Abstract

Heating reflective metals is known to produce a wide range of colors due to oxidation of the metal surface. In fact, the most vibrant colors used in the pre-industrial era came from oxides, acetates and carbonates of metal ores and minerals. In this work, we show that heating low reflectivity metals, e.g., Ni and Ti, creates structural colors through perfect light absorption. We tune the absorption across the visible and NIR spectrum by changing the heating duration and, consequently, the oxide thickness. We demonstrate experimentally angle-insensitive perfect and near-perfect absorption in the visible and NIR regimes up to ±60. The absorption is insensitive to the incidence angle due to the relatively high refractive index of the formed oxides, which create iridescent free coloration. We demonstrate that the oxide layer thickness, with refractive index n, is <λ/4n due to non-trivial phase change at the oxide/metal interfaces, which makes these systems the simplest example of meta-surfaces based on thin films. The results show that oxidized metals can have applications beyond producing vibrant colors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities

M. ElKabbash, E. Ilker, T. Letsou, N. Hoffman, A. Yaney, M. Hinczewski, and G. Strangi
Opt. Lett. 42(18) 3598-3601 (2017)

Optical interference coatings for optics and photonics [Invited]

Cheng-Chung Lee
Appl. Opt. 52(1) 73-81 (2013)

Strong absorption and selective emission from engineered metals with dielectric coatings

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman
Opt. Express 21(7) 9113-9122 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. ElKabbash, S. Iram, T. Letsou, M. Hinczewski, and G. Strangi, “Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates,” Adv. Opt. Mater. 6, 1800672 (2018).
    [Crossref]
  2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
    [PubMed]
  3. Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
    [Crossref]
  4. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2012).
    [Crossref] [PubMed]
  5. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
    [Crossref]
  6. E. Hecht, Optics,Addison-Wesley, Reading, MA (1987).
  7. M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10, 735–749 (2016).
    [Crossref]
  8. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
    [Crossref] [PubMed]
  9. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
    [Crossref]
  10. D. Saygin-Hinczewski, M. Hinczewski, I. Sorar, F. Z. Tepehan, and G. G. Tepehan, “Modeling the optical properties of WO3 and WO3-SiO2 thin films,” Sol. Energy Mater. Sol. Cells 92, 821–829 (2008).
    [Crossref]
  11. D. Saygin-Hinczewski, K. Koc, I. Sorar, M. Hinczewski, and F. Z. Tepehan, “Optical and structural properties of Ta2O5-CeO2 thin films,” Sol. Energy Mater. Sol. Cells 91, 1726–1732 (2007).
    [Crossref]
  12. B. Von Blanckenhagen, D. Tonova, and J. Ullmann, “Application of the tauc-lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt. 41, 3137–3141 (2002).
    [Crossref] [PubMed]
  13. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
    [Crossref]
  14. M. ElKabbash, E. Ilker, T. Letsou, N. Hoffman, A. Yaney, M. Hinczewski, and G. Strangi, “Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities,” Opt. Lett. 42, 3598–3601 (2017).
    [Crossref] [PubMed]

2018 (1)

M. ElKabbash, S. Iram, T. Letsou, M. Hinczewski, and G. Strangi, “Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates,” Adv. Opt. Mater. 6, 1800672 (2018).
[Crossref]

2017 (1)

2016 (1)

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10, 735–749 (2016).
[Crossref]

2015 (1)

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
[Crossref]

2014 (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref] [PubMed]

2012 (3)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

2008 (1)

D. Saygin-Hinczewski, M. Hinczewski, I. Sorar, F. Z. Tepehan, and G. G. Tepehan, “Modeling the optical properties of WO3 and WO3-SiO2 thin films,” Sol. Energy Mater. Sol. Cells 92, 821–829 (2008).
[Crossref]

2007 (1)

D. Saygin-Hinczewski, K. Koc, I. Sorar, M. Hinczewski, and F. Z. Tepehan, “Optical and structural properties of Ta2O5-CeO2 thin films,” Sol. Energy Mater. Sol. Cells 91, 1726–1732 (2007).
[Crossref]

2002 (2)

B. Von Blanckenhagen, D. Tonova, and J. Ullmann, “Application of the tauc-lorentz formulation to the interband absorption of optical coating materials,” Appl. Opt. 41, 3137–3141 (2002).
[Crossref] [PubMed]

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

1996 (1)

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2012).
[Crossref] [PubMed]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
[Crossref]

Capasso, F.

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10, 735–749 (2016).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2012).
[Crossref] [PubMed]

Collins, R. W.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Deng, X.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

ElKabbash, M.

M. ElKabbash, S. Iram, T. Letsou, M. Hinczewski, and G. Strangi, “Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates,” Adv. Opt. Mater. 6, 1800672 (2018).
[Crossref]

M. ElKabbash, E. Ilker, T. Letsou, N. Hoffman, A. Yaney, M. Hinczewski, and G. Strangi, “Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities,” Opt. Lett. 42, 3598–3601 (2017).
[Crossref] [PubMed]

Ferlauto, A. S.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Ferreira, G. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Ganguly, G.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2012).
[Crossref] [PubMed]

Hecht, E.

E. Hecht, Optics,Addison-Wesley, Reading, MA (1987).

Hinczewski, M.

M. ElKabbash, S. Iram, T. Letsou, M. Hinczewski, and G. Strangi, “Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates,” Adv. Opt. Mater. 6, 1800672 (2018).
[Crossref]

M. ElKabbash, E. Ilker, T. Letsou, N. Hoffman, A. Yaney, M. Hinczewski, and G. Strangi, “Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities,” Opt. Lett. 42, 3598–3601 (2017).
[Crossref] [PubMed]

D. Saygin-Hinczewski, M. Hinczewski, I. Sorar, F. Z. Tepehan, and G. G. Tepehan, “Modeling the optical properties of WO3 and WO3-SiO2 thin films,” Sol. Energy Mater. Sol. Cells 92, 821–829 (2008).
[Crossref]

D. Saygin-Hinczewski, K. Koc, I. Sorar, M. Hinczewski, and F. Z. Tepehan, “Optical and structural properties of Ta2O5-CeO2 thin films,” Sol. Energy Mater. Sol. Cells 91, 1726–1732 (2007).
[Crossref]

Hoffman, N.

Ilker, E.

Iram, S.

M. ElKabbash, S. Iram, T. Letsou, M. Hinczewski, and G. Strangi, “Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates,” Adv. Opt. Mater. 6, 1800672 (2018).
[Crossref]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

Kats, M. A.

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10, 735–749 (2016).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Koc, K.

D. Saygin-Hinczewski, K. Koc, I. Sorar, M. Hinczewski, and F. Z. Tepehan, “Optical and structural properties of Ta2O5-CeO2 thin films,” Sol. Energy Mater. Sol. Cells 91, 1726–1732 (2007).
[Crossref]

Letsou, T.

M. ElKabbash, S. Iram, T. Letsou, M. Hinczewski, and G. Strangi, “Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates,” Adv. Opt. Mater. 6, 1800672 (2018).
[Crossref]

M. ElKabbash, E. Ilker, T. Letsou, N. Hoffman, A. Yaney, M. Hinczewski, and G. Strangi, “Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities,” Opt. Lett. 42, 3598–3601 (2017).
[Crossref] [PubMed]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Modine, F. A.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Pearce, J. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Saygin-Hinczewski, D.

D. Saygin-Hinczewski, M. Hinczewski, I. Sorar, F. Z. Tepehan, and G. G. Tepehan, “Modeling the optical properties of WO3 and WO3-SiO2 thin films,” Sol. Energy Mater. Sol. Cells 92, 821–829 (2008).
[Crossref]

D. Saygin-Hinczewski, K. Koc, I. Sorar, M. Hinczewski, and F. Z. Tepehan, “Optical and structural properties of Ta2O5-CeO2 thin films,” Sol. Energy Mater. Sol. Cells 91, 1726–1732 (2007).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Sorar, I.

D. Saygin-Hinczewski, M. Hinczewski, I. Sorar, F. Z. Tepehan, and G. G. Tepehan, “Modeling the optical properties of WO3 and WO3-SiO2 thin films,” Sol. Energy Mater. Sol. Cells 92, 821–829 (2008).
[Crossref]

D. Saygin-Hinczewski, K. Koc, I. Sorar, M. Hinczewski, and F. Z. Tepehan, “Optical and structural properties of Ta2O5-CeO2 thin films,” Sol. Energy Mater. Sol. Cells 91, 1726–1732 (2007).
[Crossref]

Strangi, G.

M. ElKabbash, S. Iram, T. Letsou, M. Hinczewski, and G. Strangi, “Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates,” Adv. Opt. Mater. 6, 1800672 (2018).
[Crossref]

M. ElKabbash, E. Ilker, T. Letsou, N. Hoffman, A. Yaney, M. Hinczewski, and G. Strangi, “Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities,” Opt. Lett. 42, 3598–3601 (2017).
[Crossref] [PubMed]

Tepehan, F. Z.

D. Saygin-Hinczewski, M. Hinczewski, I. Sorar, F. Z. Tepehan, and G. G. Tepehan, “Modeling the optical properties of WO3 and WO3-SiO2 thin films,” Sol. Energy Mater. Sol. Cells 92, 821–829 (2008).
[Crossref]

D. Saygin-Hinczewski, K. Koc, I. Sorar, M. Hinczewski, and F. Z. Tepehan, “Optical and structural properties of Ta2O5-CeO2 thin films,” Sol. Energy Mater. Sol. Cells 91, 1726–1732 (2007).
[Crossref]

Tepehan, G. G.

D. Saygin-Hinczewski, M. Hinczewski, I. Sorar, F. Z. Tepehan, and G. G. Tepehan, “Modeling the optical properties of WO3 and WO3-SiO2 thin films,” Sol. Energy Mater. Sol. Cells 92, 821–829 (2008).
[Crossref]

Tonova, D.

Ullmann, J.

Von Blanckenhagen, B.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Wronski, C. R.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Yaney, A.

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Adv. Opt. Mater. (1)

M. ElKabbash, S. Iram, T. Letsou, M. Hinczewski, and G. Strangi, “Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates,” Adv. Opt. Mater. 6, 1800672 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

J. Appl. Phys. (1)

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Laser Photonics Rev. (1)

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10, 735–749 (2016).
[Crossref]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Sol. Energy Mater. Sol. Cells (2)

D. Saygin-Hinczewski, M. Hinczewski, I. Sorar, F. Z. Tepehan, and G. G. Tepehan, “Modeling the optical properties of WO3 and WO3-SiO2 thin films,” Sol. Energy Mater. Sol. Cells 92, 821–829 (2008).
[Crossref]

D. Saygin-Hinczewski, K. Koc, I. Sorar, M. Hinczewski, and F. Z. Tepehan, “Optical and structural properties of Ta2O5-CeO2 thin films,” Sol. Energy Mater. Sol. Cells 91, 1726–1732 (2007).
[Crossref]

Other (1)

E. Hecht, Optics,Addison-Wesley, Reading, MA (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) An optical absorber consisting of a lossy dielectric film of thickness d on highly reflective metallic substrate. Optical losses in the dielectric are responsible for PLA. (b) An optical absorber with a lossless dielectric where optical attenuation occurs in a lossy metallic substrate. (c) An optical absorber with a lossy dielectric on a lossy metallic substrate.
Fig. 2
Fig. 2 The reflectance spectra for (a) TM, and (b) TE polarized light incident on an optically thick Ni film (black), the film heated for 20 minutes (red), 30 minutes (green) and 40 minutes (blue). Maximum absorbance of 99.93% is obtained. The reflectance spectra for (c) TM, and (d) TE polarized light incident on an optically thick Ti film (black), the film heated for 40 minutes (red), 50 minutes (green) and 60 minutes (blue). The absorptance is lower for heated Ti samples compared to Ni samples. For all measurements, the angle of incidence is 15°. (e) Shows an image of the color evolution of a 150 nm Ni film deposited on Thermo Scientific microscope cover glass (0.13 mm-0.17 mm) heated from 20 minutes (left) to 40 minutes (right) in increments of 5 minutes. Similar colors are obtained for Ti sample over longer time.
Fig. 3
Fig. 3 The calculated reflectance phase shift upon reflection of TM polarized light from (a) Ni, and (b) Ti, as a function of incidence angle and wavelength. The acquired phase is < π and approaches π as a function of wavelength. The calculated angular reflectance as a function of incidence angle and (c) NiO thickness and (d) TiO2 thickness reflects the iridescence-free absorption of the absorber. The incident wavelength is 650 nm. The calculated reflectance curves for (e) 30 nm of NiO on Ni and (f) 50 nm of TiO2 on Ti showing the broadband, wide angle range light absorption of our samples.
Fig. 4
Fig. 4 The angular reflectance from 15° - 85° for NiO-Ni absorber heated at 400 degrees Celsius for (a) 20 minutes, (b) 30 minutes, (c) 40 minutes. The angular reflectance from 15° - 85° for TiO2- Ti absorber heated at 400 degrees Celsius for (d) 40 minutes, (e) 50 minutes, (f) 60 minutes. The angular insensitive of the absorptance is clear for both absorbers. The NiO-Ni has broader absorptance.

Metrics