33, 2.13, 1.94, 1.71 THz, when the temperature is set as 400, 350, 300, 250, 200 K, respectively.
Fig. 8
Fig. 8 Absorption contour map of the absorber as a function of incidence angle and frequency under oblique incidence angels from 0° to 80° with a step width 10°. (a) TE mode. (b) TM mode.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε w = ε + f ω 0 2 ω 2 iωγ
ω 0 (T)[ cm -1 ]= 31.2(T42.5)
γ(T)[ cm -1 ]=3.3+0.094T

Metrics