Abstract

The current effort utilizes methacrylate based hydrogels derived from polystyrene-co-poly(propargyl)acrylate (PS-pPA) colloidal particles with encapsulated stilbene, an organic scintillator, as an x-ray activated imaging agent. These nanoparticles self-assemble into electrostatically stabilized crystalline colloidal arrays (CCAs). Upon photo-polymerization into the hydrogel, the material remains ordered where the crystal is stabilized and more mechanically robust. Upon x-ray stimulation, stilbene/PS-pPA hydrogels emit blue light. While stilbene is an x-ray active material, it remains a poor emitter under x-ray irradiation. However, the color and amount of light emitted from stilbene/PS-pPA could be manipulated through judicious choice in fluorophores that form FRET pairs to span the visible spectrum. To this end, a copper(I) catalyzed azide/alkyne cycloaddition (CuAAC) reaction was employed to covalently attach an azide modified naphthalimide (AzNap) derivative to the particles all while being in hydrogel form. Stilbene and AzNap are FRET pairs with one another, which resulted in an increase of the total luminescence of the system; these hydrogels now emit green light. In addition, the original stilbene/PS-pPA hydrogels could be functionalized with both AzNap and an azide modified rhodamine B derivative (AzRhod), which are FRET pairs with each other, through CuAAC reactions in the hydrogel. These hydrogels emit orange light and the overall luminescence is similar to that of the AzNap functionalized hydrogels even through two energy transfers. These fully organic hydrogels may be suitable alternatives to toxic inorganic materials in x-ray based imaging techniques.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic-crystal hydrogels with a rapidly tunable stop band and high reflectivity across the visible

Jin-Gyu Park, W. Benjamin Rogers, Sofia Magkiriadou, Tom Kodger, Shin-Hyun Kim, Young-Seok Kim, and Vinothan N. Manoharan
Opt. Mater. Express 7(1) 253-263 (2017)

White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode for high color rendering index

Ilkem Ozge Huyal, Tuncay Ozel, Unsal Koldemir, Sedat Nizamoglu, Donus Tuncel, and Hilmi Volkan Demir
Opt. Express 16(2) 1115-1124 (2008)

Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation

Steven H. Huang, Saahil Sheth, Era Jain, Xuefeng Jiang, Silviya P. Zustiak, and Lan Yang
Opt. Express 26(1) 51-62 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Chen, M. M. Rogalski, and J. N. Anker, “Advances in functional x-ray imaging techniques and contrast agents,” Physical Chemistry Chemical Physics 14, 13469–13486 (2012).
    [Crossref] [PubMed]
  2. A. Karnkaew, F. Chen, Y. H. Zhan, R. L. Majewski, and W. B. Cai, “Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy,” ACS Nano 10, 3918–3935 (2016).
    [Crossref]
  3. N. Lee, S. H. Choi, and T. Hyeon, “Nano-sized ct contrast agents,” Advanced Materials 25, 2641–2660 (2013).
    [Crossref] [PubMed]
  4. G. N. Houndfield, “Computerized transverse axial scanning (tomography) .1. description of system,” British Journal of Radiology 46, 1016–1022 (1973).
    [Crossref]
  5. C. C. Hsu, S. L. Lin, and C. A. Chang, “Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single x-ray excitation source,” ACS Applied Materials & Interfaces 10, 7859–7870 (2018).
    [Crossref]
  6. H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
    [Crossref] [PubMed]
  7. G. R. Pereira, H. S. Rocha, C. Calza, M. J. Anjos, I. Lima, C. A. Perez, and R. T. Lopes, “3d elemental distribution images in biological samples by xrf mu ct,” X-Ray Spectrometry 40, 260–264 (2011).
    [Crossref]
  8. C. Q. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Optics Letters 38, 2339–2341 (2013).
    [Crossref] [PubMed]
  9. Y. Kuang, G. Pratx, M. Bazalova, B. W. Meng, J. G. Qian, and L. Xing, “First demonstration of multiplexed x-ray fluorescence computed tomography (xfct) imaging,” IEEE Transactions on Medical Imaging 32, 262–267 (2013).
    [Crossref]
  10. K. M. Hasebroock and N. J. Serkova, “Toxicity of mri and ct contrast agents,” Expert Opinion on Drug Metabolism & Toxicology 5, 403–416 (2009).
    [Crossref]
  11. T. Kanda, Y. Nakai, H. Oba, K. Toyoda, K. Kitajima, and S. Furui, “Gadolinium deposition in the brain,” Magnetic Resonance Imaging 34, 1346–1350 (2016).
    [Crossref] [PubMed]
  12. T. Paik, T. R. Gordon, A. M. Prantner, H. Yun, and C. B. Murray, “Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes,” ACS Nano 7, 2850–2859 (2013).
    [Crossref] [PubMed]
  13. C. M. Carpenter, C. Sun, G. Pratx, R. Rao, and L. Xing, “Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions,” Medical Physics 37, 4011–4018 (2010).
    [Crossref] [PubMed]
  14. T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
    [Crossref] [PubMed]
  15. L. Sudheendra, G. K. Das, C. Q. Li, D. Stark, J. Cena, S. Cherry, and I. M. Kennedy, “Nagdf4:eu3+ nanoparticles for enhanced x-ray excited optical imaging,” Chemistry of Materials 26, 1881–1888 (2014).
    [Crossref]
  16. D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
    [Crossref]
  17. X. L. Li, Z. L. Xue, M. Y. Jiang, Y. B. Li, S. J. Zeng, and H. R. Liu, “Soft x-ray activated nayf4:gd/tb scintillating nanorods for in vivo dual-modal x-ray/x-ray-induced optical bioimaging,” Nanoscale 10, 342–350 (2018).
    [Crossref]
  18. R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
    [Crossref]
  19. P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
    [Crossref] [PubMed]
  20. M. Burdette, Y. Bandera, G. M. Gray, and S. Foulger, “Dynamic emission tuning of x-ray radioluminescent crystalline colloidal arrays: Coupling the optical stop band with sequential föster resonance energy transfers,” Advanced Optical Materials 2018, 1801142 (2018).
  21. S. H. Foulger, P. Jiang, A. C. Lattam, D. W. Smith, and J. Ballato, “Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays,” Langmuir 17, 6023–6026 (2001).
    [Crossref]
  22. D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
    [Crossref]
  23. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
    [Crossref] [PubMed]
  24. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
    [Crossref] [PubMed]
  25. J. R. Lawrence, G.-H. Shim, P. Jiang, M. Han, Y. Ying, and S. H. Foulger, “Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays,” Advanced Materials 17, 2344–2349 (2005).
    [Crossref]
  26. M. Megens, J. E. G. J. Wjinhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and line widths of dye in photonic crystals,” Physical Review A 59, 4727–4731 (1999).
    [Crossref]
  27. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
    [Crossref]
  28. Y. Ying and S. H. Foulger, “Color characteristics of mechanochromic photonic bandgap composites,” Sensors and Actuators B: Chemical 137, 574–577 (2009).
    [Crossref]
  29. E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
    [Crossref] [PubMed]
  30. J. Ren, X. L. Zhao, Q. C. Wang, C. F. Ku, D. H. Qu, C. P. Chang, and H. Tian, “Synthesis and fluorescence properties of novel co-facial folded naphthalimide dimers,” Dyes and Pigments 64, 179–186 (2005).
    [Crossref]
  31. G. D. Chen, L. Z. Wang, J. L. Zhang, F. Chen, and M. Anpo, “Photophysical properties of a naphthalimide derivative encapsulated within si-mcm-41, ce-mcm-41 and al-mcm-41,” Dyes and Pigments 81, 119–123 (2009).
    [Crossref]
  32. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  33. S. L. Chin, “Further evidence of dimer emission from superradiant travelling-wave laser of concentrated aqueous-solution of rhodamine-6g and rhodamine-b,” Physics Letters A 48, 403–404 (1974).
    [Crossref]
  34. T. F. Deutsch, M. Bass, P. Meyer, and S Protopap., “Emission spectrum of rhodamine b dye lasers,” Applied Physics Letters 11, 379 (1967).
    [Crossref]
  35. H. H. Rao, Z. H. Xue, G. H. Zhao, S. Y. Li, and X. Z. Du, “Fluorescence emission properties of rhodamine b encapsulated organic-inorganic hybrid mesoporous silica host,” Journal of Non-Crystalline Solids 450, 32–37 (2016).
    [Crossref]
  36. B. Kolaric, K. Baert, M. Van der Auweraer, R. A. L. Vallee, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chemistry of Materials 19, 5547–5552 (2007).
    [Crossref]
  37. D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” Journal of Chemical Physics 147, 074117 (2017).
    [Crossref] [PubMed]
  38. M. Wubs and W. L. Vos, “Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion,” New Journal of Physics 18, 053037 (2016).
    [Crossref]
  39. C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the forster resonance energy transfer efficiency,” Physical Review Letters 109, 203601 (2012).
    [Crossref]
  40. P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
    [Crossref] [PubMed]
  41. H. T. Dung, L. Knoll, and D. G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Physical Review A 65, 043813 (2002).
    [Crossref]
  42. L. Yao, B. T. Smith, and J. Aube, “Base-promoted reactions of bridged ketones and 1,3- and 1,4-haloalkyl azides: Competitive alkylation vs azidation reactions of ketone enolates,” Journal of Organic Chemistry 69, 1720–1722 (2004).
    [Crossref] [PubMed]
  43. J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, and F. Santoyo-Gonzalez, “Vinyl sulfone: a versatile function for simple bioconjugation and immobilization,” Organic & Biomolecular Chemistry 8, 667–675 (2010).
    [Crossref]
  44. E. Fernandez-Megia, J. Correa, I. Rodriguez-Meizoso, and R. Riguera, “A click approach to unprotected glycoden-drimers,” Macromolecules 39, 2113–2120 (2006).
    [Crossref]
  45. M. E. Woods, J. S. Dodge, I. M. Krieger, and P. E. Pierce, “Monodisperse latices .i. emulsion polymerization with mixtures of anionic and nonionic surfactants,” Journal of Paint Technology 40, 541 (1968).

2018 (4)

C. C. Hsu, S. L. Lin, and C. A. Chang, “Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single x-ray excitation source,” ACS Applied Materials & Interfaces 10, 7859–7870 (2018).
[Crossref]

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

X. L. Li, Z. L. Xue, M. Y. Jiang, Y. B. Li, S. J. Zeng, and H. R. Liu, “Soft x-ray activated nayf4:gd/tb scintillating nanorods for in vivo dual-modal x-ray/x-ray-induced optical bioimaging,” Nanoscale 10, 342–350 (2018).
[Crossref]

M. Burdette, Y. Bandera, G. M. Gray, and S. Foulger, “Dynamic emission tuning of x-ray radioluminescent crystalline colloidal arrays: Coupling the optical stop band with sequential föster resonance energy transfers,” Advanced Optical Materials 2018, 1801142 (2018).

2017 (1)

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” Journal of Chemical Physics 147, 074117 (2017).
[Crossref] [PubMed]

2016 (4)

M. Wubs and W. L. Vos, “Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion,” New Journal of Physics 18, 053037 (2016).
[Crossref]

A. Karnkaew, F. Chen, Y. H. Zhan, R. L. Majewski, and W. B. Cai, “Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy,” ACS Nano 10, 3918–3935 (2016).
[Crossref]

T. Kanda, Y. Nakai, H. Oba, K. Toyoda, K. Kitajima, and S. Furui, “Gadolinium deposition in the brain,” Magnetic Resonance Imaging 34, 1346–1350 (2016).
[Crossref] [PubMed]

H. H. Rao, Z. H. Xue, G. H. Zhao, S. Y. Li, and X. Z. Du, “Fluorescence emission properties of rhodamine b encapsulated organic-inorganic hybrid mesoporous silica host,” Journal of Non-Crystalline Solids 450, 32–37 (2016).
[Crossref]

2015 (2)

D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
[Crossref]

E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
[Crossref] [PubMed]

2014 (1)

L. Sudheendra, G. K. Das, C. Q. Li, D. Stark, J. Cena, S. Cherry, and I. M. Kennedy, “Nagdf4:eu3+ nanoparticles for enhanced x-ray excited optical imaging,” Chemistry of Materials 26, 1881–1888 (2014).
[Crossref]

2013 (6)

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

T. Paik, T. R. Gordon, A. M. Prantner, H. Yun, and C. B. Murray, “Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes,” ACS Nano 7, 2850–2859 (2013).
[Crossref] [PubMed]

C. Q. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Optics Letters 38, 2339–2341 (2013).
[Crossref] [PubMed]

Y. Kuang, G. Pratx, M. Bazalova, B. W. Meng, J. G. Qian, and L. Xing, “First demonstration of multiplexed x-ray fluorescence computed tomography (xfct) imaging,” IEEE Transactions on Medical Imaging 32, 262–267 (2013).
[Crossref]

N. Lee, S. H. Choi, and T. Hyeon, “Nano-sized ct contrast agents,” Advanced Materials 25, 2641–2660 (2013).
[Crossref] [PubMed]

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

2012 (2)

H. Y. Chen, M. M. Rogalski, and J. N. Anker, “Advances in functional x-ray imaging techniques and contrast agents,” Physical Chemistry Chemical Physics 14, 13469–13486 (2012).
[Crossref] [PubMed]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the forster resonance energy transfer efficiency,” Physical Review Letters 109, 203601 (2012).
[Crossref]

2011 (2)

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

G. R. Pereira, H. S. Rocha, C. Calza, M. J. Anjos, I. Lima, C. A. Perez, and R. T. Lopes, “3d elemental distribution images in biological samples by xrf mu ct,” X-Ray Spectrometry 40, 260–264 (2011).
[Crossref]

2010 (2)

C. M. Carpenter, C. Sun, G. Pratx, R. Rao, and L. Xing, “Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions,” Medical Physics 37, 4011–4018 (2010).
[Crossref] [PubMed]

J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, and F. Santoyo-Gonzalez, “Vinyl sulfone: a versatile function for simple bioconjugation and immobilization,” Organic & Biomolecular Chemistry 8, 667–675 (2010).
[Crossref]

2009 (3)

Y. Ying and S. H. Foulger, “Color characteristics of mechanochromic photonic bandgap composites,” Sensors and Actuators B: Chemical 137, 574–577 (2009).
[Crossref]

K. M. Hasebroock and N. J. Serkova, “Toxicity of mri and ct contrast agents,” Expert Opinion on Drug Metabolism & Toxicology 5, 403–416 (2009).
[Crossref]

G. D. Chen, L. Z. Wang, J. L. Zhang, F. Chen, and M. Anpo, “Photophysical properties of a naphthalimide derivative encapsulated within si-mcm-41, ce-mcm-41 and al-mcm-41,” Dyes and Pigments 81, 119–123 (2009).
[Crossref]

2007 (2)

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. L. Vallee, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chemistry of Materials 19, 5547–5552 (2007).
[Crossref]

2006 (1)

E. Fernandez-Megia, J. Correa, I. Rodriguez-Meizoso, and R. Riguera, “A click approach to unprotected glycoden-drimers,” Macromolecules 39, 2113–2120 (2006).
[Crossref]

2005 (3)

J. Ren, X. L. Zhao, Q. C. Wang, C. F. Ku, D. H. Qu, C. P. Chang, and H. Tian, “Synthesis and fluorescence properties of novel co-facial folded naphthalimide dimers,” Dyes and Pigments 64, 179–186 (2005).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

J. R. Lawrence, G.-H. Shim, P. Jiang, M. Han, Y. Ying, and S. H. Foulger, “Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays,” Advanced Materials 17, 2344–2349 (2005).
[Crossref]

2004 (2)

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

L. Yao, B. T. Smith, and J. Aube, “Base-promoted reactions of bridged ketones and 1,3- and 1,4-haloalkyl azides: Competitive alkylation vs azidation reactions of ketone enolates,” Journal of Organic Chemistry 69, 1720–1722 (2004).
[Crossref] [PubMed]

2002 (1)

H. T. Dung, L. Knoll, and D. G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Physical Review A 65, 043813 (2002).
[Crossref]

2001 (1)

S. H. Foulger, P. Jiang, A. C. Lattam, D. W. Smith, and J. Ballato, “Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays,” Langmuir 17, 6023–6026 (2001).
[Crossref]

2000 (1)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[Crossref] [PubMed]

1999 (1)

M. Megens, J. E. G. J. Wjinhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and line widths of dye in photonic crystals,” Physical Review A 59, 4727–4731 (1999).
[Crossref]

1997 (1)

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters 58, 2059–2062 (1987).
[Crossref] [PubMed]

1974 (1)

S. L. Chin, “Further evidence of dimer emission from superradiant travelling-wave laser of concentrated aqueous-solution of rhodamine-6g and rhodamine-b,” Physics Letters A 48, 403–404 (1974).
[Crossref]

1973 (1)

G. N. Houndfield, “Computerized transverse axial scanning (tomography) .1. description of system,” British Journal of Radiology 46, 1016–1022 (1973).
[Crossref]

1968 (1)

M. E. Woods, J. S. Dodge, I. M. Krieger, and P. E. Pierce, “Monodisperse latices .i. emulsion polymerization with mixtures of anionic and nonionic surfactants,” Journal of Paint Technology 40, 541 (1968).

1967 (1)

T. F. Deutsch, M. Bass, P. Meyer, and S Protopap., “Emission spectrum of rhodamine b dye lasers,” Applied Physics Letters 11, 379 (1967).
[Crossref]

Alexis, F.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

Andrew, P.

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[Crossref] [PubMed]

Andrews, D. L.

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” Journal of Chemical Physics 147, 074117 (2017).
[Crossref] [PubMed]

Anjos, M. J.

G. R. Pereira, H. S. Rocha, C. Calza, M. J. Anjos, I. Lima, C. A. Perez, and R. T. Lopes, “3d elemental distribution images in biological samples by xrf mu ct,” X-Ray Spectrometry 40, 260–264 (2011).
[Crossref]

Anker, J. N.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

H. Y. Chen, M. M. Rogalski, and J. N. Anker, “Advances in functional x-ray imaging techniques and contrast agents,” Physical Chemistry Chemical Physics 14, 13469–13486 (2012).
[Crossref] [PubMed]

Anpo, M.

G. D. Chen, L. Z. Wang, J. L. Zhang, F. Chen, and M. Anpo, “Photophysical properties of a naphthalimide derivative encapsulated within si-mcm-41, ce-mcm-41 and al-mcm-41,” Dyes and Pigments 81, 119–123 (2009).
[Crossref]

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

Aube, J.

L. Yao, B. T. Smith, and J. Aube, “Base-promoted reactions of bridged ketones and 1,3- and 1,4-haloalkyl azides: Competitive alkylation vs azidation reactions of ketone enolates,” Journal of Organic Chemistry 69, 1720–1722 (2004).
[Crossref] [PubMed]

Baert, K.

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. L. Vallee, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chemistry of Materials 19, 5547–5552 (2007).
[Crossref]

Baldwin, W. S.

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

Ballato, J.

S. H. Foulger, P. Jiang, A. C. Lattam, D. W. Smith, and J. Ballato, “Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays,” Langmuir 17, 6023–6026 (2001).
[Crossref]

Bandera, Y.

M. Burdette, Y. Bandera, G. M. Gray, and S. Foulger, “Dynamic emission tuning of x-ray radioluminescent crystalline colloidal arrays: Coupling the optical stop band with sequential föster resonance energy transfers,” Advanced Optical Materials 2018, 1801142 (2018).

Bandera, Y. P.

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

Barnes, W. L.

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[Crossref] [PubMed]

Bass, M.

T. F. Deutsch, M. Bass, P. Meyer, and S Protopap., “Emission spectrum of rhodamine b dye lasers,” Applied Physics Letters 11, 379 (1967).
[Crossref]

Bazalova, M.

Y. Kuang, G. Pratx, M. Bazalova, B. W. Meng, J. G. Qian, and L. Xing, “First demonstration of multiplexed x-ray fluorescence computed tomography (xfct) imaging,” IEEE Transactions on Medical Imaging 32, 262–267 (2013).
[Crossref]

Bec, J.

C. Q. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Optics Letters 38, 2339–2341 (2013).
[Crossref] [PubMed]

Blum, C.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the forster resonance energy transfer efficiency,” Physical Review Letters 109, 203601 (2012).
[Crossref]

Bogomolov, V. N.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Burdette, M.

M. Burdette, Y. Bandera, G. M. Gray, and S. Foulger, “Dynamic emission tuning of x-ray radioluminescent crystalline colloidal arrays: Coupling the optical stop band with sequential föster resonance energy transfers,” Advanced Optical Materials 2018, 1801142 (2018).

Cai, W. B.

A. Karnkaew, F. Chen, Y. H. Zhan, R. L. Majewski, and W. B. Cai, “Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy,” ACS Nano 10, 3918–3935 (2016).
[Crossref]

Calza, C.

G. R. Pereira, H. S. Rocha, C. Calza, M. J. Anjos, I. Lima, C. A. Perez, and R. T. Lopes, “3d elemental distribution images in biological samples by xrf mu ct,” X-Ray Spectrometry 40, 260–264 (2011).
[Crossref]

Carpenter, C. M.

C. M. Carpenter, C. Sun, G. Pratx, R. Rao, and L. Xing, “Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions,” Medical Physics 37, 4011–4018 (2010).
[Crossref] [PubMed]

Carroll, J. B.

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

Cena, J.

L. Sudheendra, G. K. Das, C. Q. Li, D. Stark, J. Cena, S. Cherry, and I. M. Kennedy, “Nagdf4:eu3+ nanoparticles for enhanced x-ray excited optical imaging,” Chemistry of Materials 26, 1881–1888 (2014).
[Crossref]

Chang, C. A.

C. C. Hsu, S. L. Lin, and C. A. Chang, “Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single x-ray excitation source,” ACS Applied Materials & Interfaces 10, 7859–7870 (2018).
[Crossref]

Chang, C. P.

J. Ren, X. L. Zhao, Q. C. Wang, C. F. Ku, D. H. Qu, C. P. Chang, and H. Tian, “Synthesis and fluorescence properties of novel co-facial folded naphthalimide dimers,” Dyes and Pigments 64, 179–186 (2005).
[Crossref]

Chen, F.

A. Karnkaew, F. Chen, Y. H. Zhan, R. L. Majewski, and W. B. Cai, “Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy,” ACS Nano 10, 3918–3935 (2016).
[Crossref]

G. D. Chen, L. Z. Wang, J. L. Zhang, F. Chen, and M. Anpo, “Photophysical properties of a naphthalimide derivative encapsulated within si-mcm-41, ce-mcm-41 and al-mcm-41,” Dyes and Pigments 81, 119–123 (2009).
[Crossref]

Chen, G. D.

G. D. Chen, L. Z. Wang, J. L. Zhang, F. Chen, and M. Anpo, “Photophysical properties of a naphthalimide derivative encapsulated within si-mcm-41, ce-mcm-41 and al-mcm-41,” Dyes and Pigments 81, 119–123 (2009).
[Crossref]

Chen, H.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

Chen, H. Y.

H. Y. Chen, M. M. Rogalski, and J. N. Anker, “Advances in functional x-ray imaging techniques and contrast agents,” Physical Chemistry Chemical Physics 14, 13469–13486 (2012).
[Crossref] [PubMed]

Cherry, S.

L. Sudheendra, G. K. Das, C. Q. Li, D. Stark, J. Cena, S. Cherry, and I. M. Kennedy, “Nagdf4:eu3+ nanoparticles for enhanced x-ray excited optical imaging,” Chemistry of Materials 26, 1881–1888 (2014).
[Crossref]

Cherry, S. R.

C. Q. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Optics Letters 38, 2339–2341 (2013).
[Crossref] [PubMed]

Chin, S. L.

S. L. Chin, “Further evidence of dimer emission from superradiant travelling-wave laser of concentrated aqueous-solution of rhodamine-6g and rhodamine-b,” Physics Letters A 48, 403–404 (1974).
[Crossref]

Choi, S. H.

N. Lee, S. H. Choi, and T. Hyeon, “Nano-sized ct contrast agents,” Advanced Materials 25, 2641–2660 (2013).
[Crossref] [PubMed]

Clays, K.

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. L. Vallee, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chemistry of Materials 19, 5547–5552 (2007).
[Crossref]

Coles, S. J.

E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
[Crossref] [PubMed]

Colvin, D. C.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

Correa, J.

E. Fernandez-Megia, J. Correa, I. Rodriguez-Meizoso, and R. Riguera, “A click approach to unprotected glycoden-drimers,” Macromolecules 39, 2113–2120 (2006).
[Crossref]

Daniele, M. A.

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

Das, G. K.

L. Sudheendra, G. K. Das, C. Q. Li, D. Stark, J. Cena, S. Cherry, and I. M. Kennedy, “Nagdf4:eu3+ nanoparticles for enhanced x-ray excited optical imaging,” Chemistry of Materials 26, 1881–1888 (2014).
[Crossref]

Deutsch, T. F.

T. F. Deutsch, M. Bass, P. Meyer, and S Protopap., “Emission spectrum of rhodamine b dye lasers,” Applied Physics Letters 11, 379 (1967).
[Crossref]

Di, K.

C. Q. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Optics Letters 38, 2339–2341 (2013).
[Crossref] [PubMed]

Dodge, J. S.

M. E. Woods, J. S. Dodge, I. M. Krieger, and P. E. Pierce, “Monodisperse latices .i. emulsion polymerization with mixtures of anionic and nonionic surfactants,” Journal of Paint Technology 40, 541 (1968).

Du, X. Z.

H. H. Rao, Z. H. Xue, G. H. Zhao, S. Y. Li, and X. Z. Du, “Fluorescence emission properties of rhodamine b encapsulated organic-inorganic hybrid mesoporous silica host,” Journal of Non-Crystalline Solids 450, 32–37 (2016).
[Crossref]

Dung, H. T.

H. T. Dung, L. Knoll, and D. G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Physical Review A 65, 043813 (2002).
[Crossref]

Duperreault, M. F.

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

Evanoff, D. D. J.

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

Fernandez-Megia, E.

E. Fernandez-Megia, J. Correa, I. Rodriguez-Meizoso, and R. Riguera, “A click approach to unprotected glycoden-drimers,” Macromolecules 39, 2113–2120 (2006).
[Crossref]

Foulger, S.

M. Burdette, Y. Bandera, G. M. Gray, and S. Foulger, “Dynamic emission tuning of x-ray radioluminescent crystalline colloidal arrays: Coupling the optical stop band with sequential föster resonance energy transfers,” Advanced Optical Materials 2018, 1801142 (2018).

Foulger, S. H.

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

Y. Ying and S. H. Foulger, “Color characteristics of mechanochromic photonic bandgap composites,” Sensors and Actuators B: Chemical 137, 574–577 (2009).
[Crossref]

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

J. R. Lawrence, G.-H. Shim, P. Jiang, M. Han, Y. Ying, and S. H. Foulger, “Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays,” Advanced Materials 17, 2344–2349 (2005).
[Crossref]

S. H. Foulger, P. Jiang, A. C. Lattam, D. W. Smith, and J. Ballato, “Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays,” Langmuir 17, 6023–6026 (2001).
[Crossref]

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

Furui, S.

T. Kanda, Y. Nakai, H. Oba, K. Toyoda, K. Kitajima, and S. Furui, “Gadolinium deposition in the brain,” Magnetic Resonance Imaging 34, 1346–1350 (2016).
[Crossref] [PubMed]

Gaponenko, N. V.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Gaponenko, S. V.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Germanenko, I. N.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Gordon, T. R.

T. Paik, T. R. Gordon, A. M. Prantner, H. Yun, and C. B. Murray, “Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes,” ACS Nano 7, 2850–2859 (2013).
[Crossref] [PubMed]

Gore, J. C.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

Gray, G. M.

M. Burdette, Y. Bandera, G. M. Gray, and S. Foulger, “Dynamic emission tuning of x-ray radioluminescent crystalline colloidal arrays: Coupling the optical stop band with sequential föster resonance energy transfers,” Advanced Optical Materials 2018, 1801142 (2018).

Gunapala, S. D.

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” Journal of Chemical Physics 147, 074117 (2017).
[Crossref] [PubMed]

Guo, T.

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

Han, M.

J. R. Lawrence, G.-H. Shim, P. Jiang, M. Han, Y. Ying, and S. H. Foulger, “Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays,” Advanced Materials 17, 2344–2349 (2005).
[Crossref]

Hanor, D.

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

Hasebroock, K. M.

K. M. Hasebroock and N. J. Serkova, “Toxicity of mri and ct contrast agents,” Expert Opinion on Drug Metabolism & Toxicology 5, 403–416 (2009).
[Crossref]

Hayes, A. J.

E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
[Crossref] [PubMed]

Hayes, S. E.

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

He, J.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

Hernandez-Mateo, F.

J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, and F. Santoyo-Gonzalez, “Vinyl sulfone: a versatile function for simple bioconjugation and immobilization,” Organic & Biomolecular Chemistry 8, 667–675 (2010).
[Crossref]

Hitchcock, D. A.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

Hong, J. S.

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

Horton, P. N.

E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
[Crossref] [PubMed]

Houchins, J. M.

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

Houndfield, G. N.

G. N. Houndfield, “Computerized transverse axial scanning (tomography) .1. description of system,” British Journal of Radiology 46, 1016–1022 (1973).
[Crossref]

Hsu, C. C.

C. C. Hsu, S. L. Lin, and C. A. Chang, “Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single x-ray excitation source,” ACS Applied Materials & Interfaces 10, 7859–7870 (2018).
[Crossref]

Huebner, C. E.

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

Hung, H.-I.

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

Hyeon, T.

N. Lee, S. H. Choi, and T. Hyeon, “Nano-sized ct contrast agents,” Advanced Materials 25, 2641–2660 (2013).
[Crossref] [PubMed]

Ikeda, D.

D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
[Crossref]

Irman, A.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Jelen, E. K.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

Jenkins, C.

D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
[Crossref]

Jetty, R.

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

Jiang, M. Y.

X. L. Li, Z. L. Xue, M. Y. Jiang, Y. B. Li, S. J. Zeng, and H. R. Liu, “Soft x-ray activated nayf4:gd/tb scintillating nanorods for in vivo dual-modal x-ray/x-ray-induced optical bioimaging,” Nanoscale 10, 342–350 (2018).
[Crossref]

Jiang, P.

J. R. Lawrence, G.-H. Shim, P. Jiang, M. Han, Y. Ying, and S. H. Foulger, “Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays,” Advanced Materials 17, 2344–2349 (2005).
[Crossref]

S. H. Foulger, P. Jiang, A. C. Lattam, D. W. Smith, and J. Ballato, “Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays,” Langmuir 17, 6023–6026 (2001).
[Crossref]

Kanda, T.

T. Kanda, Y. Nakai, H. Oba, K. Toyoda, K. Kitajima, and S. Furui, “Gadolinium deposition in the brain,” Magnetic Resonance Imaging 34, 1346–1350 (2016).
[Crossref] [PubMed]

Kapitonov, A. M.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Karnkaew, A.

A. Karnkaew, F. Chen, Y. H. Zhan, R. L. Majewski, and W. B. Cai, “Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy,” ACS Nano 10, 3918–3935 (2016).
[Crossref]

Kennedy, I. M.

L. Sudheendra, G. K. Das, C. Q. Li, D. Stark, J. Cena, S. Cherry, and I. M. Kennedy, “Nagdf4:eu3+ nanoparticles for enhanced x-ray excited optical imaging,” Chemistry of Materials 26, 1881–1888 (2014).
[Crossref]

Kitajima, K.

T. Kanda, Y. Nakai, H. Oba, K. Toyoda, K. Kitajima, and S. Furui, “Gadolinium deposition in the brain,” Magnetic Resonance Imaging 34, 1346–1350 (2016).
[Crossref] [PubMed]

Knoll, L.

H. T. Dung, L. Knoll, and D. G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Physical Review A 65, 043813 (2002).
[Crossref]

Koh, A. L.

D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
[Crossref]

Kolaric, B.

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. L. Vallee, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chemistry of Materials 19, 5547–5552 (2007).
[Crossref]

Krieger, I. M.

M. E. Woods, J. S. Dodge, I. M. Krieger, and P. E. Pierce, “Monodisperse latices .i. emulsion polymerization with mixtures of anionic and nonionic surfactants,” Journal of Paint Technology 40, 541 (1968).

Ku, C. F.

J. Ren, X. L. Zhao, Q. C. Wang, C. F. Ku, D. H. Qu, C. P. Chang, and H. Tian, “Synthesis and fluorescence properties of novel co-facial folded naphthalimide dimers,” Dyes and Pigments 64, 179–186 (2005).
[Crossref]

Kuang, Y.

Y. Kuang, G. Pratx, M. Bazalova, B. W. Meng, J. G. Qian, and L. Xing, “First demonstration of multiplexed x-ray fluorescence computed tomography (xfct) imaging,” IEEE Transactions on Medical Imaging 32, 262–267 (2013).
[Crossref]

Lagendijk, A.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the forster resonance energy transfer efficiency,” Physical Review Letters 109, 203601 (2012).
[Crossref]

M. Megens, J. E. G. J. Wjinhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and line widths of dye in photonic crystals,” Physical Review A 59, 4727–4731 (1999).
[Crossref]

Langdon-Jones, E. E.

E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
[Crossref] [PubMed]

Lattam, A. C.

S. H. Foulger, P. Jiang, A. C. Lattam, D. W. Smith, and J. Ballato, “Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays,” Langmuir 17, 6023–6026 (2001).
[Crossref]

Lawrence, J. R.

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

J. R. Lawrence, G.-H. Shim, P. Jiang, M. Han, Y. Ying, and S. H. Foulger, “Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays,” Advanced Materials 17, 2344–2349 (2005).
[Crossref]

Lee, N.

N. Lee, S. H. Choi, and T. Hyeon, “Nano-sized ct contrast agents,” Advanced Materials 25, 2641–2660 (2013).
[Crossref] [PubMed]

Lemasters, J. J.

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

Li, C. Q.

L. Sudheendra, G. K. Das, C. Q. Li, D. Stark, J. Cena, S. Cherry, and I. M. Kennedy, “Nagdf4:eu3+ nanoparticles for enhanced x-ray excited optical imaging,” Chemistry of Materials 26, 1881–1888 (2014).
[Crossref]

C. Q. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Optics Letters 38, 2339–2341 (2013).
[Crossref] [PubMed]

Li, J.

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

Li, S. Y.

H. H. Rao, Z. H. Xue, G. H. Zhao, S. Y. Li, and X. Z. Du, “Fluorescence emission properties of rhodamine b encapsulated organic-inorganic hybrid mesoporous silica host,” Journal of Non-Crystalline Solids 450, 32–37 (2016).
[Crossref]

Li, X. L.

X. L. Li, Z. L. Xue, M. Y. Jiang, Y. B. Li, S. J. Zeng, and H. R. Liu, “Soft x-ray activated nayf4:gd/tb scintillating nanorods for in vivo dual-modal x-ray/x-ray-induced optical bioimaging,” Nanoscale 10, 342–350 (2018).
[Crossref]

Li, Y.

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

Li, Y. B.

X. L. Li, Z. L. Xue, M. Y. Jiang, Y. B. Li, S. J. Zeng, and H. R. Liu, “Soft x-ray activated nayf4:gd/tb scintillating nanorods for in vivo dual-modal x-ray/x-ray-induced optical bioimaging,” Nanoscale 10, 342–350 (2018).
[Crossref]

Lima, I.

G. R. Pereira, H. S. Rocha, C. Calza, M. J. Anjos, I. Lima, C. A. Perez, and R. T. Lopes, “3d elemental distribution images in biological samples by xrf mu ct,” X-Ray Spectrometry 40, 260–264 (2011).
[Crossref]

Lin, R. H.

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

Lin, S. L.

C. C. Hsu, S. L. Lin, and C. A. Chang, “Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single x-ray excitation source,” ACS Applied Materials & Interfaces 10, 7859–7870 (2018).
[Crossref]

Lin, Y.

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

Liu, H. R.

X. L. Li, Z. L. Xue, M. Y. Jiang, Y. B. Li, S. J. Zeng, and H. R. Liu, “Soft x-ray activated nayf4:gd/tb scintillating nanorods for in vivo dual-modal x-ray/x-ray-induced optical bioimaging,” Nanoscale 10, 342–350 (2018).
[Crossref]

Lloyd, D.

E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
[Crossref] [PubMed]

Lodahl, P.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Lopes, R. T.

G. R. Pereira, H. S. Rocha, C. Calza, M. J. Anjos, I. Lima, C. A. Perez, and R. T. Lopes, “3d elemental distribution images in biological samples by xrf mu ct,” X-Ray Spectrometry 40, 260–264 (2011).
[Crossref]

Lopez-Jaramillo, J.

J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, and F. Santoyo-Gonzalez, “Vinyl sulfone: a versatile function for simple bioconjugation and immobilization,” Organic & Biomolecular Chemistry 8, 667–675 (2010).
[Crossref]

Lu, C. H.

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

Luzinov, I.

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

Majewski, R. L.

A. Karnkaew, F. Chen, Y. H. Zhan, R. L. Majewski, and W. B. Cai, “Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy,” ACS Nano 10, 3918–3935 (2016).
[Crossref]

Mefford, O. T.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

Megens, M.

M. Megens, J. E. G. J. Wjinhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and line widths of dye in photonic crystals,” Physical Review A 59, 4727–4731 (1999).
[Crossref]

Megia-Fernandez, A.

J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, and F. Santoyo-Gonzalez, “Vinyl sulfone: a versatile function for simple bioconjugation and immobilization,” Organic & Biomolecular Chemistry 8, 667–675 (2010).
[Crossref]

Meng, B. W.

Y. Kuang, G. Pratx, M. Bazalova, B. W. Meng, J. G. Qian, and L. Xing, “First demonstration of multiplexed x-ray fluorescence computed tomography (xfct) imaging,” IEEE Transactions on Medical Imaging 32, 262–267 (2013).
[Crossref]

Meyer, P.

T. F. Deutsch, M. Bass, P. Meyer, and S Protopap., “Emission spectrum of rhodamine b dye lasers,” Applied Physics Letters 11, 379 (1967).
[Crossref]

Moore, T.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

Morales-Sanfrutos, J.

J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, and F. Santoyo-Gonzalez, “Vinyl sulfone: a versatile function for simple bioconjugation and immobilization,” Organic & Biomolecular Chemistry 8, 667–675 (2010).
[Crossref]

Mosk, A. P.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the forster resonance energy transfer efficiency,” Physical Review Letters 109, 203601 (2012).
[Crossref]

Mottram, H. J.

E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
[Crossref] [PubMed]

Murray, C. B.

T. Paik, T. R. Gordon, A. M. Prantner, H. Yun, and C. B. Murray, “Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes,” ACS Nano 7, 2850–2859 (2013).
[Crossref] [PubMed]

Naczynski, D. J.

D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
[Crossref]

Nakai, Y.

T. Kanda, Y. Nakai, H. Oba, K. Toyoda, K. Kitajima, and S. Furui, “Gadolinium deposition in the brain,” Magnetic Resonance Imaging 34, 1346–1350 (2016).
[Crossref] [PubMed]

Nieminen, A.-L.

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

Nikolaev, I. S.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Noda, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

Oba, H.

T. Kanda, Y. Nakai, H. Oba, K. Toyoda, K. Kitajima, and S. Furui, “Gadolinium deposition in the brain,” Magnetic Resonance Imaging 34, 1346–1350 (2016).
[Crossref] [PubMed]

Ortega-Munoz, M.

J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, and F. Santoyo-Gonzalez, “Vinyl sulfone: a versatile function for simple bioconjugation and immobilization,” Organic & Biomolecular Chemistry 8, 667–675 (2010).
[Crossref]

Overgaag, K.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Paik, T.

T. Paik, T. R. Gordon, A. M. Prantner, H. Yun, and C. B. Murray, “Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes,” ACS Nano 7, 2850–2859 (2013).
[Crossref] [PubMed]

Pereira, G. R.

G. R. Pereira, H. S. Rocha, C. Calza, M. J. Anjos, I. Lima, C. A. Perez, and R. T. Lopes, “3d elemental distribution images in biological samples by xrf mu ct,” X-Ray Spectrometry 40, 260–264 (2011).
[Crossref]

Perez, C. A.

G. R. Pereira, H. S. Rocha, C. Calza, M. J. Anjos, I. Lima, C. A. Perez, and R. T. Lopes, “3d elemental distribution images in biological samples by xrf mu ct,” X-Ray Spectrometry 40, 260–264 (2011).
[Crossref]

Perez-Balderas, F.

J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, and F. Santoyo-Gonzalez, “Vinyl sulfone: a versatile function for simple bioconjugation and immobilization,” Organic & Biomolecular Chemistry 8, 667–675 (2010).
[Crossref]

Petrov, E. P.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Pierce, P. E.

M. E. Woods, J. S. Dodge, I. M. Krieger, and P. E. Pierce, “Monodisperse latices .i. emulsion polymerization with mixtures of anionic and nonionic surfactants,” Journal of Paint Technology 40, 541 (1968).

Ponyavina, A. N.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Pope, S. J. A.

E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
[Crossref] [PubMed]

Prantner, A. M.

T. Paik, T. R. Gordon, A. M. Prantner, H. Yun, and C. B. Murray, “Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes,” ACS Nano 7, 2850–2859 (2013).
[Crossref] [PubMed]

Pratx, G.

D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
[Crossref]

Y. Kuang, G. Pratx, M. Bazalova, B. W. Meng, J. G. Qian, and L. Xing, “First demonstration of multiplexed x-ray fluorescence computed tomography (xfct) imaging,” IEEE Transactions on Medical Imaging 32, 262–267 (2013).
[Crossref]

C. M. Carpenter, C. Sun, G. Pratx, R. Rao, and L. Xing, “Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions,” Medical Physics 37, 4011–4018 (2010).
[Crossref] [PubMed]

Premaratne, M.

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” Journal of Chemical Physics 147, 074117 (2017).
[Crossref] [PubMed]

Prokofiev, A. V.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Protopap., S

T. F. Deutsch, M. Bass, P. Meyer, and S Protopap., “Emission spectrum of rhodamine b dye lasers,” Applied Physics Letters 11, 379 (1967).
[Crossref]

Qi, B.

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

Qian, J. G.

Y. Kuang, G. Pratx, M. Bazalova, B. W. Meng, J. G. Qian, and L. Xing, “First demonstration of multiplexed x-ray fluorescence computed tomography (xfct) imaging,” IEEE Transactions on Medical Imaging 32, 262–267 (2013).
[Crossref]

Qu, D. H.

J. Ren, X. L. Zhao, Q. C. Wang, C. F. Ku, D. H. Qu, C. P. Chang, and H. Tian, “Synthesis and fluorescence properties of novel co-facial folded naphthalimide dimers,” Dyes and Pigments 64, 179–186 (2005).
[Crossref]

Ramshesh, V.

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

Rao, H. H.

H. H. Rao, Z. H. Xue, G. H. Zhao, S. Y. Li, and X. Z. Du, “Fluorescence emission properties of rhodamine b encapsulated organic-inorganic hybrid mesoporous silica host,” Journal of Non-Crystalline Solids 450, 32–37 (2016).
[Crossref]

Rao, R.

C. M. Carpenter, C. Sun, G. Pratx, R. Rao, and L. Xing, “Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions,” Medical Physics 37, 4011–4018 (2010).
[Crossref] [PubMed]

Ren, J.

J. Ren, X. L. Zhao, Q. C. Wang, C. F. Ku, D. H. Qu, C. P. Chang, and H. Tian, “Synthesis and fluorescence properties of novel co-facial folded naphthalimide dimers,” Dyes and Pigments 64, 179–186 (2005).
[Crossref]

Riguera, R.

E. Fernandez-Megia, J. Correa, I. Rodriguez-Meizoso, and R. Riguera, “A click approach to unprotected glycoden-drimers,” Macromolecules 39, 2113–2120 (2006).
[Crossref]

Rocha, H. S.

G. R. Pereira, H. S. Rocha, C. Calza, M. J. Anjos, I. Lima, C. A. Perez, and R. T. Lopes, “3d elemental distribution images in biological samples by xrf mu ct,” X-Ray Spectrometry 40, 260–264 (2011).
[Crossref]

Rodriguez-Meizoso, I.

E. Fernandez-Megia, J. Correa, I. Rodriguez-Meizoso, and R. Riguera, “A click approach to unprotected glycoden-drimers,” Macromolecules 39, 2113–2120 (2006).
[Crossref]

Roeder, R. D.

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

Rogalski, M. M.

H. Y. Chen, M. M. Rogalski, and J. N. Anker, “Advances in functional x-ray imaging techniques and contrast agents,” Physical Chemistry Chemical Physics 14, 13469–13486 (2012).
[Crossref] [PubMed]

Rungta, P.

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

Samoilovich, S. M.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Santoyo-Gonzalez, F.

J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, and F. Santoyo-Gonzalez, “Vinyl sulfone: a versatile function for simple bioconjugation and immobilization,” Organic & Biomolecular Chemistry 8, 667–675 (2010).
[Crossref]

Sehorn, M. G.

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

Serkova, N. J.

K. M. Hasebroock and N. J. Serkova, “Toxicity of mri and ct contrast agents,” Expert Opinion on Drug Metabolism & Toxicology 5, 403–416 (2009).
[Crossref]

Sharma, D.

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

Shim, G.-H.

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

J. R. Lawrence, G.-H. Shim, P. Jiang, M. Han, Y. Ying, and S. H. Foulger, “Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays,” Advanced Materials 17, 2344–2349 (2005).
[Crossref]

Silvanovich, N. I.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Smith, B. T.

L. Yao, B. T. Smith, and J. Aube, “Base-promoted reactions of bridged ketones and 1,3- and 1,4-haloalkyl azides: Competitive alkylation vs azidation reactions of ketone enolates,” Journal of Organic Chemistry 69, 1720–1722 (2004).
[Crossref] [PubMed]

Smith, D. W.

S. H. Foulger, P. Jiang, A. C. Lattam, D. W. Smith, and J. Ballato, “Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays,” Langmuir 17, 6023–6026 (2001).
[Crossref]

Stark, D.

L. Sudheendra, G. K. Das, C. Q. Li, D. Stark, J. Cena, S. Cherry, and I. M. Kennedy, “Nagdf4:eu3+ nanoparticles for enhanced x-ray excited optical imaging,” Chemistry of Materials 26, 1881–1888 (2014).
[Crossref]

Subramaniam, V.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the forster resonance energy transfer efficiency,” Physical Review Letters 109, 203601 (2012).
[Crossref]

Sudheendra, L.

L. Sudheendra, G. K. Das, C. Q. Li, D. Stark, J. Cena, S. Cherry, and I. M. Kennedy, “Nagdf4:eu3+ nanoparticles for enhanced x-ray excited optical imaging,” Chemistry of Materials 26, 1881–1888 (2014).
[Crossref]

Sun, C.

D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
[Crossref]

C. M. Carpenter, C. Sun, G. Pratx, R. Rao, and L. Xing, “Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions,” Medical Physics 37, 4011–4018 (2010).
[Crossref] [PubMed]

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

Tian, H.

J. Ren, X. L. Zhao, Q. C. Wang, C. F. Ku, D. H. Qu, C. P. Chang, and H. Tian, “Synthesis and fluorescence properties of novel co-facial folded naphthalimide dimers,” Dyes and Pigments 64, 179–186 (2005).
[Crossref]

Toyoda, K.

T. Kanda, Y. Nakai, H. Oba, K. Toyoda, K. Kitajima, and S. Furui, “Gadolinium deposition in the brain,” Magnetic Resonance Imaging 34, 1346–1350 (2016).
[Crossref] [PubMed]

Turkcan, S.

D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
[Crossref]

Vallee, R. A. L.

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. L. Vallee, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chemistry of Materials 19, 5547–5552 (2007).
[Crossref]

Van der Auweraer, M.

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. L. Vallee, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chemistry of Materials 19, 5547–5552 (2007).
[Crossref]

van Driel, A. F.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Vanmaekelbergh, D.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

Vos, W. L.

M. Wubs and W. L. Vos, “Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion,” New Journal of Physics 18, 053037 (2016).
[Crossref]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the forster resonance energy transfer efficiency,” Physical Review Letters 109, 203601 (2012).
[Crossref]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

M. Megens, J. E. G. J. Wjinhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and line widths of dye in photonic crystals,” Physical Review A 59, 4727–4731 (1999).
[Crossref]

Wainwright, S. D.

E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
[Crossref] [PubMed]

Wang, L. Z.

G. D. Chen, L. Z. Wang, J. L. Zhang, F. Chen, and M. Anpo, “Photophysical properties of a naphthalimide derivative encapsulated within si-mcm-41, ce-mcm-41 and al-mcm-41,” Dyes and Pigments 81, 119–123 (2009).
[Crossref]

Wang, Q. C.

J. Ren, X. L. Zhao, Q. C. Wang, C. F. Ku, D. H. Qu, C. P. Chang, and H. Tian, “Synthesis and fluorescence properties of novel co-facial folded naphthalimide dimers,” Dyes and Pigments 64, 179–186 (2005).
[Crossref]

Weeraddana, D.

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” Journal of Chemical Physics 147, 074117 (2017).
[Crossref] [PubMed]

Welsch, D. G.

H. T. Dung, L. Knoll, and D. G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Physical Review A 65, 043813 (2002).
[Crossref]

Wjinhoven, J. E. G. J.

M. Megens, J. E. G. J. Wjinhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and line widths of dye in photonic crystals,” Physical Review A 59, 4727–4731 (1999).
[Crossref]

Woods, M. E.

M. E. Woods, J. S. Dodge, I. M. Krieger, and P. E. Pierce, “Monodisperse latices .i. emulsion polymerization with mixtures of anionic and nonionic surfactants,” Journal of Paint Technology 40, 541 (1968).

Wu, X. P.

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

Wubs, M.

M. Wubs and W. L. Vos, “Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion,” New Journal of Physics 18, 053037 (2016).
[Crossref]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the forster resonance energy transfer efficiency,” Physical Review Letters 109, 203601 (2012).
[Crossref]

Xing, L.

D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
[Crossref]

Y. Kuang, G. Pratx, M. Bazalova, B. W. Meng, J. G. Qian, and L. Xing, “First demonstration of multiplexed x-ray fluorescence computed tomography (xfct) imaging,” IEEE Transactions on Medical Imaging 32, 262–267 (2013).
[Crossref]

C. M. Carpenter, C. Sun, G. Pratx, R. Rao, and L. Xing, “Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions,” Medical Physics 37, 4011–4018 (2010).
[Crossref] [PubMed]

Xue, Z. H.

H. H. Rao, Z. H. Xue, G. H. Zhao, S. Y. Li, and X. Z. Du, “Fluorescence emission properties of rhodamine b encapsulated organic-inorganic hybrid mesoporous silica host,” Journal of Non-Crystalline Solids 450, 32–37 (2016).
[Crossref]

Xue, Z. L.

X. L. Li, Z. L. Xue, M. Y. Jiang, Y. B. Li, S. J. Zeng, and H. R. Liu, “Soft x-ray activated nayf4:gd/tb scintillating nanorods for in vivo dual-modal x-ray/x-ray-induced optical bioimaging,” Nanoscale 10, 342–350 (2018).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yang, H. H.

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

Yao, L.

L. Yao, B. T. Smith, and J. Aube, “Base-promoted reactions of bridged ketones and 1,3- and 1,4-haloalkyl azides: Competitive alkylation vs azidation reactions of ketone enolates,” Journal of Organic Chemistry 69, 1720–1722 (2004).
[Crossref] [PubMed]

Ying, Y.

Y. Ying and S. H. Foulger, “Color characteristics of mechanochromic photonic bandgap composites,” Sensors and Actuators B: Chemical 137, 574–577 (2009).
[Crossref]

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

J. R. Lawrence, G.-H. Shim, P. Jiang, M. Han, Y. Ying, and S. H. Foulger, “Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays,” Advanced Materials 17, 2344–2349 (2005).
[Crossref]

Yun, H.

T. Paik, T. R. Gordon, A. M. Prantner, H. Yun, and C. B. Murray, “Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes,” ACS Nano 7, 2850–2859 (2013).
[Crossref] [PubMed]

Zeng, S. J.

X. L. Li, Z. L. Xue, M. Y. Jiang, Y. B. Li, S. J. Zeng, and H. R. Liu, “Soft x-ray activated nayf4:gd/tb scintillating nanorods for in vivo dual-modal x-ray/x-ray-induced optical bioimaging,” Nanoscale 10, 342–350 (2018).
[Crossref]

Zhan, Y. H.

A. Karnkaew, F. Chen, Y. H. Zhan, R. L. Majewski, and W. B. Cai, “Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy,” ACS Nano 10, 3918–3935 (2016).
[Crossref]

Zhang, J. L.

G. D. Chen, L. Z. Wang, J. L. Zhang, F. Chen, and M. Anpo, “Photophysical properties of a naphthalimide derivative encapsulated within si-mcm-41, ce-mcm-41 and al-mcm-41,” Dyes and Pigments 81, 119–123 (2009).
[Crossref]

Zhang, W. J.

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

Zhao, G. H.

H. H. Rao, Z. H. Xue, G. H. Zhao, S. Y. Li, and X. Z. Du, “Fluorescence emission properties of rhodamine b encapsulated organic-inorganic hybrid mesoporous silica host,” Journal of Non-Crystalline Solids 450, 32–37 (2016).
[Crossref]

Zhao, X. L.

J. Ren, X. L. Zhao, Q. C. Wang, C. F. Ku, D. H. Qu, C. P. Chang, and H. Tian, “Synthesis and fluorescence properties of novel co-facial folded naphthalimide dimers,” Dyes and Pigments 64, 179–186 (2005).
[Crossref]

Zijlstra, N.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the forster resonance energy transfer efficiency,” Physical Review Letters 109, 203601 (2012).
[Crossref]

ACS Applied Materials & Interfaces (1)

C. C. Hsu, S. L. Lin, and C. A. Chang, “Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single x-ray excitation source,” ACS Applied Materials & Interfaces 10, 7859–7870 (2018).
[Crossref]

ACS Nano (3)

H. Chen, T. Moore, B. Qi, D. C. Colvin, E. K. Jelen, D. A. Hitchcock, J. He, O. T. Mefford, J. C. Gore, F. Alexis, and J. N. Anker, “Monitoring ph-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence,” ACS Nano 7, 1178–1187 (2013).
[Crossref] [PubMed]

A. Karnkaew, F. Chen, Y. H. Zhan, R. L. Majewski, and W. B. Cai, “Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy,” ACS Nano 10, 3918–3935 (2016).
[Crossref]

T. Paik, T. R. Gordon, A. M. Prantner, H. Yun, and C. B. Murray, “Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes,” ACS Nano 7, 2850–2859 (2013).
[Crossref] [PubMed]

Advanced Materials (3)

N. Lee, S. H. Choi, and T. Hyeon, “Nano-sized ct contrast agents,” Advanced Materials 25, 2641–2660 (2013).
[Crossref] [PubMed]

J. R. Lawrence, G.-H. Shim, P. Jiang, M. Han, Y. Ying, and S. H. Foulger, “Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays,” Advanced Materials 17, 2344–2349 (2005).
[Crossref]

D. D. J. Evanoff, S. E. Hayes, Y. Ying, G.-H. Shim, J. R. Lawrence, J. B. Carroll, R. D. Roeder, J. M. Houchins, C. E. Huebner, and S. H. Foulger, “Functionalization of crystalline colloidal arrays through click chemistry,” Advanced Materials 19, 3507–3512 (2007).
[Crossref]

Advanced Optical Materials (1)

M. Burdette, Y. Bandera, G. M. Gray, and S. Foulger, “Dynamic emission tuning of x-ray radioluminescent crystalline colloidal arrays: Coupling the optical stop band with sequential föster resonance energy transfers,” Advanced Optical Materials 2018, 1801142 (2018).

Applied Physics Letters (1)

T. F. Deutsch, M. Bass, P. Meyer, and S Protopap., “Emission spectrum of rhodamine b dye lasers,” Applied Physics Letters 11, 379 (1967).
[Crossref]

British Journal of Radiology (1)

G. N. Houndfield, “Computerized transverse axial scanning (tomography) .1. description of system,” British Journal of Radiology 46, 1016–1022 (1973).
[Crossref]

Chemistry of Materials (2)

L. Sudheendra, G. K. Das, C. Q. Li, D. Stark, J. Cena, S. Cherry, and I. M. Kennedy, “Nagdf4:eu3+ nanoparticles for enhanced x-ray excited optical imaging,” Chemistry of Materials 26, 1881–1888 (2014).
[Crossref]

B. Kolaric, K. Baert, M. Van der Auweraer, R. A. L. Vallee, and K. Clays, “Controlling the fluorescence resonant energy transfer by photonic crystal band gap engineering,” Chemistry of Materials 19, 5547–5552 (2007).
[Crossref]

Dyes and Pigments (2)

J. Ren, X. L. Zhao, Q. C. Wang, C. F. Ku, D. H. Qu, C. P. Chang, and H. Tian, “Synthesis and fluorescence properties of novel co-facial folded naphthalimide dimers,” Dyes and Pigments 64, 179–186 (2005).
[Crossref]

G. D. Chen, L. Z. Wang, J. L. Zhang, F. Chen, and M. Anpo, “Photophysical properties of a naphthalimide derivative encapsulated within si-mcm-41, ce-mcm-41 and al-mcm-41,” Dyes and Pigments 81, 119–123 (2009).
[Crossref]

Expert Opinion on Drug Metabolism & Toxicology (1)

K. M. Hasebroock and N. J. Serkova, “Toxicity of mri and ct contrast agents,” Expert Opinion on Drug Metabolism & Toxicology 5, 403–416 (2009).
[Crossref]

IEEE Transactions on Medical Imaging (1)

Y. Kuang, G. Pratx, M. Bazalova, B. W. Meng, J. G. Qian, and L. Xing, “First demonstration of multiplexed x-ray fluorescence computed tomography (xfct) imaging,” IEEE Transactions on Medical Imaging 32, 262–267 (2013).
[Crossref]

Inorganic Chemistry (1)

E. E. Langdon-Jones, D. Lloyd, A. J. Hayes, S. D. Wainwright, H. J. Mottram, S. J. Coles, P. N. Horton, and S. J. A. Pope, “Alkynyl-naphthalimide fluorophores: Gold coordination chemistry and cellular imaging applications,” Inorganic Chemistry 54, 6606–6615 (2015).
[Crossref] [PubMed]

Journal of Chemical Physics (1)

D. Weeraddana, M. Premaratne, S. D. Gunapala, and D. L. Andrews, “Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror,” Journal of Chemical Physics 147, 074117 (2017).
[Crossref] [PubMed]

Journal of Materials Chemistry B (1)

R. Jetty, Y. P. Bandera, M. A. Daniele, D. Hanor, H.-I. Hung, V. Ramshesh, M. F. Duperreault, A.-L. Nieminen, J. J. Lemasters, and S. H. Foulger, “Protein triggered fluorescence switching of near-infrared emitting nanoparticles for contrast-enhanced imaging,” Journal of Materials Chemistry B 1, 4542–4554 (2013).
[Crossref]

Journal of Non-Crystalline Solids (1)

H. H. Rao, Z. H. Xue, G. H. Zhao, S. Y. Li, and X. Z. Du, “Fluorescence emission properties of rhodamine b encapsulated organic-inorganic hybrid mesoporous silica host,” Journal of Non-Crystalline Solids 450, 32–37 (2016).
[Crossref]

Journal of Organic Chemistry (1)

L. Yao, B. T. Smith, and J. Aube, “Base-promoted reactions of bridged ketones and 1,3- and 1,4-haloalkyl azides: Competitive alkylation vs azidation reactions of ketone enolates,” Journal of Organic Chemistry 69, 1720–1722 (2004).
[Crossref] [PubMed]

Journal of Paint Technology (1)

M. E. Woods, J. S. Dodge, I. M. Krieger, and P. E. Pierce, “Monodisperse latices .i. emulsion polymerization with mixtures of anionic and nonionic surfactants,” Journal of Paint Technology 40, 541 (1968).

Langmuir (1)

S. H. Foulger, P. Jiang, A. C. Lattam, D. W. Smith, and J. Ballato, “Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays,” Langmuir 17, 6023–6026 (2001).
[Crossref]

Macromolecular Bioscience (1)

P. Rungta, Y. P. Bandera, R. D. Roeder, Y. Li, W. S. Baldwin, D. Sharma, M. G. Sehorn, I. Luzinov, and S. H. Foulger, “Selective imaging and killing of cancer cells with protein-activated near-infrared fluorescing nanoparticles,” Macromolecular Bioscience 11, 927–937 (2011).
[Crossref] [PubMed]

Macromolecules (1)

E. Fernandez-Megia, J. Correa, I. Rodriguez-Meizoso, and R. Riguera, “A click approach to unprotected glycoden-drimers,” Macromolecules 39, 2113–2120 (2006).
[Crossref]

Magnetic Resonance Imaging (1)

T. Kanda, Y. Nakai, H. Oba, K. Toyoda, K. Kitajima, and S. Furui, “Gadolinium deposition in the brain,” Magnetic Resonance Imaging 34, 1346–1350 (2016).
[Crossref] [PubMed]

Medical Physics (1)

C. M. Carpenter, C. Sun, G. Pratx, R. Rao, and L. Xing, “Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions,” Medical Physics 37, 4011–4018 (2010).
[Crossref] [PubMed]

Nano Letters (1)

D. J. Naczynski, C. Sun, S. Turkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, and L. Xing, “X-ray-induced shortwave infrared biomedical imaging using rareearth nanoprobes,” Nano Letters 15, 96–102 (2015).
[Crossref]

Nanoscale (2)

X. L. Li, Z. L. Xue, M. Y. Jiang, Y. B. Li, S. J. Zeng, and H. R. Liu, “Soft x-ray activated nayf4:gd/tb scintillating nanorods for in vivo dual-modal x-ray/x-ray-induced optical bioimaging,” Nanoscale 10, 342–350 (2018).
[Crossref]

T. Guo, Y. Lin, W. J. Zhang, J. S. Hong, R. H. Lin, X. P. Wu, J. Li, C. H. Lu, and H. H. Yang, “High-efficiency x-ray luminescence in eu3+-activated tungstate nanoprobes for optical imaging through energy transfer sensitization,” Nanoscale 10, 1607–1612 (2018).
[Crossref] [PubMed]

Nature (1)

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref] [PubMed]

New Journal of Physics (1)

M. Wubs and W. L. Vos, “Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion,” New Journal of Physics 18, 053037 (2016).
[Crossref]

Optics Letters (1)

C. Q. Li, K. Di, J. Bec, and S. R. Cherry, “X-ray luminescence optical tomography imaging: experimental studies,” Optics Letters 38, 2339–2341 (2013).
[Crossref] [PubMed]

Organic & Biomolecular Chemistry (1)

J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, and F. Santoyo-Gonzalez, “Vinyl sulfone: a versatile function for simple bioconjugation and immobilization,” Organic & Biomolecular Chemistry 8, 667–675 (2010).
[Crossref]

Physical Chemistry Chemical Physics (1)

H. Y. Chen, M. M. Rogalski, and J. N. Anker, “Advances in functional x-ray imaging techniques and contrast agents,” Physical Chemistry Chemical Physics 14, 13469–13486 (2012).
[Crossref] [PubMed]

Physical Review A (2)

M. Megens, J. E. G. J. Wjinhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and line widths of dye in photonic crystals,” Physical Review A 59, 4727–4731 (1999).
[Crossref]

H. T. Dung, L. Knoll, and D. G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Physical Review A 65, 043813 (2002).
[Crossref]

Physical Review E (1)

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Physical Review E 55, 7619–7625 (1997).
[Crossref]

Physical Review Letters (2)

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the forster resonance energy transfer efficiency,” Physical Review Letters 109, 203601 (2012).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters 58, 2059–2062 (1987).
[Crossref] [PubMed]

Physics Letters A (1)

S. L. Chin, “Further evidence of dimer emission from superradiant travelling-wave laser of concentrated aqueous-solution of rhodamine-6g and rhodamine-b,” Physics Letters A 48, 403–404 (1974).
[Crossref]

Science (2)

P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,” Science 290, 785–788 (2000).
[Crossref] [PubMed]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

Sensors and Actuators B: Chemical (1)

Y. Ying and S. H. Foulger, “Color characteristics of mechanochromic photonic bandgap composites,” Sensors and Actuators B: Chemical 137, 574–577 (2009).
[Crossref]

X-Ray Spectrometry (1)

G. R. Pereira, H. S. Rocha, C. Calza, M. J. Anjos, I. Lima, C. A. Perez, and R. T. Lopes, “3d elemental distribution images in biological samples by xrf mu ct,” X-Ray Spectrometry 40, 260–264 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Crystalline colloidal array (CCA) composed of electrostatically assembled polystyrene-co-poly(propargyl acrylate) with stilbene encapsulated inside the particle in (a) liquid form and (b) encapsulated in a methacrylate based hydrogel that emits blue light upon x-ray stimulation (emitter series n°1). (c) Methacrylate based hydrogel composed of polystyrene-co-poly(propargyl acrylate) with stilbene encapsulated inside the particle with 2-(3-azidopropyl)-6-(piperidin-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (AzNap) covalently attached to the particles through a copper(I) catalyzed azide/alkyne cycloaddition (CuAAC) performed in the hydrogel (emitter series n°2). Emitter series n°2 emits green light upon x-ray irradiation. (d) Methacrylate based hydrogel composed of polystyrene-co-poly(propargyl acrylate) with stilbene encapsulated inside the particle with AzNap and N-(9-(2-((2-(2-(2-azidoethoxy)ethoxy)ethoxy)carbonyl)phenyl)-6-(diethylamino)9,9a-dihydro-3H-xanthen-3-ylidene-N-ethylethanaminium (AzRhod) covalently attached to the particles through copper(I) catalyzed azide/alkyne cycloaddition (CuAAC) reactions performed in the hydrogel; emitter series n°3 emits orange light upon x-ray stimulation.
Fig. 2
Fig. 2 (a) X-ray radioluminescence spectrum of stilbene in its crystalline powder form. (b) Optical photographs of stilbene/PS-pPA liquid CCA illuminated under white light (left) and under x-ray irradiation (right). Under x-ray excitation, the droplet appears a bright blue color while the droplet appears white under white light illumination. (c) Optical photographs of stilbene/PS-pPA liquid CCA illuminated under white light (left) and under x-ray stimulation (right). The droplet has been diluted on the right side, and an opalescent line can clearly be seen in the white light image (left), while the diluted portion of the CCA results in a dark blue color, and the undiluted portion results in a bright blue color under x-ray irradiation (right). X-ray radioluminescence (blue) and reflection (red) spectra of stilbene/PS-pPA liquid CCA with rejection wavelength at (d.1) 423 nm, (d.2) 470 nm, (d.3) 480 nm, and (d.4) 530 nm. X-ray irradiation performed with an AmpTek Mini-X x-ray unit equipped with a tungsten target operating at 50 kV and 70 μA.
Fig. 3
Fig. 3 Optical photographs of stilbene/PS-pPA methacrylate-based hydrogels (emitter series n°1) under (a) white light and (b) x-ray irradiation. X-ray radioluminescence (blue) and reflection (red) spectra of emitter series n°1 corresponding to reflection wavelength at (c) 483 nm, (d) 510 nm, and (e) 530 nm. X-ray irradiation performed with an AmpTek Mini-X x-ray unit equipped with a tungsten target operating at 50 kV and 70 μA.
Fig. 4
Fig. 4 Optical photographs of stilbene/PS-pPA methacrylate-based hydrogels functionalized with AzNap (emitter series n°2) through a CuAAC reaction in the hydrogel under (a) white light and (b) x-ray irradiation. X-ray radioluminescence (blue) and reflection (red) spectra of emitter series n°2 at rejection wavelength corresponding to (c) 478 nm and (d) 541 nm. X-ray irradiation performed with an AmpTek Mini-X x-ray unit equipped with a tungsten target operating at 50 kV and 70 μA.
Fig. 5
Fig. 5 Optical photographs of stilbene/PS-pPA methacrylate-based hydrogels functionalized with AzNap and AzRhod (emitter series n°3) through CuAAC reactions in the hydrogel under (a) white light and (b) x-ray irradiation. X-ray radioluminescence (blue) and reflection (red) spectra of emitter series n°3 corresponding to rejection wavelength at (c) 490 nm and (d) 532 nm. X-ray irradiation performed with an AmpTek Mini-X x-ray unit equipped with a tungsten target operating at 50 kV and 70 μA.
Fig. 6
Fig. 6 Synthetic scheme to yield 2-(3-azidopropyl)-6-(piperidin-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (AzNap).
Fig. 7
Fig. 7 Synthetic scheme to yield N-(9-(2-((2-(2-(2-azidoethoxy)ethoxy)ethoxy)carbonyl)phenyl)-6-(diethylamino)9,9a-dihydro-3H-xanthen-3-ylidene-N-ethylethanaminium (AzRhod).

Metrics