Abstract

We study the evolution from suppressed to enhanced optical transmission through metal nanohole arrays with increasing film thickness. Due to Fano interferences, the plasmon resonances gradually shift from transmission dips for ultrathin films to peaks for thick films, accompanied by a Fano asymmetry parameter that increases with film thickness. For intermediate thicknesses, both peaks and dips in transmission are far from the plasmon resonances, and hence, also far from the spectral positions of maximum light absorption and nearfield enhancements. Calculations for various hole diameters and periodicities confirm the universality of our conclusions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analytical model of the optical response of periodically structured metallic films

A. Benabbas, V. Halté, and J.-Y. Bigot
Opt. Express 13(22) 8730-8745 (2005)

Fano resonances in plasmonic heptamer nano-hole arrays

Akram Hajebifard and Pierre Berini
Opt. Express 25(16) 18566-18580 (2017)

Designing surface plasmon resonance of subwavelength hole arrays by studying absorption

Lin Wu, Ping Bai, and Er Ping Li
J. Opt. Soc. Am. B 29(4) 521-528 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6), 1114–1117 (1998).
    [Crossref]
  2. F. J. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [Crossref]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [Crossref]
  4. J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 79(7), 073412 (2009).
    [Crossref]
  5. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  6. S. G. Rodrigo, F. de León-Pérez, and L. Martín-Moreno, “Extraordinary Optical Transmission: Fundamentals and Applications,” Proc. IEEE 104(12), 2288–2306 (2016).
    [Crossref]
  7. Q. G. Du, H. Ren, C. E. Png, and H. Wang, “Extremely sharp transmission peak in optically thin aluminum film with hexagonal nanohole arrays,” J. Opt. 20(10), 105002 (2018).
    [Crossref]
  8. A. B. Dahlin, M. P. Jonsson, and F. Höök, “Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold,” Adv. Mater. 20(8), 1436–1442 (2008).
    [Crossref]
  9. M. P. Jonsson, A. B. Dahlin, L. Feuz, S. Petronis, and F. Höök, “Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing,” Anal. Chem. 82(5), 2087–2094 (2010).
    [Crossref] [PubMed]
  10. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
    [Crossref] [PubMed]
  11. A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
    [Crossref]
  12. O. Tokel, F. Inci, and U. Demirci, “Advances in Plasmonic Technologies for Point of Care Applications,” Chem. Rev. 114(11), 5728–5752 (2014).
    [Crossref] [PubMed]
  13. M. P. Murray-Methot, N. Menegazzo, and J. F. Masson, “Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography,” Analyst (Lond.) 133(12), 1714–1721 (2008).
    [Crossref] [PubMed]
  14. A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
    [Crossref]
  15. F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
    [Crossref] [PubMed]
  16. L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
    [Crossref] [PubMed]
  17. J. A. Jackman, A. Rahim Ferhan, and N.-J. Cho, “Nanoplasmonic sensors for biointerfacial science,” Chem. Soc. Rev. 46(12), 3615–3660 (2017).
    [Crossref] [PubMed]
  18. M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
    [Crossref] [PubMed]
  19. A. Barik, L. M. Otto, D. Yoo, J. Jose, T. W. Johnson, and S. H. Oh, “Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays,” Nano Lett. 14(4), 2006–2012 (2014).
    [Crossref] [PubMed]
  20. M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
    [Crossref] [PubMed]
  21. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15(26), 18119–18129 (2007).
    [Crossref] [PubMed]
  22. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  23. Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
    [Crossref] [PubMed]
  24. D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic Semitransparent Nanohole Electrodes,” Nano Lett. 17(5), 3145–3151 (2017).
    [Crossref] [PubMed]
  25. S. G. Rodrigo, L. Martín-Moreno, A. Y. Nikitin, A. V. Kats, I. S. Spevak, and F. J. García-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett. 34(1), 4–6 (2009).
    [Crossref] [PubMed]
  26. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
    [Crossref] [PubMed]
  27. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
    [Crossref]
  28. D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
    [Crossref]
  29. J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 (2008).
    [Crossref] [PubMed]
  30. M. P. Jonsson, P. Jönsson, A. B. Dahlin, and F. Höök, “Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template,” Nano Lett. 7(11), 3462–3468 (2007).
    [Crossref] [PubMed]
  31. A. B. Dahlin, “Sensing applications based on plasmonic nanopores: The hole story,” Analyst (Lond.) 140(14), 4748–4759 (2015).
    [Crossref] [PubMed]
  32. T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
    [Crossref] [PubMed]
  33. M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
    [Crossref] [PubMed]
  34. T. M. Schmidt, M. Frederiksen, V. Bochenkov, and D. S. Sutherland, “Exploring plasmonic coupling in hole-cap arrays,” Beilstein J. Nanotechnol. 6(1), 1–10 (2015).
    [Crossref] [PubMed]
  35. V. E. Bochenkov, M. Frederiksen, and D. S. Sutherland, “Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films,” Opt. Express 21(12), 14763–14770 (2013).
    [Crossref] [PubMed]
  36. J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
    [Crossref] [PubMed]
  37. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(16), 161406 (2009).
    [Crossref]
  38. J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
    [Crossref]
  39. J. W. Yoon and R. Magnusson, “Fano resonance formula for lossy two-port systems,” Opt. Express 21(15), 17751–17759 (2013).
    [Crossref] [PubMed]
  40. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  41. M. Liu, Y. Song, Y. Zhang, X. Wang, and C. Jin, “Mode Evolution and Transmission Suppression in a Perforated Ultrathin Metallic Film with a Triangular Array of Holes,” Plasmonics 7(3), 397–410 (2012).
    [Crossref]
  42. J. Braun, B. Gompf, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Optical transmission through subwavelength hole arrays in ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 84(15), 155419 (2011).
    [Crossref]
  43. S.-H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [Crossref] [PubMed]
  44. C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4–6), 331–336 (2003).
    [Crossref]
  45. M. P. Jonsson, P. Jönsson, and F. Höök, “Simultaneous Nanoplasmonic and Quartz Crystal Microbalance Sensing: Analysis of Biomolecular Conformational Changes and Quantification of the Bound Molecular Mass,” Anal. Chem. 80(21), 7988–7995 (2008).
    [Crossref] [PubMed]
  46. M. Virk, K. Xiong, M. Svedendahl, M. Käll, and A. B. Dahlin, “A thermal plasmonic sensor platform: resistive heating of nanohole arrays,” Nano Lett. 14(6), 3544–3549 (2014).
    [Crossref] [PubMed]
  47. H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
    [Crossref] [PubMed]
  48. T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
    [Crossref] [PubMed]
  49. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
    [Crossref] [PubMed]
  50. A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater. 2(6), 556–564 (2014).
    [Crossref]
  51. W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X. C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
    [Crossref] [PubMed]
  52. J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
    [Crossref]
  53. E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
    [Crossref]

2018 (2)

Q. G. Du, H. Ren, C. E. Png, and H. Wang, “Extremely sharp transmission peak in optically thin aluminum film with hexagonal nanohole arrays,” J. Opt. 20(10), 105002 (2018).
[Crossref]

E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
[Crossref]

2017 (2)

J. A. Jackman, A. Rahim Ferhan, and N.-J. Cho, “Nanoplasmonic sensors for biointerfacial science,” Chem. Soc. Rev. 46(12), 3615–3660 (2017).
[Crossref] [PubMed]

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic Semitransparent Nanohole Electrodes,” Nano Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

2016 (2)

S. G. Rodrigo, F. de León-Pérez, and L. Martín-Moreno, “Extraordinary Optical Transmission: Fundamentals and Applications,” Proc. IEEE 104(12), 2288–2306 (2016).
[Crossref]

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

2015 (3)

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

A. B. Dahlin, “Sensing applications based on plasmonic nanopores: The hole story,” Analyst (Lond.) 140(14), 4748–4759 (2015).
[Crossref] [PubMed]

T. M. Schmidt, M. Frederiksen, V. Bochenkov, and D. S. Sutherland, “Exploring plasmonic coupling in hole-cap arrays,” Beilstein J. Nanotechnol. 6(1), 1–10 (2015).
[Crossref] [PubMed]

2014 (5)

O. Tokel, F. Inci, and U. Demirci, “Advances in Plasmonic Technologies for Point of Care Applications,” Chem. Rev. 114(11), 5728–5752 (2014).
[Crossref] [PubMed]

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

A. Barik, L. M. Otto, D. Yoo, J. Jose, T. W. Johnson, and S. H. Oh, “Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays,” Nano Lett. 14(4), 2006–2012 (2014).
[Crossref] [PubMed]

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater. 2(6), 556–564 (2014).
[Crossref]

M. Virk, K. Xiong, M. Svedendahl, M. Käll, and A. B. Dahlin, “A thermal plasmonic sensor platform: resistive heating of nanohole arrays,” Nano Lett. 14(6), 3544–3549 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

M. Liu, Y. Song, Y. Zhang, X. Wang, and C. Jin, “Mode Evolution and Transmission Suppression in a Perforated Ultrathin Metallic Film with a Triangular Array of Holes,” Plasmonics 7(3), 397–410 (2012).
[Crossref]

2011 (3)

J. Braun, B. Gompf, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Optical transmission through subwavelength hole arrays in ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 84(15), 155419 (2011).
[Crossref]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

2010 (4)

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[Crossref]

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[Crossref] [PubMed]

M. P. Jonsson, A. B. Dahlin, L. Feuz, S. Petronis, and F. Höök, “Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing,” Anal. Chem. 82(5), 2087–2094 (2010).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

2009 (6)

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 79(7), 073412 (2009).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

S. G. Rodrigo, L. Martín-Moreno, A. Y. Nikitin, A. V. Kats, I. S. Spevak, and F. J. García-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett. 34(1), 4–6 (2009).
[Crossref] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(16), 161406 (2009).
[Crossref]

2008 (6)

M. P. Jonsson, P. Jönsson, and F. Höök, “Simultaneous Nanoplasmonic and Quartz Crystal Microbalance Sensing: Analysis of Biomolecular Conformational Changes and Quantification of the Bound Molecular Mass,” Anal. Chem. 80(21), 7988–7995 (2008).
[Crossref] [PubMed]

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 (2008).
[Crossref] [PubMed]

A. B. Dahlin, M. P. Jonsson, and F. Höök, “Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold,” Adv. Mater. 20(8), 1436–1442 (2008).
[Crossref]

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

M. P. Murray-Methot, N. Menegazzo, and J. F. Masson, “Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography,” Analyst (Lond.) 133(12), 1714–1721 (2008).
[Crossref] [PubMed]

2007 (8)

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15(26), 18119–18129 (2007).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

F. J. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

M. P. Jonsson, P. Jönsson, A. B. Dahlin, and F. Höök, “Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template,” Nano Lett. 7(11), 3462–3468 (2007).
[Crossref] [PubMed]

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[Crossref]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X. C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[Crossref] [PubMed]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

2005 (1)

2004 (2)

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[Crossref]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

2003 (1)

C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4–6), 331–336 (2003).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6), 1114–1117 (1998).
[Crossref]

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Altug, H.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[Crossref]

Armakavicius, N.

E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
[Crossref]

Artar, A.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[Crossref]

Auguié, B.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 79(7), 073412 (2009).
[Crossref]

Azad, A. K.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X. C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[Crossref] [PubMed]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

Bally, M.

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

Barik, A.

A. Barik, L. M. Otto, D. Yoo, J. Jose, T. W. Johnson, and S. H. Oh, “Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays,” Nano Lett. 14(4), 2006–2012 (2014).
[Crossref] [PubMed]

Barnes, W. L.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 79(7), 073412 (2009).
[Crossref]

Bezuglyi, E. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(16), 161406 (2009).
[Crossref]

Blaikie, R. J.

J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 (2008).
[Crossref] [PubMed]

Bochenkov, V.

T. M. Schmidt, M. Frederiksen, V. Bochenkov, and D. S. Sutherland, “Exploring plasmonic coupling in hole-cap arrays,” Beilstein J. Nanotechnol. 6(1), 1–10 (2015).
[Crossref] [PubMed]

Bochenkov, V. E.

Bozzola, A.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Braun, J.

J. Braun, B. Gompf, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Optical transmission through subwavelength hole arrays in ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 84(15), 155419 (2011).
[Crossref]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Brolo, A. G.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Burrows, C. P.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 79(7), 073412 (2009).
[Crossref]

Chang, S.-H.

Chang, T. Y.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[Crossref]

Chen, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X. C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[Crossref] [PubMed]

Chen, Q.-D.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Chen, S.

E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
[Crossref]

Chen, W.

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[Crossref]

Cho, N.-J.

J. A. Jackman, A. Rahim Ferhan, and N.-J. Cho, “Nanoplasmonic sensors for biointerfacial science,” Chem. Soc. Rev. 46(12), 3615–3660 (2017).
[Crossref] [PubMed]

Crispin, X.

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic Semitransparent Nanohole Electrodes,” Nano Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

Dahlin, A. B.

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

A. B. Dahlin, “Sensing applications based on plasmonic nanopores: The hole story,” Analyst (Lond.) 140(14), 4748–4759 (2015).
[Crossref] [PubMed]

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater. 2(6), 556–564 (2014).
[Crossref]

M. Virk, K. Xiong, M. Svedendahl, M. Käll, and A. B. Dahlin, “A thermal plasmonic sensor platform: resistive heating of nanohole arrays,” Nano Lett. 14(6), 3544–3549 (2014).
[Crossref] [PubMed]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

M. P. Jonsson, A. B. Dahlin, L. Feuz, S. Petronis, and F. Höök, “Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing,” Anal. Chem. 82(5), 2087–2094 (2010).
[Crossref] [PubMed]

A. B. Dahlin, M. P. Jonsson, and F. Höök, “Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold,” Adv. Mater. 20(8), 1436–1442 (2008).
[Crossref]

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

M. P. Jonsson, P. Jönsson, A. B. Dahlin, and F. Höök, “Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template,” Nano Lett. 7(11), 3462–3468 (2007).
[Crossref] [PubMed]

Darakchieva, V.

E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
[Crossref]

De Abajo, F. J. G.

F. J. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

De Angelis, F.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

de León-Pérez, F.

S. G. Rodrigo, F. de León-Pérez, and L. Martín-Moreno, “Extraordinary Optical Transmission: Fundamentals and Applications,” Proc. IEEE 104(12), 2288–2306 (2016).
[Crossref]

Demirci, U.

O. Tokel, F. Inci, and U. Demirci, “Advances in Plasmonic Technologies for Point of Care Applications,” Chem. Rev. 114(11), 5728–5752 (2014).
[Crossref] [PubMed]

Dressel, M.

J. Braun, B. Gompf, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Optical transmission through subwavelength hole arrays in ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 84(15), 155419 (2011).
[Crossref]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Du, Q. G.

Q. G. Du, H. Ren, C. E. Png, and H. Wang, “Extremely sharp transmission peak in optically thin aluminum film with hexagonal nanohole arrays,” J. Opt. 20(10), 105002 (2018).
[Crossref]

Duan, X.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6), 1114–1117 (1998).
[Crossref]

Eftekhari, F.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Emilsson, G.

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

Escobedo, C.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Estevez, M. C.

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Ferreira, J.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Feuz, L.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[Crossref] [PubMed]

M. P. Jonsson, A. B. Dahlin, L. Feuz, S. Petronis, and F. Höök, “Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing,” Anal. Chem. 82(5), 2087–2094 (2010).
[Crossref] [PubMed]

Frederiksen, M.

Gao, D.

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

García-Vidal, F. J.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4–6), 331–336 (2003).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6), 1114–1117 (1998).
[Crossref]

Giessen, H.

J. Braun, B. Gompf, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Optical transmission through subwavelength hole arrays in ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 84(15), 155419 (2011).
[Crossref]

Girotto, E. M.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Gompf, B.

J. Braun, B. Gompf, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Optical transmission through subwavelength hole arrays in ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 84(15), 155419 (2011).
[Crossref]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Gong, M.

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

Gordon, R.

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Gray, S.

Gray, S. K.

Haddadpour, A.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Hafner, C.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Halas, N. J.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Han, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X. C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[Crossref] [PubMed]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

Hanarp, P.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[Crossref]

Hendry, E.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 79(7), 073412 (2009).
[Crossref]

Henzie, J.

Höök, F.

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater. 2(6), 556–564 (2014).
[Crossref]

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[Crossref] [PubMed]

M. P. Jonsson, A. B. Dahlin, L. Feuz, S. Petronis, and F. Höök, “Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing,” Anal. Chem. 82(5), 2087–2094 (2010).
[Crossref] [PubMed]

A. B. Dahlin, M. P. Jonsson, and F. Höök, “Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold,” Adv. Mater. 20(8), 1436–1442 (2008).
[Crossref]

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

M. P. Jonsson, P. Jönsson, and F. Höök, “Simultaneous Nanoplasmonic and Quartz Crystal Microbalance Sensing: Analysis of Biomolecular Conformational Changes and Quantification of the Bound Molecular Mass,” Anal. Chem. 80(21), 7988–7995 (2008).
[Crossref] [PubMed]

M. P. Jonsson, P. Jönsson, A. B. Dahlin, and F. Höök, “Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template,” Nano Lett. 7(11), 3462–3468 (2007).
[Crossref] [PubMed]

Huang, M.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[Crossref]

Hübner, U.

J. Braun, B. Gompf, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Optical transmission through subwavelength hole arrays in ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 84(15), 155419 (2011).
[Crossref]

Im, H.

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Inci, F.

O. Tokel, F. Inci, and U. Demirci, “Advances in Plasmonic Technologies for Point of Care Applications,” Chem. Rev. 114(11), 5728–5752 (2014).
[Crossref] [PubMed]

Jackman, J. A.

J. A. Jackman, A. Rahim Ferhan, and N.-J. Cho, “Nanoplasmonic sensors for biointerfacial science,” Chem. Soc. Rev. 46(12), 3615–3660 (2017).
[Crossref] [PubMed]

Jefimovs, K.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Jin, C.

M. Liu, Y. Song, Y. Zhang, X. Wang, and C. Jin, “Mode Evolution and Transmission Suppression in a Perforated Ultrathin Metallic Film with a Triangular Array of Holes,” Plasmonics 7(3), 397–410 (2012).
[Crossref]

Johnson, T. W.

A. Barik, L. M. Otto, D. Yoo, J. Jose, T. W. Johnson, and S. H. Oh, “Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays,” Nano Lett. 14(4), 2006–2012 (2014).
[Crossref] [PubMed]

Jonsson, M. P.

E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
[Crossref]

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic Semitransparent Nanohole Electrodes,” Nano Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[Crossref] [PubMed]

M. P. Jonsson, A. B. Dahlin, L. Feuz, S. Petronis, and F. Höök, “Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing,” Anal. Chem. 82(5), 2087–2094 (2010).
[Crossref] [PubMed]

A. B. Dahlin, M. P. Jonsson, and F. Höök, “Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold,” Adv. Mater. 20(8), 1436–1442 (2008).
[Crossref]

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

M. P. Jonsson, P. Jönsson, and F. Höök, “Simultaneous Nanoplasmonic and Quartz Crystal Microbalance Sensing: Analysis of Biomolecular Conformational Changes and Quantification of the Bound Molecular Mass,” Anal. Chem. 80(21), 7988–7995 (2008).
[Crossref] [PubMed]

M. P. Jonsson, P. Jönsson, A. B. Dahlin, and F. Höök, “Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template,” Nano Lett. 7(11), 3462–3468 (2007).
[Crossref] [PubMed]

Jönsson, P.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[Crossref] [PubMed]

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

M. P. Jonsson, P. Jönsson, and F. Höök, “Simultaneous Nanoplasmonic and Quartz Crystal Microbalance Sensing: Analysis of Biomolecular Conformational Changes and Quantification of the Bound Molecular Mass,” Anal. Chem. 80(21), 7988–7995 (2008).
[Crossref] [PubMed]

M. P. Jonsson, P. Jönsson, A. B. Dahlin, and F. Höök, “Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template,” Nano Lett. 7(11), 3462–3468 (2007).
[Crossref] [PubMed]

Jose, J.

A. Barik, L. M. Otto, D. Yoo, J. Jose, T. W. Johnson, and S. H. Oh, “Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays,” Nano Lett. 14(4), 2006–2012 (2014).
[Crossref] [PubMed]

Juan, M. L.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Junesch, J.

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

Jung, M. J.

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Käll, M.

M. Virk, K. Xiong, M. Svedendahl, M. Käll, and A. B. Dahlin, “A thermal plasmonic sensor platform: resistive heating of nanohole arrays,” Nano Lett. 14(6), 3544–3549 (2014).
[Crossref] [PubMed]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[Crossref]

Kang, E. S. H.

E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
[Crossref]

Kasemo, B.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[Crossref] [PubMed]

Kats, A. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(16), 161406 (2009).
[Crossref]

S. G. Rodrigo, L. Martín-Moreno, A. Y. Nikitin, A. V. Kats, I. S. Spevak, and F. J. García-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett. 34(1), 4–6 (2009).
[Crossref] [PubMed]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Kobiela, G.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Kumar, S.

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

Lassiter, J. B.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Lechuga, L. M.

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Lesuffleur, A.

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Levchenko, A.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(16), 161406 (2009).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6), 1114–1117 (1998).
[Crossref]

Lin, L.

J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 (2008).
[Crossref] [PubMed]

Lindquist, N. C.

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Liu, M.

M. Liu, Y. Song, Y. Zhang, X. Wang, and C. Jin, “Mode Evolution and Transmission Suppression in a Perforated Ultrathin Metallic Film with a Triangular Array of Holes,” Plasmonics 7(3), 397–410 (2012).
[Crossref]

Lu, X.

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

Magnusson, R.

J. W. Yoon and R. Magnusson, “Fano resonance formula for lossy two-port systems,” Opt. Express 21(15), 17751–17759 (2013).
[Crossref] [PubMed]

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Mapar, M.

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater. 2(6), 556–564 (2014).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Martín-Moreno, L.

S. G. Rodrigo, F. de León-Pérez, and L. Martín-Moreno, “Extraordinary Optical Transmission: Fundamentals and Applications,” Proc. IEEE 104(12), 2288–2306 (2016).
[Crossref]

S. G. Rodrigo, L. Martín-Moreno, A. Y. Nikitin, A. V. Kats, I. S. Spevak, and F. J. García-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett. 34(1), 4–6 (2009).
[Crossref] [PubMed]

Masson, J. F.

M. P. Murray-Methot, N. Menegazzo, and J. F. Masson, “Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography,” Analyst (Lond.) 133(12), 1714–1721 (2008).
[Crossref] [PubMed]

Mazzotta, F.

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater. 2(6), 556–564 (2014).
[Crossref]

McMahon, J. M.

Menegazzo, N.

M. P. Murray-Methot, N. Menegazzo, and J. F. Masson, “Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography,” Analyst (Lond.) 133(12), 1714–1721 (2008).
[Crossref] [PubMed]

Miele, E.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Mirin, N.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Mitchell, J. S.

J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 (2008).
[Crossref] [PubMed]

Mulchandani, A.

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[Crossref]

Murray-Methot, M. P.

M. P. Murray-Methot, N. Menegazzo, and J. F. Masson, “Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography,” Analyst (Lond.) 133(12), 1714–1721 (2008).
[Crossref] [PubMed]

Nehl, C. L.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Nikitin, A. Y.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(16), 161406 (2009).
[Crossref]

S. G. Rodrigo, L. Martín-Moreno, A. Y. Nikitin, A. V. Kats, I. S. Spevak, and F. J. García-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett. 34(1), 4–6 (2009).
[Crossref] [PubMed]

Nordlander, P.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Odom, T. W.

Oh, S. H.

A. Barik, L. M. Otto, D. Yoo, J. Jose, T. W. Johnson, and S. H. Oh, “Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays,” Nano Lett. 14(4), 2006–2012 (2014).
[Crossref] [PubMed]

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Oh, S.-H.

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

Olofsson, L.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[Crossref]

Otte, M. A.

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Otto, L. M.

A. Barik, L. M. Otto, D. Yoo, J. Jose, T. W. Johnson, and S. H. Oh, “Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays,” Nano Lett. 14(4), 2006–2012 (2014).
[Crossref] [PubMed]

Pace, H.

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Park, T. H.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Parsons, J.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 79(7), 073412 (2009).
[Crossref]

Petronis, S.

M. P. Jonsson, A. B. Dahlin, L. Feuz, S. Petronis, and F. Höök, “Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing,” Anal. Chem. 82(5), 2087–2094 (2010).
[Crossref] [PubMed]

Png, C. E.

Q. G. Du, H. Ren, C. E. Png, and H. Wang, “Extremely sharp transmission peak in optically thin aluminum film with hexagonal nanohole arrays,” J. Opt. 20(10), 105002 (2018).
[Crossref]

Prikulis, J.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[Crossref]

Quidant, R.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Rahim Ferhan, A.

J. A. Jackman, A. Rahim Ferhan, and N.-J. Cho, “Nanoplasmonic sensors for biointerfacial science,” Chem. Soc. Rev. 46(12), 3615–3660 (2017).
[Crossref] [PubMed]

Ren, H.

Q. G. Du, H. Ren, C. E. Png, and H. Wang, “Extremely sharp transmission peak in optically thin aluminum film with hexagonal nanohole arrays,” J. Opt. 20(10), 105002 (2018).
[Crossref]

Rodrigo, S. G.

S. G. Rodrigo, F. de León-Pérez, and L. Martín-Moreno, “Extraordinary Optical Transmission: Fundamentals and Applications,” Proc. IEEE 104(12), 2288–2306 (2016).
[Crossref]

S. G. Rodrigo, L. Martín-Moreno, A. Y. Nikitin, A. V. Kats, I. S. Spevak, and F. J. García-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett. 34(1), 4–6 (2009).
[Crossref] [PubMed]

Sambles, J. R.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 79(7), 073412 (2009).
[Crossref]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Sannomiya, T.

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater. 2(6), 556–564 (2014).
[Crossref]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Sardar, S.

E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
[Crossref]

Schatz, G.

Schatz, G. C.

Schmidt, T. M.

T. M. Schmidt, M. Frederiksen, V. Bochenkov, and D. S. Sutherland, “Exploring plasmonic coupling in hole-cap arrays,” Beilstein J. Nanotechnol. 6(1), 1–10 (2015).
[Crossref] [PubMed]

Scholder, O.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Schultz, J. S.

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[Crossref]

Schwind, M.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[Crossref] [PubMed]

Sedoglavich, N.

J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 (2008).
[Crossref] [PubMed]

Sepulveda, B.

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Sharpe, J. C.

J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 (2008).
[Crossref] [PubMed]

Shegai, T.

E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
[Crossref]

Sinton, D.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Song, S. H.

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Song, Y.

M. Liu, Y. Song, Y. Zhang, X. Wang, and C. Jin, “Mode Evolution and Transmission Suppression in a Perforated Ultrathin Metallic Film with a Triangular Array of Holes,” Plasmonics 7(3), 397–410 (2012).
[Crossref]

Spevak, I. S.

S. G. Rodrigo, L. Martín-Moreno, A. Y. Nikitin, A. V. Kats, I. S. Spevak, and F. J. García-Vidal, “Extraordinary optical transmission through hole arrays in optically thin metal films,” Opt. Lett. 34(1), 4–6 (2009).
[Crossref] [PubMed]

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(16), 161406 (2009).
[Crossref]

Sun, H.-B.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Sutherland, D.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[Crossref]

Sutherland, D. S.

Svedendahl, M.

M. Virk, K. Xiong, M. Svedendahl, M. Käll, and A. B. Dahlin, “A thermal plasmonic sensor platform: resistive heating of nanohole arrays,” Nano Lett. 14(6), 3544–3549 (2014).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6), 1114–1117 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6), 1114–1117 (1998).
[Crossref]

Tokel, O.

O. Tokel, F. Inci, and U. Demirci, “Advances in Plasmonic Technologies for Point of Care Applications,” Chem. Rev. 114(11), 5728–5752 (2014).
[Crossref] [PubMed]

Toma, A.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Tordera, D.

E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
[Crossref]

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic Semitransparent Nanohole Electrodes,” Nano Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

Van Exter, M. P.

C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4–6), 331–336 (2003).
[Crossref]

Veronis, G.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Virk, M.

M. Virk, K. Xiong, M. Svedendahl, M. Käll, and A. B. Dahlin, “A thermal plasmonic sensor platform: resistive heating of nanohole arrays,” Nano Lett. 14(6), 3544–3549 (2014).
[Crossref] [PubMed]

Volkov, A. V.

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic Semitransparent Nanohole Electrodes,” Nano Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

Vörös, J.

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

Wang, H.

Q. G. Du, H. Ren, C. E. Png, and H. Wang, “Extremely sharp transmission peak in optically thin aluminum film with hexagonal nanohole arrays,” J. Opt. 20(10), 105002 (2018).
[Crossref]

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Wang, H.-Y.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Wang, L.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Wang, X.

M. Liu, Y. Song, Y. Zhang, X. Wang, and C. Jin, “Mode Evolution and Transmission Suppression in a Perforated Ultrathin Metallic Film with a Triangular Array of Holes,” Plasmonics 7(3), 397–410 (2012).
[Crossref]

Weiss, T.

J. Braun, B. Gompf, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Optical transmission through subwavelength hole arrays in ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 84(15), 155419 (2011).
[Crossref]

Woerdman, J. P.

C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4–6), 331–336 (2003).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6), 1114–1117 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6), 1114–1117 (1998).
[Crossref]

Xiong, K.

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

M. Virk, K. Xiong, M. Svedendahl, M. Käll, and A. B. Dahlin, “A thermal plasmonic sensor platform: resistive heating of nanohole arrays,” Nano Lett. 14(6), 3544–3549 (2014).
[Crossref] [PubMed]

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater. 2(6), 556–564 (2014).
[Crossref]

Xu, H.-L.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Xu, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X. C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[Crossref] [PubMed]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Yanik, A. A.

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[Crossref]

Yoo, D.

A. Barik, L. M. Otto, D. Yoo, J. Jose, T. W. Johnson, and S. H. Oh, “Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays,” Nano Lett. 14(4), 2006–2012 (2014).
[Crossref] [PubMed]

Yoon, J. W.

J. W. Yoon and R. Magnusson, “Fano resonance formula for lossy two-port systems,” Opt. Express 21(15), 17751–17759 (2013).
[Crossref] [PubMed]

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Zaccaria, R. P.

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X. C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[Crossref] [PubMed]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

Zhang, X. C.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X. C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[Crossref] [PubMed]

Zhang, Y.

M. Liu, Y. Song, Y. Zhang, X. Wang, and C. Jin, “Mode Evolution and Transmission Suppression in a Perforated Ultrathin Metallic Film with a Triangular Array of Holes,” Plasmonics 7(3), 397–410 (2012).
[Crossref]

Zhao, D.

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic Semitransparent Nanohole Electrodes,” Nano Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

Zoric, I.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[Crossref] [PubMed]

ACS Nano (2)

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano 4(4), 2167–2177 (2010).
[Crossref] [PubMed]

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

ACS Photonics (1)

E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, and M. P. Jonsson, “Strong Plasmon-Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces,” ACS Photonics 5(10), 4046–4055 (2018).
[Crossref]

Adv. Mater. (1)

A. B. Dahlin, M. P. Jonsson, and F. Höök, “Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold,” Adv. Mater. 20(8), 1436–1442 (2008).
[Crossref]

Adv. Opt. Mater. (1)

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater. 2(6), 556–564 (2014).
[Crossref]

Anal. Chem. (4)

M. P. Jonsson, P. Jönsson, and F. Höök, “Simultaneous Nanoplasmonic and Quartz Crystal Microbalance Sensing: Analysis of Biomolecular Conformational Changes and Quantification of the Bound Molecular Mass,” Anal. Chem. 80(21), 7988–7995 (2008).
[Crossref] [PubMed]

M. P. Jonsson, A. B. Dahlin, L. Feuz, S. Petronis, and F. Höök, “Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing,” Anal. Chem. 82(5), 2087–2094 (2010).
[Crossref] [PubMed]

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: Flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 (2008).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Analyst (Lond.) (2)

M. P. Murray-Methot, N. Menegazzo, and J. F. Masson, “Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography,” Analyst (Lond.) 133(12), 1714–1721 (2008).
[Crossref] [PubMed]

A. B. Dahlin, “Sensing applications based on plasmonic nanopores: The hole story,” Analyst (Lond.) 140(14), 4748–4759 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007).
[Crossref]

A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[Crossref]

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91(7), 071122 (2007).
[Crossref]

Beilstein J. Nanotechnol. (1)

T. M. Schmidt, M. Frederiksen, V. Bochenkov, and D. S. Sutherland, “Exploring plasmonic coupling in hole-cap arrays,” Beilstein J. Nanotechnol. 6(1), 1–10 (2015).
[Crossref] [PubMed]

Biointerphases (1)

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

Chem. Rev. (1)

O. Tokel, F. Inci, and U. Demirci, “Advances in Plasmonic Technologies for Point of Care Applications,” Chem. Rev. 114(11), 5728–5752 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

J. A. Jackman, A. Rahim Ferhan, and N.-J. Cho, “Nanoplasmonic sensors for biointerfacial science,” Chem. Soc. Rev. 46(12), 3615–3660 (2017).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

J. Opt. (1)

Q. G. Du, H. Ren, C. E. Png, and H. Wang, “Extremely sharp transmission peak in optically thin aluminum film with hexagonal nanohole arrays,” J. Opt. 20(10), 105002 (2018).
[Crossref]

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Nano Lett. (7)

A. Barik, L. M. Otto, D. Yoo, J. Jose, T. W. Johnson, and S. H. Oh, “Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays,” Nano Lett. 14(4), 2006–2012 (2014).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

D. Tordera, D. Zhao, A. V. Volkov, X. Crispin, and M. P. Jonsson, “Thermoplasmonic Semitransparent Nanohole Electrodes,” Nano Lett. 17(5), 3145–3151 (2017).
[Crossref] [PubMed]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[Crossref]

M. P. Jonsson, P. Jönsson, A. B. Dahlin, and F. Höök, “Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template,” Nano Lett. 7(11), 3462–3468 (2007).
[Crossref] [PubMed]

M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[Crossref] [PubMed]

M. Virk, K. Xiong, M. Svedendahl, M. Käll, and A. B. Dahlin, “A thermal plasmonic sensor platform: resistive heating of nanohole arrays,” Nano Lett. 14(6), 3544–3549 (2014).
[Crossref] [PubMed]

Nanoscale (2)

H. Wang, A. Toma, H.-Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q.-D. Chen, H.-L. Xu, H.-B. Sun, and R. P. Zaccaria, “The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays,” Nanoscale 8(27), 13445–13453 (2016).
[Crossref] [PubMed]

J. Junesch, G. Emilsson, K. Xiong, S. Kumar, T. Sannomiya, H. Pace, J. Vörös, S.-H. Oh, M. Bally, and A. B. Dahlin, “Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature,” Nanoscale 7(37), 15080–15085 (2015).
[Crossref] [PubMed]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6), 1114–1117 (1998).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

C. Genet, M. P. Van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4–6), 331–336 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B Condens. Matter (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (3)

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 79(16), 161406 (2009).
[Crossref]

J. Braun, B. Gompf, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Optical transmission through subwavelength hole arrays in ultrathin metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 84(15), 155419 (2011).
[Crossref]

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, “Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 79(7), 073412 (2009).
[Crossref]

Phys. Rev. Lett. (2)

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X. C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[Crossref] [PubMed]

Plasmonics (1)

M. Liu, Y. Song, Y. Zhang, X. Wang, and C. Jin, “Mode Evolution and Transmission Suppression in a Perforated Ultrathin Metallic Film with a Triangular Array of Holes,” Plasmonics 7(3), 397–410 (2012).
[Crossref]

Proc. IEEE (1)

S. G. Rodrigo, F. de León-Pérez, and L. Martín-Moreno, “Extraordinary Optical Transmission: Fundamentals and Applications,” Proc. IEEE 104(12), 2288–2306 (2016).
[Crossref]

Rev. Mod. Phys. (2)

F. J. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Small (1)

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) A sketch of the investigated nanohole system, based on a perforated silver film on a glass substrate, with nanohole diameter d, periodicity p and thickness t. (b) Transmission spectra obtained by the FDTD method for ultrathin (t = 10 nm, black line) and thick (t = 200 nm, red line) film thicknesses (d = 110 nm, p = 200 nm). Dashed lines show transmission through non-perforated films of the same thicknesses.
Fig. 2
Fig. 2 (a) Transmission and absorption spectra using (b) back illumination and (c) front illumination of light source (d = 110 nm, p = 200 nm). (d) Extracted peak and dip positions as a function of film thickness. (e) Relative position of absorption peak between the transmission peak and dip versus film thickness.
Fig. 3
Fig. 3 (a) Normalized Fano profiles for different |q| values. Exemplary Fano fits to Eq. (1) for (b) t = 10 nm, (c) t = 50 nm, and (d) t = 200 nm (d = 110 nm and p = 200 nm). Extracted |q| value is designated in each plot. The fit parameters with their standard deviations are as follows: (b) |q| = (0.293 ± 0.003), Tc = (0.722 ± 0.006), Td = (0.298 ± 0.010 eV−1) × E – (0.482 ± 0.022), (c) |q| = (1.033 ± 0.007), Tc = (0.291 ± 0.004), Td = (0.433 ± 0.010 eV−1) × E – (1.191 ± 0.029), (d) |q| = (2.103 ± 0.021), Tc = (0.0028 ± 0.0001), Td = (0.022 ± 0.0005 eV−1) × E – (0.061 ± 0.001). (e) |q| as a function of film thickness for various hole diameters and (f) |q| as a function of hole diameter for various film thicknesses (p = 200 nm). (g) |q| as a function of film thickness for various periodicities and (h) |q| as a function of periodicity for various film thicknesses (d = 110 nm).
Fig. 4
Fig. 4 (a) Calculated dispersion relations for silver films without nanoholes. (b) SPP resonances calculated from (a) using the empty lattice approximation (ELA), and absorption peak positions (BI) obtained from FDTD simulations versus film thickness for various diameters. (c) SPP resonances and absorption peak positions versus nanohole diameter for various thicknesses. The horizontal dashed lines designate the SPP resonance energy for comparison.
Fig. 5
Fig. 5 (a) Absorption spectra and nearfield data averaged over the surfaces parallel to the metal film (b) 5 nm over the metal-air interface and (c) 5 nm under the metal-glass interface, using back illumination (d = 110 nm, p = 200 nm). (d-f) Results obtained using front illumination corresponding to (a-c).
Fig. 6
Fig. 6 Transmission and absorption (both BI and FI) spectra for various film thicknesses and hole diameters (periodicity is fixed at 200 nm).
Fig. 7
Fig. 7 Extracted peak and dip positions (top panels) and linewidths of the absorption peaks (bottom panels) as a function of film thickness for various hole diameters (periodicity is fixed at 200 nm).
Fig. 8
Fig. 8 Transmission and absorption (both BI and FI) spectra for various film thicknesses and hole periodicities (hole diameter is fixed at 110 nm).
Fig. 9
Fig. 9 Extracted peak and dip positions (top panels) and linewidths of the absorption peaks (bottom panels) as a function of film thickness for various hole periodicities (hole diameter is fixed at 110 nm).
Fig. 10
Fig. 10 (a) Transmission and (b) absorption spectra for freestanding nanohole arrays surrounded by air (d = 110 nm, p = 200 nm).
Fig. 11
Fig. 11 Figure 3(b)-3(d) in logarithmic scale. (a) t = 10 nm, (b) t = 50 nm, and (c) t = 200 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T Fano = T d + T c (ε+q) 2 1+ ε 2 ,ε= E E R Γ R /2

Metrics