Abstract

The presence of excess free-ion impurities in liquid crystals (LCs) gives rise to a number of problems in the electro-optical liquid crystal displays (LCDs), e.g., slow electro-optical responses and image sticking effects. Here we experimentally present that the two-dimensional (2D) hexagonal boron nitride (h-BN) nanosheet can serve as a planar-alignment agent and as an ion-capturing agent at the same time in an electro-optic LC device. The 2D h-BN nanosheet is employed as a planar-alignment agent on one side of an LC cell, where the standard planar-aligning polyimide (PI) layer is used on the other side of the cell. The LC exhibits uniform planar-alignment in this h-BN/PI hybrid device. It is found that the free-ion impurities in the LC are significantly suppressed in this h-BN/PI hybrid cell compared to that in a standard PI/PI LC cell. The free-ion density is reduced in the hybrid cell due to the 2D h-BN nanosheet’s ion-capturing process. The reduction of ionic impurities results in an accelerated electro-optic response of the LC in the h-BN based hybrid cell—which may have potential application for faster electro-optic devices.

Full Article  |  PDF Article
OSA Recommended Articles
Characterizations of a graphene-polyimide hybrid electro-optical liquid crystal device

Rajratan Basu and Lukas J. Atwood
OSA Continuum 2(1) 83-91 (2019)

Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals

Vincent P. Tondiglia, Lalgudi V. Natarajan, Christopher A. Bailey, Michael E. McConney, Kyung Min Lee, Timothy J. Bunning, Rafael Zola, Hossein Nemati, Deng-Ke Yang, and Timothy J. White
Opt. Mater. Express 4(7) 1465-1472 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. H. Heilmeier and P. M. Heyman, “Note on Transient Current Measurements in Liquid Crystals and Related Systems,” Phys. Rev. Lett. 18(15), 583–585 (1967).
    [Crossref]
  2. G. Briere, F. Gaspard, and R. Herino, “Ionic residual conduction in the isotropic phase of a nematic liquid crystal,” Chem. Phys. Lett. 9(4), 285–288 (1971).
    [Crossref]
  3. S. Takahashi, “The investigation of a dc induced transient optical 30-Hz element in twisted nematic liquid-crystal displays,” J. Appl. Phys. 70(10), 5346–5350 (1991).
    [Crossref]
  4. H. De Vleeschouwer, B. Verweire, K. D’Have, and H. Zhang, “Electrical and Optical Measurements of the Image Sticking Effect in Nematic LCD'S,” Mol. Cryst. Liq. Cryst. 331(1), 567–574 (1999).
    [Crossref]
  5. H. De Vleeschouwer, F. Bougrioua, and H. Pauwels, “Importance of Ion Transport in Industrial LCD Applications,” Mol. Cryst. Liq. Cryst. 360(1), 29–39 (2001).
    [Crossref]
  6. D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
    [Crossref]
  7. H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
    [Crossref]
  8. K. H. Yang, “Charge retention of twisted nematic liquid-crystal displays,” J. Appl. Phys. 67(1), 36–39 (1990).
    [Crossref]
  9. N. Sasaki, “A New Measurement Method for Ion Density in TFT-LCD Panels,” Mol. Cryst. Liq. Cryst. 367(1), 671–679 (2001).
    [Crossref]
  10. S. Murakami and H. Naito, “Charge Injection and Generation in Nematic Liquid Crystal Cells,” Jpn. J. Appl. Phys. 36(Part 1), 773–776 (1997).
    [Crossref]
  11. S. Naemura and A. Sawada, “Ion Generation in Liquid Crystals under Electric Field,” Mol. Cryst. Liq. Cryst. 346(1), 155–168 (2000).
    [Crossref]
  12. N. A. J. M. Van Aerle, “Influence of Polyimide Orientation Layer Material on the Liquid Crystal Resistivity in LCDs,” Mol. Cryst. Liq. Cryst. 257(1), 193–208 (1994).
    [Crossref]
  13. K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
    [Crossref]
  14. M. Yamashita and Y. Amemiya, “Drift Mobility of Positive Ions in Nematic MBBA at Low Electric Field,” Jpn. J. Appl. Phys. 17(9), 1513–1517 (1978).
    [Crossref]
  15. V. Novotny, “Measurement of mobilities of particles in liquids by optical and electrical transients,” J. Appl. Phys. 50(4), 2787–2794 (1979).
    [Crossref]
  16. A. Sugimura, N. Matsui, Y. Takahashi, H. Sonomura, H. Naito, and M. Okuda, “Transient currents in nematic liquid crystals,” Phys. Rev. B 43(10), 8272–8276 (1991).
    [Crossref]
  17. H. Naito, M. Okuda, and A. Sugimura, “Transient discharging processes in nematic liquid crystals,” Phys. Rev. A 44(6), R3434–R3497 (1991).
    [Crossref]
  18. H. Naito, K. Yoshida, and M. Okuda, “Transient charging current in nematic liquid crystals,” J. Appl. Phys. 73(3), 1119–1125 (1993).
    [Crossref]
  19. C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
    [Crossref]
  20. A. Sawada, A. Manabe, and S. Nameura, “A Comparative Study on the Attributes of Ions in Nematic and Isotropic Phases,” Jpn. J. Appl. Phys. 40(Part 1), 220–224 (2001).
    [Crossref]
  21. Y. Garbovskiy and I. Glushchenko, “Ion trapping by means of ferroelectric nanoparticles, and the quantification of this process in liquid crystals,” Appl. Phys. Lett. 107(4), 041106 (2015).
    [Crossref]
  22. R. Basu and A. Garvey, “Effects of ferroelectric nanoparticles on ion transport in a liquid crystal,” Appl. Phys. Lett. 105(15), 151905 (2014).
    [Crossref]
  23. Y.-S. Ha, H.-J. Kim, H.-G. Park, and D.-S. Seo, “Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping,” Opt. Express 20(6), 6448–6455 (2012).
    [Crossref]
  24. C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett. 64(3), 466–468 (2010).
    [Crossref]
  25. H. Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90(3), 033510 (2007).
    [Crossref]
  26. R. Basu, “Effect of carbon nanotubes on the field-induced nematic switching,” Appl. Phys. Lett. 103(24), 241906 (2013).
    [Crossref]
  27. R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
    [Crossref]
  28. R. Basu, A. Garvey, and D. Kinnamon, “Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal,” J. Appl. Phys. 117(7), 074301 (2015).
    [Crossref]
  29. P.-W. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
    [Crossref]
  30. P.-C. Wu, L. N. Lisetski, and W. Lee, “Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets,” Opt. Express 23(9), 11195–11204 (2015).
    [Crossref]
  31. Y. Garbovskiy and I. Glushchenko, “Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena,” Crystals 5(4), 501–533 (2015).
    [Crossref]
  32. D. P. Singh, S. K. Gupta, T. Vimal, and R. Manohar, “Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate,” Phys. Rev. E 90(2), 022501 (2014).
    [Crossref]
  33. W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
    [Crossref]
  34. R. K. Shukla, K. K. Raina, and W. Haase, “Fast switching response and dielectric behavior of fullerene/ferroelectric liquid crystal nanocolloids,” Liq. Cryst. 41(12), 1726–1732 (2014).
    [Crossref]
  35. Y. Garbovskiy, “Kinetics of Ion-Capturing/Ion-Releasing Processes in Liquid Crystal Devices Utilizing Contaminated Nanoparticles and Alignment Films,” Nanomaterials 8(2), 59 (2018).
    [Crossref]
  36. Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
    [Crossref]
  37. G. J. Choi, Q. V. Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
    [Crossref]
  38. Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom-Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
    [Crossref]
  39. L. H. Li and Y. Chen, “Atomically Thin Boron Nitride: Unique Properties and Applications,” Adv. Funct. Mater. 26(16), 2594–2608 (2016).
    [Crossref]
  40. Y. Lin and J. W. Connell, “Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene,” Nanoscale 4(22), 6908–6939 (2012).
    [Crossref]
  41. G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimetals 95, 101–147 (2016).
    [Crossref]
  42. A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
    [Crossref]
  43. X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys.: Conf. Ser. 471, 012003 (2013).
    [Crossref]
  44. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref]
  45. X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
    [Crossref]
  46. M. A. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
    [Crossref]
  47. D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2012).
    [Crossref]
  48. J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
    [Crossref]
  49. Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
    [Crossref]
  50. R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13-15), 2375–2390 (2016).
    [Crossref]
  51. R. Basu and S. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1), 012702 (2017).
    [Crossref]
  52. R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
    [Crossref]
  53. R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1), 012707 (2017).
    [Crossref]
  54. R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
    [Crossref]
  55. R. Basu and L. Atwood, “Characterizations of a graphene-polyimide hybrid electro-optical liquid crystal device,” OSA Continuum 2(1), 83–91 (2019).
    [Crossref]
  56. K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
    [Crossref]
  57. R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
    [Crossref]
  58. R. Basu and L. Atwood, “Two-dimensional hexagonal boron nitride nanosheet as the planar-alignment agent in a liquid crystal-based electro-optic device,” Opt. Express 27(1), 282–292 (2019).
    [Crossref]
  59. Z. Zou, N. A. Clark, and M. A. Handschy, “Ionic transport effects in SSFLC cells,” Ferroelectrics 121(1), 147–158 (1991).
    [Crossref]
  60. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1994).
  61. L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer-Verlag, 1996).
  62. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
    [Crossref]
  63. M. Caggioni, A. Roshi, S. Barjami, F. Mantegazza, G. S. Iannacchione, and T. Bellini, “Isotropic to Nematic Transition of Aerosil-Disordered Liquid Crystals,” Phys. Rev. Lett. 93(12), 127801 (2004).
    [Crossref]
  64. G. Yadav, R. Katiyar, G. Pathak, and R. Manohar, “Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal,” J. Theor. Appl. Phys. 12(3), 191–198 (2018).
    [Crossref]
  65. R. Basu and G. S. Iannacchione, “High-resolution dielectric spectroscopy and electric-field dependence of carbon allotropes including multiwall and single-wall nanotubes,” Appl. Phys. Lett. 92(5), 052906 (2008).
    [Crossref]
  66. W. Lee, H.-Y. Chen, and Y.-C. Shih, “Reduced dc offset and faster dynamic response in a carbon-nanotube-impregnated liquid-crystal display,” J. Soc. Inf. Disp. 16(7), 733–741 (2008).
    [Crossref]

2019 (2)

2018 (2)

G. Yadav, R. Katiyar, G. Pathak, and R. Manohar, “Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal,” J. Theor. Appl. Phys. 12(3), 191–198 (2018).
[Crossref]

Y. Garbovskiy, “Kinetics of Ion-Capturing/Ion-Releasing Processes in Liquid Crystal Devices Utilizing Contaminated Nanoparticles and Alignment Films,” Nanomaterials 8(2), 59 (2018).
[Crossref]

2017 (5)

Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
[Crossref]

G. J. Choi, Q. V. Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref]

R. Basu and S. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1), 012702 (2017).
[Crossref]

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1), 012707 (2017).
[Crossref]

2016 (6)

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13-15), 2375–2390 (2016).
[Crossref]

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom-Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

L. H. Li and Y. Chen, “Atomically Thin Boron Nitride: Unique Properties and Applications,” Adv. Funct. Mater. 26(16), 2594–2608 (2016).
[Crossref]

G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimetals 95, 101–147 (2016).
[Crossref]

2015 (6)

Y. Garbovskiy and I. Glushchenko, “Ion trapping by means of ferroelectric nanoparticles, and the quantification of this process in liquid crystals,” Appl. Phys. Lett. 107(4), 041106 (2015).
[Crossref]

Y. Garbovskiy and I. Glushchenko, “Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena,” Crystals 5(4), 501–533 (2015).
[Crossref]

P.-C. Wu, L. N. Lisetski, and W. Lee, “Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets,” Opt. Express 23(9), 11195–11204 (2015).
[Crossref]

Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
[Crossref]

M. A. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref]

R. Basu, A. Garvey, and D. Kinnamon, “Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal,” J. Appl. Phys. 117(7), 074301 (2015).
[Crossref]

2014 (5)

R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
[Crossref]

D. P. Singh, S. K. Gupta, T. Vimal, and R. Manohar, “Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate,” Phys. Rev. E 90(2), 022501 (2014).
[Crossref]

R. K. Shukla, K. K. Raina, and W. Haase, “Fast switching response and dielectric behavior of fullerene/ferroelectric liquid crystal nanocolloids,” Liq. Cryst. 41(12), 1726–1732 (2014).
[Crossref]

R. Basu and A. Garvey, “Effects of ferroelectric nanoparticles on ion transport in a liquid crystal,” Appl. Phys. Lett. 105(15), 151905 (2014).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

2013 (3)

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys.: Conf. Ser. 471, 012003 (2013).
[Crossref]

P.-W. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

R. Basu, “Effect of carbon nanotubes on the field-induced nematic switching,” Appl. Phys. Lett. 103(24), 241906 (2013).
[Crossref]

2012 (6)

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2012).
[Crossref]

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Y.-S. Ha, H.-J. Kim, H.-G. Park, and D.-S. Seo, “Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping,” Opt. Express 20(6), 6448–6455 (2012).
[Crossref]

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Y. Lin and J. W. Connell, “Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene,” Nanoscale 4(22), 6908–6939 (2012).
[Crossref]

2011 (1)

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

2010 (1)

C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett. 64(3), 466–468 (2010).
[Crossref]

2009 (1)

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

2008 (2)

R. Basu and G. S. Iannacchione, “High-resolution dielectric spectroscopy and electric-field dependence of carbon allotropes including multiwall and single-wall nanotubes,” Appl. Phys. Lett. 92(5), 052906 (2008).
[Crossref]

W. Lee, H.-Y. Chen, and Y.-C. Shih, “Reduced dc offset and faster dynamic response in a carbon-nanotube-impregnated liquid-crystal display,” J. Soc. Inf. Disp. 16(7), 733–741 (2008).
[Crossref]

2007 (2)

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

H. Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90(3), 033510 (2007).
[Crossref]

2004 (2)

M. Caggioni, A. Roshi, S. Barjami, F. Mantegazza, G. S. Iannacchione, and T. Bellini, “Isotropic to Nematic Transition of Aerosil-Disordered Liquid Crystals,” Phys. Rev. Lett. 93(12), 127801 (2004).
[Crossref]

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[Crossref]

2003 (1)

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

2001 (4)

H. De Vleeschouwer, F. Bougrioua, and H. Pauwels, “Importance of Ion Transport in Industrial LCD Applications,” Mol. Cryst. Liq. Cryst. 360(1), 29–39 (2001).
[Crossref]

H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
[Crossref]

N. Sasaki, “A New Measurement Method for Ion Density in TFT-LCD Panels,” Mol. Cryst. Liq. Cryst. 367(1), 671–679 (2001).
[Crossref]

A. Sawada, A. Manabe, and S. Nameura, “A Comparative Study on the Attributes of Ions in Nematic and Isotropic Phases,” Jpn. J. Appl. Phys. 40(Part 1), 220–224 (2001).
[Crossref]

2000 (1)

S. Naemura and A. Sawada, “Ion Generation in Liquid Crystals under Electric Field,” Mol. Cryst. Liq. Cryst. 346(1), 155–168 (2000).
[Crossref]

1999 (1)

H. De Vleeschouwer, B. Verweire, K. D’Have, and H. Zhang, “Electrical and Optical Measurements of the Image Sticking Effect in Nematic LCD'S,” Mol. Cryst. Liq. Cryst. 331(1), 567–574 (1999).
[Crossref]

1997 (1)

S. Murakami and H. Naito, “Charge Injection and Generation in Nematic Liquid Crystal Cells,” Jpn. J. Appl. Phys. 36(Part 1), 773–776 (1997).
[Crossref]

1996 (1)

C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
[Crossref]

1994 (1)

N. A. J. M. Van Aerle, “Influence of Polyimide Orientation Layer Material on the Liquid Crystal Resistivity in LCDs,” Mol. Cryst. Liq. Cryst. 257(1), 193–208 (1994).
[Crossref]

1993 (1)

H. Naito, K. Yoshida, and M. Okuda, “Transient charging current in nematic liquid crystals,” J. Appl. Phys. 73(3), 1119–1125 (1993).
[Crossref]

1991 (4)

A. Sugimura, N. Matsui, Y. Takahashi, H. Sonomura, H. Naito, and M. Okuda, “Transient currents in nematic liquid crystals,” Phys. Rev. B 43(10), 8272–8276 (1991).
[Crossref]

H. Naito, M. Okuda, and A. Sugimura, “Transient discharging processes in nematic liquid crystals,” Phys. Rev. A 44(6), R3434–R3497 (1991).
[Crossref]

S. Takahashi, “The investigation of a dc induced transient optical 30-Hz element in twisted nematic liquid-crystal displays,” J. Appl. Phys. 70(10), 5346–5350 (1991).
[Crossref]

Z. Zou, N. A. Clark, and M. A. Handschy, “Ionic transport effects in SSFLC cells,” Ferroelectrics 121(1), 147–158 (1991).
[Crossref]

1990 (1)

K. H. Yang, “Charge retention of twisted nematic liquid-crystal displays,” J. Appl. Phys. 67(1), 36–39 (1990).
[Crossref]

1979 (1)

V. Novotny, “Measurement of mobilities of particles in liquids by optical and electrical transients,” J. Appl. Phys. 50(4), 2787–2794 (1979).
[Crossref]

1978 (1)

M. Yamashita and Y. Amemiya, “Drift Mobility of Positive Ions in Nematic MBBA at Low Electric Field,” Jpn. J. Appl. Phys. 17(9), 1513–1517 (1978).
[Crossref]

1971 (1)

G. Briere, F. Gaspard, and R. Herino, “Ionic residual conduction in the isotropic phase of a nematic liquid crystal,” Chem. Phys. Lett. 9(4), 285–288 (1971).
[Crossref]

1967 (1)

G. H. Heilmeier and P. M. Heyman, “Note on Transient Current Measurements in Liquid Crystals and Related Systems,” Phys. Rev. Lett. 18(15), 583–585 (1967).
[Crossref]

Alexander, E.

H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
[Crossref]

Amemiya, Y.

M. Yamashita and Y. Amemiya, “Drift Mobility of Positive Ions in Nematic MBBA at Low Electric Field,” Jpn. J. Appl. Phys. 17(9), 1513–1517 (1978).
[Crossref]

Atwood, L.

Bando, Y.

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys.: Conf. Ser. 471, 012003 (2013).
[Crossref]

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Barjami, S.

M. Caggioni, A. Roshi, S. Barjami, F. Mantegazza, G. S. Iannacchione, and T. Bellini, “Isotropic to Nematic Transition of Aerosil-Disordered Liquid Crystals,” Phys. Rev. Lett. 93(12), 127801 (2004).
[Crossref]

Basu, R.

R. Basu and L. Atwood, “Characterizations of a graphene-polyimide hybrid electro-optical liquid crystal device,” OSA Continuum 2(1), 83–91 (2019).
[Crossref]

R. Basu and L. Atwood, “Two-dimensional hexagonal boron nitride nanosheet as the planar-alignment agent in a liquid crystal-based electro-optic device,” Opt. Express 27(1), 282–292 (2019).
[Crossref]

R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1), 012707 (2017).
[Crossref]

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

R. Basu and S. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1), 012702 (2017).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13-15), 2375–2390 (2016).
[Crossref]

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

R. Basu, A. Garvey, and D. Kinnamon, “Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal,” J. Appl. Phys. 117(7), 074301 (2015).
[Crossref]

R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
[Crossref]

R. Basu and A. Garvey, “Effects of ferroelectric nanoparticles on ion transport in a liquid crystal,” Appl. Phys. Lett. 105(15), 151905 (2014).
[Crossref]

R. Basu, “Effect of carbon nanotubes on the field-induced nematic switching,” Appl. Phys. Lett. 103(24), 241906 (2013).
[Crossref]

R. Basu and G. S. Iannacchione, “High-resolution dielectric spectroscopy and electric-field dependence of carbon allotropes including multiwall and single-wall nanotubes,” Appl. Phys. Lett. 92(5), 052906 (2008).
[Crossref]

Belle, B. D.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Bellini, T.

M. Caggioni, A. Roshi, S. Barjami, F. Mantegazza, G. S. Iannacchione, and T. Bellini, “Isotropic to Nematic Transition of Aerosil-Disordered Liquid Crystals,” Phys. Rev. Lett. 93(12), 127801 (2004).
[Crossref]

Bhimanapati, G. R.

G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimetals 95, 101–147 (2016).
[Crossref]

Blinov, L. M.

L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer-Verlag, 1996).

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Bougrioua, F.

H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
[Crossref]

H. De Vleeschouwer, F. Bougrioua, and H. Pauwels, “Importance of Ion Transport in Industrial LCD Applications,” Mol. Cryst. Liq. Cryst. 360(1), 29–39 (2001).
[Crossref]

Briere, G.

G. Briere, F. Gaspard, and R. Herino, “Ionic residual conduction in the isotropic phase of a nematic liquid crystal,” Chem. Phys. Lett. 9(4), 285–288 (1971).
[Crossref]

Britnell, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Caggioni, M.

M. Caggioni, A. Roshi, S. Barjami, F. Mantegazza, G. S. Iannacchione, and T. Bellini, “Isotropic to Nematic Transition of Aerosil-Disordered Liquid Crystals,” Phys. Rev. Lett. 93(12), 127801 (2004).
[Crossref]

Cai, W.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Calizo, I.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Chen, H.

D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Chen, H. Y.

H. Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90(3), 033510 (2007).
[Crossref]

Chen, H.-Y.

W. Lee, H.-Y. Chen, and Y.-C. Shih, “Reduced dc offset and faster dynamic response in a carbon-nanotube-impregnated liquid-crystal display,” J. Soc. Inf. Disp. 16(7), 733–741 (2008).
[Crossref]

Chen, Y.

L. H. Li and Y. Chen, “Atomically Thin Boron Nitride: Unique Properties and Applications,” Adv. Funct. Mater. 26(16), 2594–2608 (2016).
[Crossref]

Cheng, G.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Chigrinov, V. G.

L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer-Verlag, 1996).

Choi, G. J.

G. J. Choi, Q. V. Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref]

Choi, J.-Y.

Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
[Crossref]

Choi, K. S.

G. J. Choi, Q. V. Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref]

Choi, Y. E.

Clark, N. A.

H. Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90(3), 033510 (2007).
[Crossref]

Z. Zou, N. A. Clark, and M. A. Handschy, “Ionic transport effects in SSFLC cells,” Ferroelectrics 121(1), 147–158 (1991).
[Crossref]

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Colpaert, C.

C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
[Crossref]

Connell, J. W.

Y. Lin and J. W. Connell, “Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene,” Nanoscale 4(22), 6908–6939 (2012).
[Crossref]

D’Have, K.

H. De Vleeschouwer, B. Verweire, K. D’Have, and H. Zhang, “Electrical and Optical Measurements of the Image Sticking Effect in Nematic LCD'S,” Mol. Cryst. Liq. Cryst. 331(1), 567–574 (1999).
[Crossref]

de Boer, D. K. G.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

De Gennes, P. G.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1994).

De Meyere, A.

C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
[Crossref]

De Vleeschouwer, H.

H. De Vleeschouwer, F. Bougrioua, and H. Pauwels, “Importance of Ion Transport in Industrial LCD Applications,” Mol. Cryst. Liq. Cryst. 360(1), 29–39 (2001).
[Crossref]

H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
[Crossref]

H. De Vleeschouwer, B. Verweire, K. D’Have, and H. Zhang, “Electrical and Optical Measurements of the Image Sticking Effect in Nematic LCD'S,” Mol. Cryst. Liq. Cryst. 331(1), 567–574 (1999).
[Crossref]

Desimpel, C.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

Eaves, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Eom, J.

M. A. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref]

Garbovskiy, Y.

Y. Garbovskiy, “Kinetics of Ion-Capturing/Ion-Releasing Processes in Liquid Crystal Devices Utilizing Contaminated Nanoparticles and Alignment Films,” Nanomaterials 8(2), 59 (2018).
[Crossref]

Y. Garbovskiy and I. Glushchenko, “Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena,” Crystals 5(4), 501–533 (2015).
[Crossref]

Y. Garbovskiy and I. Glushchenko, “Ion trapping by means of ferroelectric nanoparticles, and the quantification of this process in liquid crystals,” Appl. Phys. Lett. 107(4), 041106 (2015).
[Crossref]

Garvey, A.

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13-15), 2375–2390 (2016).
[Crossref]

R. Basu, A. Garvey, and D. Kinnamon, “Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal,” J. Appl. Phys. 117(7), 074301 (2015).
[Crossref]

R. Basu and A. Garvey, “Effects of ferroelectric nanoparticles on ion transport in a liquid crystal,” Appl. Phys. Lett. 105(15), 151905 (2014).
[Crossref]

Gaspard, F.

G. Briere, F. Gaspard, and R. Herino, “Ionic residual conduction in the isotropic phase of a nematic liquid crystal,” Chem. Phys. Lett. 9(4), 285–288 (1971).
[Crossref]

Geim, A. K.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Glavin, N. R.

G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimetals 95, 101–147 (2016).
[Crossref]

Glushchenko, I.

Y. Garbovskiy and I. Glushchenko, “Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena,” Crystals 5(4), 501–533 (2015).
[Crossref]

Y. Garbovskiy and I. Glushchenko, “Ion trapping by means of ferroelectric nanoparticles, and the quantification of this process in liquid crystals,” Appl. Phys. Lett. 107(4), 041106 (2015).
[Crossref]

Golberg, D.

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys.: Conf. Ser. 471, 012003 (2013).
[Crossref]

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Gorbachev, R. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Gupta, S. K.

D. P. Singh, S. K. Gupta, T. Vimal, and R. Manohar, “Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate,” Phys. Rev. E 90(2), 022501 (2014).
[Crossref]

Gwag, J. S.

G. J. Choi, Q. V. Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref]

Ha, D. H.

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref]

Ha, Y.-S.

Haase, W.

R. K. Shukla, K. K. Raina, and W. Haase, “Fast switching response and dielectric behavior of fullerene/ferroelectric liquid crystal nanocolloids,” Liq. Cryst. 41(12), 1726–1732 (2014).
[Crossref]

Hacker, C. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Han, B.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Handschy, M. A.

Z. Zou, N. A. Clark, and M. A. Handschy, “Ionic transport effects in SSFLC cells,” Ferroelectrics 121(1), 147–158 (1991).
[Crossref]

Heilmeier, G. H.

G. H. Heilmeier and P. M. Heyman, “Note on Transient Current Measurements in Liquid Crystals and Related Systems,” Phys. Rev. Lett. 18(15), 583–585 (1967).
[Crossref]

Herino, R.

G. Briere, F. Gaspard, and R. Herino, “Ionic residual conduction in the isotropic phase of a nematic liquid crystal,” Chem. Phys. Lett. 9(4), 285–288 (1971).
[Crossref]

Heyman, P. M.

G. H. Heilmeier and P. M. Heyman, “Note on Transient Current Measurements in Liquid Crystals and Related Systems,” Phys. Rev. Lett. 18(15), 583–585 (1967).
[Crossref]

Hwang, C.

M. A. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref]

Iannacchione, G. S.

R. Basu and G. S. Iannacchione, “High-resolution dielectric spectroscopy and electric-field dependence of carbon allotropes including multiwall and single-wall nanotubes,” Appl. Phys. Lett. 92(5), 052906 (2008).
[Crossref]

M. Caggioni, A. Roshi, S. Barjami, F. Mantegazza, G. S. Iannacchione, and T. Bellini, “Isotropic to Nematic Transition of Aerosil-Disordered Liquid Crystals,” Phys. Rev. Lett. 93(12), 127801 (2004).
[Crossref]

Iqbal, M. W.

M. A. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref]

Jalil, R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Jang, H. W.

G. J. Choi, Q. V. Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref]

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom-Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Jeong, H. S.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2012).
[Crossref]

Jung, H.-T.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2012).
[Crossref]

Katiyar, R.

G. Yadav, R. Katiyar, G. Pathak, and R. Manohar, “Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal,” J. Theor. Appl. Phys. 12(3), 191–198 (2018).
[Crossref]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Kim, D. W.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2012).
[Crossref]

Kim, H.-J.

Kim, J. H.

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref]

Kim, S. Y.

G. J. Choi, Q. V. Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref]

Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
[Crossref]

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom-Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Kim, Y. H.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2012).
[Crossref]

Kinnamon, D.

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13-15), 2375–2390 (2016).
[Crossref]

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu, A. Garvey, and D. Kinnamon, “Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal,” J. Appl. Phys. 117(7), 074301 (2015).
[Crossref]

Kwon, K. C.

G. J. Choi, Q. V. Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref]

Kwon, Y. R.

Le, Q. V.

G. J. Choi, Q. V. Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref]

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom-Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Lee, A.

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

Lee, B. H.

Lee, C.-W.

C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett. 64(3), 466–468 (2010).
[Crossref]

Lee, J. H.

Lee, S. H.

Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
[Crossref]

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Lee, S. M.

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Lee, S.-L.

D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Lee, W.

P.-C. Wu, L. N. Lisetski, and W. Lee, “Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets,” Opt. Express 23(9), 11195–11204 (2015).
[Crossref]

P.-W. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

W. Lee, H.-Y. Chen, and Y.-C. Shih, “Reduced dc offset and faster dynamic response in a carbon-nanotube-impregnated liquid-crystal display,” J. Soc. Inf. Disp. 16(7), 733–741 (2008).
[Crossref]

H. Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90(3), 033510 (2007).
[Crossref]

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[Crossref]

Lee, Y. H.

Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
[Crossref]

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Leist, J.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Li, L. H.

L. H. Li and Y. Chen, “Atomically Thin Boron Nitride: Unique Properties and Applications,” Adv. Funct. Mater. 26(16), 2594–2608 (2016).
[Crossref]

Li, M.-C.

D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Li, Q.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Li, X.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Liang, X.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Lim, Y. J.

Lin, Y.

Y. Lin and J. W. Connell, “Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene,” Nanoscale 4(22), 6908–6939 (2012).
[Crossref]

Lisetski, L. N.

Liu, Z.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Machiels, P.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

Manabe, A.

A. Sawada, A. Manabe, and S. Nameura, “A Comparative Study on the Attributes of Ions in Nematic and Isotropic Phases,” Jpn. J. Appl. Phys. 40(Part 1), 220–224 (2001).
[Crossref]

Manohar, R.

G. Yadav, R. Katiyar, G. Pathak, and R. Manohar, “Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal,” J. Theor. Appl. Phys. 12(3), 191–198 (2018).
[Crossref]

D. P. Singh, S. K. Gupta, T. Vimal, and R. Manohar, “Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate,” Phys. Rev. E 90(2), 022501 (2014).
[Crossref]

Mantegazza, F.

M. Caggioni, A. Roshi, S. Barjami, F. Mantegazza, G. S. Iannacchione, and T. Bellini, “Isotropic to Nematic Transition of Aerosil-Disordered Liquid Crystals,” Phys. Rev. Lett. 93(12), 127801 (2004).
[Crossref]

Matsui, N.

A. Sugimura, N. Matsui, Y. Takahashi, H. Sonomura, H. Naito, and M. Okuda, “Transient currents in nematic liquid crystals,” Phys. Rev. B 43(10), 8272–8276 (1991).
[Crossref]

Maximus, B.

C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
[Crossref]

Mayorov, A. S.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Morozov, S. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Murakami, S.

S. Murakami and H. Naito, “Charge Injection and Generation in Nematic Liquid Crystal Cells,” Jpn. J. Appl. Phys. 36(Part 1), 773–776 (1997).
[Crossref]

Murali, G.

Naemura, S.

S. Naemura and A. Sawada, “Ion Generation in Liquid Crystals under Electric Field,” Mol. Cryst. Liq. Cryst. 346(1), 155–168 (2000).
[Crossref]

Naito, H.

S. Murakami and H. Naito, “Charge Injection and Generation in Nematic Liquid Crystal Cells,” Jpn. J. Appl. Phys. 36(Part 1), 773–776 (1997).
[Crossref]

H. Naito, K. Yoshida, and M. Okuda, “Transient charging current in nematic liquid crystals,” J. Appl. Phys. 73(3), 1119–1125 (1993).
[Crossref]

A. Sugimura, N. Matsui, Y. Takahashi, H. Sonomura, H. Naito, and M. Okuda, “Transient currents in nematic liquid crystals,” Phys. Rev. B 43(10), 8272–8276 (1991).
[Crossref]

H. Naito, M. Okuda, and A. Sugimura, “Transient discharging processes in nematic liquid crystals,” Phys. Rev. A 44(6), R3434–R3497 (1991).
[Crossref]

Nameura, S.

A. Sawada, A. Manabe, and S. Nameura, “A Comparative Study on the Attributes of Ions in Nematic and Isotropic Phases,” Jpn. J. Appl. Phys. 40(Part 1), 220–224 (2001).
[Crossref]

Neto, A. H. C.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Neyts, K.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
[Crossref]

Nguyen, T. P.

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom-Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Nguyen, V. L.

Novoselov, K. S.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Novotny, V.

V. Novotny, “Measurement of mobilities of particles in liquids by optical and electrical transients,” J. Appl. Phys. 50(4), 2787–2794 (1979).
[Crossref]

Obeng, Y.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Okuda, M.

H. Naito, K. Yoshida, and M. Okuda, “Transient charging current in nematic liquid crystals,” J. Appl. Phys. 73(3), 1119–1125 (1993).
[Crossref]

H. Naito, M. Okuda, and A. Sugimura, “Transient discharging processes in nematic liquid crystals,” Phys. Rev. A 44(6), R3434–R3497 (1991).
[Crossref]

A. Sugimura, N. Matsui, Y. Takahashi, H. Sonomura, H. Naito, and M. Okuda, “Transient currents in nematic liquid crystals,” Phys. Rev. B 43(10), 8272–8276 (1991).
[Crossref]

Pakdel, A.

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Park, H.-G.

Park, J. H.

M. A. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref]

Park, K. A.

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Park, M.

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom-Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Pathak, G.

G. Yadav, R. Katiyar, G. Pathak, and R. Manohar, “Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal,” J. Theor. Appl. Phys. 12(3), 191–198 (2018).
[Crossref]

Pauwels, H.

H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
[Crossref]

H. De Vleeschouwer, F. Bougrioua, and H. Pauwels, “Importance of Ion Transport in Industrial LCD Applications,” Mol. Cryst. Liq. Cryst. 360(1), 29–39 (2001).
[Crossref]

Peng, F.

D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Peng, H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Peng, L.-M.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Peres, N. M. R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Ponomarenko, L. A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Prost, J.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1994).

Raina, K. K.

R. K. Shukla, K. K. Raina, and W. Haase, “Fast switching response and dielectric behavior of fullerene/ferroelectric liquid crystal nanocolloids,” Liq. Cryst. 41(12), 1726–1732 (2014).
[Crossref]

Richter, C. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Robinson, J. A.

G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimetals 95, 101–147 (2016).
[Crossref]

Roshi, A.

M. Caggioni, A. Roshi, S. Barjami, F. Mantegazza, G. S. Iannacchione, and T. Bellini, “Isotropic to Nematic Transition of Aerosil-Disordered Liquid Crystals,” Phys. Rev. Lett. 93(12), 127801 (2004).
[Crossref]

Ruoff, R. S.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Sasaki, N.

N. Sasaki, “A New Measurement Method for Ion Density in TFT-LCD Panels,” Mol. Cryst. Liq. Cryst. 367(1), 671–679 (2001).
[Crossref]

Sawada, A.

A. Sawada, A. Manabe, and S. Nameura, “A Comparative Study on the Attributes of Ions in Nematic and Isotropic Phases,” Jpn. J. Appl. Phys. 40(Part 1), 220–224 (2001).
[Crossref]

S. Naemura and A. Sawada, “Ion Generation in Liquid Crystals under Electric Field,” Mol. Cryst. Liq. Cryst. 346(1), 155–168 (2000).
[Crossref]

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Seo, D.-S.

Seo, Y.

M. A. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref]

Shalov, S.

R. Basu and S. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1), 012702 (2017).
[Crossref]

Shehzad, M. A.

M. A. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref]

Shih, W.-P.

C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett. 64(3), 466–468 (2010).
[Crossref]

Shih, Y.-C.

W. Lee, H.-Y. Chen, and Y.-C. Shih, “Reduced dc offset and faster dynamic response in a carbon-nanotube-impregnated liquid-crystal display,” J. Soc. Inf. Disp. 16(7), 733–741 (2008).
[Crossref]

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[Crossref]

Shukla, R. K.

R. K. Shukla, K. K. Raina, and W. Haase, “Fast switching response and dielectric behavior of fullerene/ferroelectric liquid crystal nanocolloids,” Liq. Cryst. 41(12), 1726–1732 (2014).
[Crossref]

Singh, D. P.

D. P. Singh, S. K. Gupta, T. Vimal, and R. Manohar, “Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate,” Phys. Rev. E 90(2), 022501 (2014).
[Crossref]

Skaggs, N.

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

Snijkers, R.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

Sohn, W.

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom-Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Sonomura, H.

A. Sugimura, N. Matsui, Y. Takahashi, H. Sonomura, H. Naito, and M. Okuda, “Transient currents in nematic liquid crystals,” Phys. Rev. B 43(10), 8272–8276 (1991).
[Crossref]

Sperling, B. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Stojmenovik, G.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

Sugimura, A.

A. Sugimura, N. Matsui, Y. Takahashi, H. Sonomura, H. Naito, and M. Okuda, “Transient currents in nematic liquid crystals,” Phys. Rev. B 43(10), 8272–8276 (1991).
[Crossref]

H. Naito, M. Okuda, and A. Sugimura, “Transient discharging processes in nematic liquid crystals,” Phys. Rev. A 44(6), R3434–R3497 (1991).
[Crossref]

Takahashi, S.

S. Takahashi, “The investigation of a dc induced transient optical 30-Hz element in twisted nematic liquid-crystal displays,” J. Appl. Phys. 70(10), 5346–5350 (1991).
[Crossref]

Takahashi, Y.

A. Sugimura, N. Matsui, Y. Takahashi, H. Sonomura, H. Naito, and M. Okuda, “Transient currents in nematic liquid crystals,” Phys. Rev. B 43(10), 8272–8276 (1991).
[Crossref]

Tien, D. H.

M. A. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref]

Tsai, W.-C.

D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Van Aerle, N. A. J. M.

N. A. J. M. Van Aerle, “Influence of Polyimide Orientation Layer Material on the Liquid Crystal Resistivity in LCDs,” Mol. Cryst. Liq. Cryst. 257(1), 193–208 (1994).
[Crossref]

van Asselt, R.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
[Crossref]

van Brandenburg, A.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

Van Le, Q.

Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
[Crossref]

Vermael, S.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
[Crossref]

Verschueren, A.

H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
[Crossref]

Verschueren, A. R. M.

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

Verweire, B.

H. De Vleeschouwer, B. Verweire, K. D’Have, and H. Zhang, “Electrical and Optical Measurements of the Image Sticking Effect in Nematic LCD'S,” Mol. Cryst. Liq. Cryst. 331(1), 567–574 (1999).
[Crossref]

Vimal, T.

D. P. Singh, S. K. Gupta, T. Vimal, and R. Manohar, “Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate,” Phys. Rev. E 90(2), 022501 (2014).
[Crossref]

Walker, A. R. H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Wang, C.-Y.

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[Crossref]

Wang, X.

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys.: Conf. Ser. 471, 012003 (2013).
[Crossref]

Weng, Q.

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys.: Conf. Ser. 471, 012003 (2013).
[Crossref]

Womack, J.

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

Wu, P.-C.

Wu, P.-W.

P.-W. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

Wu, S.-T.

D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Xu, D.

D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Yadav, G.

G. Yadav, R. Katiyar, G. Pathak, and R. Manohar, “Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal,” J. Theor. Appl. Phys. 12(3), 191–198 (2018).
[Crossref]

Yamashita, M.

M. Yamashita and Y. Amemiya, “Drift Mobility of Positive Ions in Nematic MBBA at Low Electric Field,” Jpn. J. Appl. Phys. 17(9), 1513–1517 (1978).
[Crossref]

Yan, K.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Yang, K. H.

K. H. Yang, “Charge retention of twisted nematic liquid-crystal displays,” J. Appl. Phys. 67(1), 36–39 (1990).
[Crossref]

Yoshida, K.

H. Naito, K. Yoshida, and M. Okuda, “Transient charging current in nematic liquid crystals,” J. Appl. Phys. 73(3), 1119–1125 (1993).
[Crossref]

Yu, J. S.

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref]

Yuan, H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Yuan, J.

D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Zhang, H.

H. De Vleeschouwer, B. Verweire, K. D’Have, and H. Zhang, “Electrical and Optical Measurements of the Image Sticking Effect in Nematic LCD'S,” Mol. Cryst. Liq. Cryst. 331(1), 567–574 (1999).
[Crossref]

Zhang, Q.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Zhi, C.

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys.: Conf. Ser. 471, 012003 (2013).
[Crossref]

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Zhu, X.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Zhu, Y.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

Zou, Z.

Z. Zou, N. A. Clark, and M. A. Handschy, “Ionic transport effects in SSFLC cells,” Ferroelectrics 121(1), 147–158 (1991).
[Crossref]

ACS Nano (1)

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref]

Adv. Funct. Mater. (1)

L. H. Li and Y. Chen, “Atomically Thin Boron Nitride: Unique Properties and Applications,” Adv. Funct. Mater. 26(16), 2594–2608 (2016).
[Crossref]

Adv. Mater. (1)

G. J. Choi, Q. V. Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref]

Adv. Opt. Mater. (1)

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom-Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Appl. Phys. Lett. (9)

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

R. Basu and G. S. Iannacchione, “High-resolution dielectric spectroscopy and electric-field dependence of carbon allotropes including multiwall and single-wall nanotubes,” Appl. Phys. Lett. 92(5), 052906 (2008).
[Crossref]

Y. Garbovskiy and I. Glushchenko, “Ion trapping by means of ferroelectric nanoparticles, and the quantification of this process in liquid crystals,” Appl. Phys. Lett. 107(4), 041106 (2015).
[Crossref]

R. Basu and A. Garvey, “Effects of ferroelectric nanoparticles on ion transport in a liquid crystal,” Appl. Phys. Lett. 105(15), 151905 (2014).
[Crossref]

H. Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett. 90(3), 033510 (2007).
[Crossref]

R. Basu, “Effect of carbon nanotubes on the field-induced nematic switching,” Appl. Phys. Lett. 103(24), 241906 (2013).
[Crossref]

R. Basu, “Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal,” Appl. Phys. Lett. 105(11), 112905 (2014).
[Crossref]

P.-W. Wu and W. Lee, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904 (2013).
[Crossref]

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[Crossref]

Chem. Phys. Lett. (1)

G. Briere, F. Gaspard, and R. Herino, “Ionic residual conduction in the isotropic phase of a nematic liquid crystal,” Chem. Phys. Lett. 9(4), 285–288 (1971).
[Crossref]

Crystals (1)

Y. Garbovskiy and I. Glushchenko, “Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena,” Crystals 5(4), 501–533 (2015).
[Crossref]

Ferroelectrics (1)

Z. Zou, N. A. Clark, and M. A. Handschy, “Ionic transport effects in SSFLC cells,” Ferroelectrics 121(1), 147–158 (1991).
[Crossref]

FlatChem (1)

Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
[Crossref]

J. Appl. Phys. (9)

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu, A. Garvey, and D. Kinnamon, “Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal,” J. Appl. Phys. 117(7), 074301 (2015).
[Crossref]

H. Naito, K. Yoshida, and M. Okuda, “Transient charging current in nematic liquid crystals,” J. Appl. Phys. 73(3), 1119–1125 (1993).
[Crossref]

S. Takahashi, “The investigation of a dc induced transient optical 30-Hz element in twisted nematic liquid-crystal displays,” J. Appl. Phys. 70(10), 5346–5350 (1991).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

K. H. Yang, “Charge retention of twisted nematic liquid-crystal displays,” J. Appl. Phys. 67(1), 36–39 (1990).
[Crossref]

K. Neyts, S. Vermael, C. Desimpel, G. Stojmenovik, R. van Asselt, A. R. M. Verschueren, D. K. G. de Boer, R. Snijkers, P. Machiels, and A. van Brandenburg, “Lateral ion transport in nematic liquid-crystal devices,” J. Appl. Phys. 94(6), 3891–3896 (2003).
[Crossref]

V. Novotny, “Measurement of mobilities of particles in liquids by optical and electrical transients,” J. Appl. Phys. 50(4), 2787–2794 (1979).
[Crossref]

J. Phys. Chem. C (1)

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

J. Phys.: Conf. Ser. (1)

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys.: Conf. Ser. 471, 012003 (2013).
[Crossref]

J. Soc. Inf. Disp. (1)

W. Lee, H.-Y. Chen, and Y.-C. Shih, “Reduced dc offset and faster dynamic response in a carbon-nanotube-impregnated liquid-crystal display,” J. Soc. Inf. Disp. 16(7), 733–741 (2008).
[Crossref]

J. Theor. Appl. Phys. (1)

G. Yadav, R. Katiyar, G. Pathak, and R. Manohar, “Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal,” J. Theor. Appl. Phys. 12(3), 191–198 (2018).
[Crossref]

Jpn. J. Appl. Phys. (4)

M. Yamashita and Y. Amemiya, “Drift Mobility of Positive Ions in Nematic MBBA at Low Electric Field,” Jpn. J. Appl. Phys. 17(9), 1513–1517 (1978).
[Crossref]

S. Murakami and H. Naito, “Charge Injection and Generation in Nematic Liquid Crystal Cells,” Jpn. J. Appl. Phys. 36(Part 1), 773–776 (1997).
[Crossref]

H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays,” Jpn. J. Appl. Phys. 40(Part 1), 3272–3276 (2001).
[Crossref]

A. Sawada, A. Manabe, and S. Nameura, “A Comparative Study on the Attributes of Ions in Nematic and Isotropic Phases,” Jpn. J. Appl. Phys. 40(Part 1), 220–224 (2001).
[Crossref]

Liq. Cryst. (3)

R. K. Shukla, K. K. Raina, and W. Haase, “Fast switching response and dielectric behavior of fullerene/ferroelectric liquid crystal nanocolloids,” Liq. Cryst. 41(12), 1726–1732 (2014).
[Crossref]

C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers,” Liq. Cryst. 21(1), 133–142 (1996).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13-15), 2375–2390 (2016).
[Crossref]

Mater. Lett. (1)

C.-W. Lee and W.-P. Shih, “Quantification of ion trapping effect of carbon nanomaterials in liquid crystals,” Mater. Lett. 64(3), 466–468 (2010).
[Crossref]

Mater. Today (1)

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Mol. Cryst. Liq. Cryst. (5)

N. Sasaki, “A New Measurement Method for Ion Density in TFT-LCD Panels,” Mol. Cryst. Liq. Cryst. 367(1), 671–679 (2001).
[Crossref]

H. De Vleeschouwer, B. Verweire, K. D’Have, and H. Zhang, “Electrical and Optical Measurements of the Image Sticking Effect in Nematic LCD'S,” Mol. Cryst. Liq. Cryst. 331(1), 567–574 (1999).
[Crossref]

H. De Vleeschouwer, F. Bougrioua, and H. Pauwels, “Importance of Ion Transport in Industrial LCD Applications,” Mol. Cryst. Liq. Cryst. 360(1), 29–39 (2001).
[Crossref]

S. Naemura and A. Sawada, “Ion Generation in Liquid Crystals under Electric Field,” Mol. Cryst. Liq. Cryst. 346(1), 155–168 (2000).
[Crossref]

N. A. J. M. Van Aerle, “Influence of Polyimide Orientation Layer Material on the Liquid Crystal Resistivity in LCDs,” Mol. Cryst. Liq. Cryst. 257(1), 193–208 (1994).
[Crossref]

Nano Lett. (2)

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref]

Nanomaterials (1)

Y. Garbovskiy, “Kinetics of Ion-Capturing/Ion-Releasing Processes in Liquid Crystal Devices Utilizing Contaminated Nanoparticles and Alignment Films,” Nanomaterials 8(2), 59 (2018).
[Crossref]

Nanoscale (1)

Y. Lin and J. W. Connell, “Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene,” Nanoscale 4(22), 6908–6939 (2012).
[Crossref]

Nanotechnology (1)

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref]

Nat. Nanotechnol. (1)

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2012).
[Crossref]

Opt. Express (4)

OSA Continuum (1)

Phys. Rev. A (1)

H. Naito, M. Okuda, and A. Sugimura, “Transient discharging processes in nematic liquid crystals,” Phys. Rev. A 44(6), R3434–R3497 (1991).
[Crossref]

Phys. Rev. B (1)

A. Sugimura, N. Matsui, Y. Takahashi, H. Sonomura, H. Naito, and M. Okuda, “Transient currents in nematic liquid crystals,” Phys. Rev. B 43(10), 8272–8276 (1991).
[Crossref]

Phys. Rev. E (3)

D. P. Singh, S. K. Gupta, T. Vimal, and R. Manohar, “Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate,” Phys. Rev. E 90(2), 022501 (2014).
[Crossref]

R. Basu and S. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1), 012702 (2017).
[Crossref]

R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1), 012707 (2017).
[Crossref]

Phys. Rev. Lett. (2)

M. Caggioni, A. Roshi, S. Barjami, F. Mantegazza, G. S. Iannacchione, and T. Bellini, “Isotropic to Nematic Transition of Aerosil-Disordered Liquid Crystals,” Phys. Rev. Lett. 93(12), 127801 (2004).
[Crossref]

G. H. Heilmeier and P. M. Heyman, “Note on Transient Current Measurements in Liquid Crystals and Related Systems,” Phys. Rev. Lett. 18(15), 583–585 (1967).
[Crossref]

Sci. Rep. (1)

M. A. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref]

Semicond. Semimetals (1)

G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimetals 95, 101–147 (2016).
[Crossref]

Other (2)

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1994).

L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer-Verlag, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) A schematic representation of the standard PI/PI cell. Micrographs of LC E7 in the PI/PI cell under the crossed-polarized microscope with the director ${\hat{\boldsymbol n}}$ at (b) 45° (bright) and (c) 0° (dark) with respect to the polarizer. Micrographs of the PI/Glass cell filled with LC E7 under the crossed polarized microscope where the PI’s rubbing direction is at (d) 45° and (e) 0° with respect to the polarizer. (f) A schematic representation of the h-BN/PI hybrid cell containing the unidirectionally rubbed PI alignment on one side and the 2D h-BN nanosheet on the other side of the cell. (g) the planar-alignment of nematic LC molecules (ellipsoids) on 2D h-BN (honeycomb structure) is illustrated. The epitaxial interaction between the LC and the h-BN lattice is schematically shown by matching the LC’s benzene rings on the h-BN-honeycomb structure. (h) Raman signal of monolayer h-BN on copper foil. Micrographs of LC E7 in the h-BN/PI hybrid cell under the crossed-polarized microscope with the director $\hat{n}$ at (i) 45° (bright) and (j) 0° (dark) with respect to the polarizer.
Fig. 2.
Fig. 2. Ion current, Iion as a function of time for LC E7 in the two cells at (a) 25 °C and (b) 40 °C, and (c) 55 °C after the polarity of the voltage is inverted across the cells. (d) Free-ion concentration, ni as a function of temperature for LC E7 in the two cells listed in the legend. (e) Conductivity due to ion-transport, σi as a function of temperature for LC E7 in the two cells listed in the legend. Typical error bars are shown. Schematic representations: (f) the presence of free ions (small spheres) in the LC in the PI/PI cell, (g) the presence of fewer ions in the LC media due to some trapped ions on the h-BN layer.
Fig. 3.
Fig. 3. The dynamic electro-optic switching response of LC E7 in the two cells. (a) Right y-axis: applied square-wave voltage profile. Left y-axis: normalized transmitted intensity as a function of time when a peak-to-peak voltage (Vpp = 30 V) is turned off at t = 0, and then turned on at t = 20 ms, for the two cells listed in the legend (T = 20° C). (b), (c) τoff and τon, respectively, as a function of Vpp for the two cells listed in the legend. (d) Optical transmission as a function wavelength for the LC-filled PI/PI cell and the LC-filled h-BN/PI cell listed in the legend. The visible wavelength range is shown in the x-axis.
Fig. 4.
Fig. 4. (a) Dielectric constant, ɛ as a function of applied rms field E (f = 1000 Hz) in the nematic phase (T = 30 °C) of LC E7 in the two LC cells listed in the legend. (b) Pretransitional behavior of dielectric anisotropy, Δɛ of LC E7 in the two cells listed in the legend.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τonγ1 d2Δε εo V2K11 π2; τoffγ1 d2K11 π2

Metrics