Abstract

In this paper, a 2 µm broadband emission under 796 nm laser diode excitation in low phonon energy GeO2-Ga2O3-BaO glass system is co-doped with 0.7Tm2O3/(0.07-0.7)Ho2O3 (mol%). The widest emission band (where the Tm3+ → Ho3+ energy transfer efficiency is 63%) was obtained for 0.7Tm2O3/0.15Ho2O3 co-doped glass from which a double-clad optical fiber was realized and investigated. Optimization of Tm3+/Ho3+ concentration enabled the acquisition of broadband amplified spontaneous emission (ASE) in double-clad optical fiber with a full width at half maximum (FWHM): 377 nm and 662 nm for 3 dB and 10 dB bandwidth, respectively. ASE spectrum is a result of the superposition of (Tm3+: 3H4 →Η3F4) 1.45 µm, (Tm3+: 3F43H6) 1.8 µm and (Ho3+:5I75I8) 2 µm emission bands. Hence, highly rare-earth co-doped germanate glass is characterized by a remarkably broader ASE spectrum than silica and tellurite fibers showed promising lasing properties for their further application in tunable and dual wavelength lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
NIR to visible upconversion in double – clad optical fiber co-doped with Yb3+/Ho3+

Marcin Kochanowicz, Jacek Zmojda, Piotr Miluski, Joanna Pisarska, Wojciech A. Pisarski, and Dominik Dorosz
Opt. Mater. Express 5(7) 1505-1510 (2015)

Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser

Xin Wen, Guowu Tang, Jinwen Wang, Xiaodong Chen, Qi Qian, and Zhongmin Yang
Opt. Express 23(6) 7722-7731 (2015)

Spectroscopic properties and quenching mechanism of 2 μm emission in Ho3+ doped germanate glasses and fibers

Xiaokang Fan, Peiwen Kuan, Kefeng Li, Lei Zhang, Dahai Li, and Lili Hu
Opt. Mater. Express 5(6) 1356-1365 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
    [Crossref]
  2. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  3. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient~ 2 μm Tm 3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
    [Crossref] [PubMed]
  4. A. Hemming, S. Jackson, A. Sabella, S. Bennetts, and D. Lancaster, “High power, narrow bandwidth and broadly tunable Tm 3+, Ho 3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
    [Crossref]
  5. Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
    [Crossref]
  6. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
    [Crossref] [PubMed]
  7. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
    [Crossref]
  8. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
    [Crossref] [PubMed]
  9. S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
    [Crossref] [PubMed]
  10. M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
    [Crossref]
  11. B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
    [Crossref] [PubMed]
  12. M. Cai, B. Zhou, F. Wang, Y. Tian, J. Zhou, S. Xu, and J. Zhang, “Highly efficient mid-infrared 2 μm emission in Ho 3+/Yb 3+-codoped germanate glass,” Opt. Mater. Express 5(6), 1431–1439 (2015).
    [Crossref]
  13. J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 μm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Ac. Tech. 59, 381–387 (2011).
  14. G. Bai, Y. Guo, Y. Tian, L. Hu, and J. Zhang, “Light emission at 2 μm from Ho–Tm–Yb doped silicate glasses,” Opt. Mater. 33(8), 1316–1319 (2011).
    [Crossref]
  15. K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
    [Crossref] [PubMed]
  16. X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
    [Crossref] [PubMed]
  17. X. Fan, P. Kuan, K. Li, L. Zhang, D. Li, and L. Hu, “Spectroscopic properties and quenching mechanism of 2 μm emission in Ho 3+ doped germanate glasses and fibers,” Opt. Mater. Express 5(6), 1356–1365 (2015).
    [Crossref]
  18. M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
    [Crossref]
  19. S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 19(7), 6514–6523 (2011).
    [PubMed]
  20. X. P. Jiang, Z. M. Yang, T. Liu, and S. H. Xu, “Energy transfer between Yb3+ and Er3+ in barium gallogermanate glass,” J. Appl. Phys. 105(10), 103113 (2009).
    [Crossref]
  21. X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
    [Crossref] [PubMed]
  22. G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
    [Crossref]
  23. J. Pisarska, M. Kowal, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, and W. A. Pisarski, “Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses,” Opt. Express 24(3), 2427–2435 (2016).
    [Crossref] [PubMed]
  24. J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
    [Crossref] [PubMed]
  25. S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
    [Crossref]
  26. J. Zmojda, M. Kochanowicz, and D. Dorosz, “Low-phonon tellurite glass co-doped with Tm3+/Ho3+ ions for optical fiber technology,” Photonics Lett. Pol. 6(2), 56–58 (2014).
    [Crossref]
  27. K. Li, G. Zhang, X. Wang, L. Hu, P. Kuan, D. Chen, and M. Wang, “Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express 20(9), 10115–10121 (2012).
    [Crossref] [PubMed]
  28. G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
    [Crossref] [PubMed]
  29. X. Gao, Y. Tian, Q. Liu, S. Yang, X. Jing, J. Zhang, and S. Xu, “Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions,” Infrared Phys. Technol. 91, 200–205 (2018).
    [Crossref]
  30. S. Peng, L. Wu, B. Wang, F. Yang, Y. Qi, and Y. Zhou, “Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser,” Opt. Fiber Technol. 22, 95–101 (2015).
    [Crossref]
  31. H. Lin, Y. Y. Zhang, and E. Y. Pun, “Fluorescence investigation of Ho3+ in Yb3+ sensitized mixed-alkali bismuth gallate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 71(4), 1547–1550 (2008).
    [Crossref] [PubMed]
  32. J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
    [Crossref]
  33. L. Żur, J. Janek, M. Sołtys, T. Goryczka, J. Pisarska, and W. A. Pisarski, “Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M= Ca, Sr, Ba),” J. Non-Cryst. Solids 431, 145–149 (2016).
    [Crossref]
  34. R. Xu, Y. Tian, M. Wang, L. Hu, and J. Zhang, “Investigation on broadband near-infrared emission and energy transfer in Er3+–Tm3+ codoped germanate glasses,” Opt. Mater. 33(3), 299–302 (2011).
    [Crossref]
  35. T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
    [Crossref]
  36. M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, J. Pisarska, and W. A. Pisarski, “Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb 3+,” Opt. Mater. Express 4(5), 1050–1056 (2014).
    [Crossref]
  37. V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater. 33(2), 159–163 (2010).
    [Crossref]
  38. P. Honzatko, Y. Baravets, I. Kasik, and O. Podrazky, “Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300 nm spectral band,” Opt. Lett. 39(12), 3650–3653 (2014).
    [Crossref] [PubMed]
  39. P.-W. Kuan, K. Li, G. Zhang, X. Wang, L. Zhang, G. Bai, Y. Tsang, and L. Hu, “Compact broadband amplified spontaneous emission in Tm3+-doped tungsten tellurite glass double-cladding single-mode fiber,” Opt. Mater. Express 3(6), 723–728 (2013).
    [Crossref]
  40. X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
    [Crossref] [PubMed]
  41. L. X. Li, W. C. Wang, C. F. Zhang, J. Yuan, B. Zhou, and Q. Y. Zhang, “2.0 μm Nd3+/Ho3+-doped tungsten tellurite fiber laser,” Opt. Mater. Express 6(9), 2904–2914 (2016).
    [Crossref]
  42. D. Zhou, X. Bai, and H. Zhou, “Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm,” Sci. Rep. 7(1), 44747 (2017).
    [Crossref] [PubMed]

2018 (2)

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

X. Gao, Y. Tian, Q. Liu, S. Yang, X. Jing, J. Zhang, and S. Xu, “Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions,” Infrared Phys. Technol. 91, 200–205 (2018).
[Crossref]

2017 (2)

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

D. Zhou, X. Bai, and H. Zhou, “Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm,” Sci. Rep. 7(1), 44747 (2017).
[Crossref] [PubMed]

2016 (6)

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

L. X. Li, W. C. Wang, C. F. Zhang, J. Yuan, B. Zhou, and Q. Y. Zhang, “2.0 μm Nd3+/Ho3+-doped tungsten tellurite fiber laser,” Opt. Mater. Express 6(9), 2904–2914 (2016).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

L. Żur, J. Janek, M. Sołtys, T. Goryczka, J. Pisarska, and W. A. Pisarski, “Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M= Ca, Sr, Ba),” J. Non-Cryst. Solids 431, 145–149 (2016).
[Crossref]

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

J. Pisarska, M. Kowal, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, and W. A. Pisarski, “Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses,” Opt. Express 24(3), 2427–2435 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (5)

2013 (1)

2012 (1)

2011 (5)

R. Xu, Y. Tian, M. Wang, L. Hu, and J. Zhang, “Investigation on broadband near-infrared emission and energy transfer in Er3+–Tm3+ codoped germanate glasses,” Opt. Mater. 33(3), 299–302 (2011).
[Crossref]

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 μm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Ac. Tech. 59, 381–387 (2011).

G. Bai, Y. Guo, Y. Tian, L. Hu, and J. Zhang, “Light emission at 2 μm from Ho–Tm–Yb doped silicate glasses,” Opt. Mater. 33(8), 1316–1319 (2011).
[Crossref]

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 19(7), 6514–6523 (2011).
[PubMed]

2010 (4)

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

A. Hemming, S. Jackson, A. Sabella, S. Bennetts, and D. Lancaster, “High power, narrow bandwidth and broadly tunable Tm 3+, Ho 3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater. 33(2), 159–163 (2010).
[Crossref]

2009 (3)

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

X. P. Jiang, Z. M. Yang, T. Liu, and S. H. Xu, “Energy transfer between Yb3+ and Er3+ in barium gallogermanate glass,” J. Appl. Phys. 105(10), 103113 (2009).
[Crossref]

2008 (3)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient~ 2 μm Tm 3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

H. Lin, Y. Y. Zhang, and E. Y. Pun, “Fluorescence investigation of Ho3+ in Yb3+ sensitized mixed-alkali bismuth gallate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 71(4), 1547–1550 (2008).
[Crossref] [PubMed]

2007 (5)

1991 (1)

Aggarwal, I. D.

Bai, G.

Bai, X.

D. Zhou, X. Bai, and H. Zhou, “Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm,” Sci. Rep. 7(1), 44747 (2017).
[Crossref] [PubMed]

Baravets, Y.

Bayya, S. S.

Bennetts, S.

A. Hemming, S. Jackson, A. Sabella, S. Bennetts, and D. Lancaster, “High power, narrow bandwidth and broadly tunable Tm 3+, Ho 3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

Binks, D.

Bugge, F.

Cai, M.

Calveza, L.

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Chen, D.

K. Li, G. Zhang, X. Wang, L. Hu, P. Kuan, D. Chen, and M. Wang, “Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express 20(9), 10115–10121 (2012).
[Crossref] [PubMed]

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Chen, F.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Chen, X.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Chin, G. D.

Dorosz, D.

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

J. Pisarska, M. Kowal, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, and W. A. Pisarski, “Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses,” Opt. Express 24(3), 2427–2435 (2016).
[Crossref] [PubMed]

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, J. Pisarska, and W. A. Pisarski, “Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb 3+,” Opt. Mater. Express 4(5), 1050–1056 (2014).
[Crossref]

J. Zmojda, M. Kochanowicz, and D. Dorosz, “Low-phonon tellurite glass co-doped with Tm3+/Ho3+ ions for optical fiber technology,” Photonics Lett. Pol. 6(2), 56–58 (2014).
[Crossref]

J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 μm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Ac. Tech. 59, 381–387 (2011).

Dorosz, J.

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

J. Pisarska, M. Kowal, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, and W. A. Pisarski, “Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses,” Opt. Express 24(3), 2427–2435 (2016).
[Crossref] [PubMed]

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, J. Pisarska, and W. A. Pisarski, “Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb 3+,” Opt. Mater. Express 4(5), 1050–1056 (2014).
[Crossref]

J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 μm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Ac. Tech. 59, 381–387 (2011).

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

Erbert, G.

Fan, J.

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Fan, X.

Fan, Y.

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Feng, S.

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Gao, X.

X. Gao, Y. Tian, Q. Liu, S. Yang, X. Jing, J. Zhang, and S. Xu, “Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions,” Infrared Phys. Technol. 91, 200–205 (2018).
[Crossref]

Godard, A.

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Górny, A.

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

Goryczka, T.

L. Żur, J. Janek, M. Sołtys, T. Goryczka, J. Pisarska, and W. A. Pisarski, “Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M= Ca, Sr, Ba),” J. Non-Cryst. Solids 431, 145–149 (2016).
[Crossref]

Guo, Y.

G. Bai, Y. Guo, Y. Tian, L. Hu, and J. Zhang, “Light emission at 2 μm from Ho–Tm–Yb doped silicate glasses,” Opt. Mater. 33(8), 1316–1319 (2011).
[Crossref]

Hale, C. P.

Hemming, A.

A. Hemming, S. Jackson, A. Sabella, S. Bennetts, and D. Lancaster, “High power, narrow bandwidth and broadly tunable Tm 3+, Ho 3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

Henderson, S. W.

Honzatko, P.

Hou, J.

Hu, L.

X. Fan, P. Kuan, K. Li, L. Zhang, D. Li, and L. Hu, “Spectroscopic properties and quenching mechanism of 2 μm emission in Ho 3+ doped germanate glasses and fibers,” Opt. Mater. Express 5(6), 1356–1365 (2015).
[Crossref]

P.-W. Kuan, K. Li, G. Zhang, X. Wang, L. Zhang, G. Bai, Y. Tsang, and L. Hu, “Compact broadband amplified spontaneous emission in Tm3+-doped tungsten tellurite glass double-cladding single-mode fiber,” Opt. Mater. Express 3(6), 723–728 (2013).
[Crossref]

K. Li, G. Zhang, X. Wang, L. Hu, P. Kuan, D. Chen, and M. Wang, “Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express 20(9), 10115–10121 (2012).
[Crossref] [PubMed]

R. Xu, Y. Tian, M. Wang, L. Hu, and J. Zhang, “Investigation on broadband near-infrared emission and energy transfer in Er3+–Tm3+ codoped germanate glasses,” Opt. Mater. 33(3), 299–302 (2011).
[Crossref]

G. Bai, Y. Guo, Y. Tian, L. Hu, and J. Zhang, “Light emission at 2 μm from Ho–Tm–Yb doped silicate glasses,” Opt. Mater. 33(8), 1316–1319 (2011).
[Crossref]

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

Huffaker, A. V.

Jackson, S.

A. Hemming, S. Jackson, A. Sabella, S. Bennetts, and D. Lancaster, “High power, narrow bandwidth and broadly tunable Tm 3+, Ho 3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

Jackson, S. D.

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

S. D. Jackson, F. Bugge, and G. Erbert, “Directly diode-pumped holmium fiber lasers,” Opt. Lett. 32(17), 2496–2498 (2007).
[Crossref] [PubMed]

Jadach, R.

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

Janek, J.

L. Żur, J. Janek, M. Sołtys, T. Goryczka, J. Pisarska, and W. A. Pisarski, “Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M= Ca, Sr, Ba),” J. Non-Cryst. Solids 431, 145–149 (2016).
[Crossref]

Jha, A.

Jiang, X. P.

X. P. Jiang, Z. M. Yang, T. Liu, and S. H. Xu, “Energy transfer between Yb3+ and Er3+ in barium gallogermanate glass,” J. Appl. Phys. 105(10), 103113 (2009).
[Crossref]

Jing, X.

X. Gao, Y. Tian, Q. Liu, S. Yang, X. Jing, J. Zhang, and S. Xu, “Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions,” Infrared Phys. Technol. 91, 200–205 (2018).
[Crossref]

Jose, G.

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater. 33(2), 159–163 (2010).
[Crossref]

Kasik, I.

Kavaya, M. J.

Kochanowicz, M.

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

J. Pisarska, M. Kowal, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, and W. A. Pisarski, “Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses,” Opt. Express 24(3), 2427–2435 (2016).
[Crossref] [PubMed]

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, J. Pisarska, and W. A. Pisarski, “Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb 3+,” Opt. Mater. Express 4(5), 1050–1056 (2014).
[Crossref]

J. Zmojda, M. Kochanowicz, and D. Dorosz, “Low-phonon tellurite glass co-doped with Tm3+/Ho3+ ions for optical fiber technology,” Photonics Lett. Pol. 6(2), 56–58 (2014).
[Crossref]

Kowal, M.

Kuan, P.

Kuan, P.-W.

Lancaster, D.

A. Hemming, S. Jackson, A. Sabella, S. Bennetts, and D. Lancaster, “High power, narrow bandwidth and broadly tunable Tm 3+, Ho 3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

Li, D.

Li, K.

Li, L. X.

Lin, H.

H. Lin, Y. Y. Zhang, and E. Y. Pun, “Fluorescence investigation of Ho3+ in Yb3+ sensitized mixed-alkali bismuth gallate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 71(4), 1547–1550 (2008).
[Crossref] [PubMed]

Liu, Q.

X. Gao, Y. Tian, Q. Liu, S. Yang, X. Jing, J. Zhang, and S. Xu, “Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions,” Infrared Phys. Technol. 91, 200–205 (2018).
[Crossref]

Liu, T.

X. P. Jiang, Z. M. Yang, T. Liu, and S. H. Xu, “Energy transfer between Yb3+ and Er3+ in barium gallogermanate glass,” J. Appl. Phys. 105(10), 103113 (2009).
[Crossref]

Liu, W.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Lousteau, J.

Magee, J. R.

Miluski, P.

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

Peng, S.

S. Peng, L. Wu, B. Wang, F. Yang, Y. Qi, and Y. Zhou, “Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser,” Opt. Fiber Technol. 22, 95–101 (2015).
[Crossref]

Pisarska, J.

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

L. Żur, J. Janek, M. Sołtys, T. Goryczka, J. Pisarska, and W. A. Pisarski, “Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M= Ca, Sr, Ba),” J. Non-Cryst. Solids 431, 145–149 (2016).
[Crossref]

J. Pisarska, M. Kowal, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, and W. A. Pisarski, “Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses,” Opt. Express 24(3), 2427–2435 (2016).
[Crossref] [PubMed]

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, J. Pisarska, and W. A. Pisarski, “Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb 3+,” Opt. Mater. Express 4(5), 1050–1056 (2014).
[Crossref]

Pisarski, W. A.

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

L. Żur, J. Janek, M. Sołtys, T. Goryczka, J. Pisarska, and W. A. Pisarski, “Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M= Ca, Sr, Ba),” J. Non-Cryst. Solids 431, 145–149 (2016).
[Crossref]

J. Pisarska, M. Kowal, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, and W. A. Pisarski, “Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses,” Opt. Express 24(3), 2427–2435 (2016).
[Crossref] [PubMed]

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, J. Pisarska, and W. A. Pisarski, “Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb 3+,” Opt. Mater. Express 4(5), 1050–1056 (2014).
[Crossref]

Podrazky, O.

Pun, E. Y.

H. Lin, Y. Y. Zhang, and E. Y. Pun, “Fluorescence investigation of Ho3+ in Yb3+ sensitized mixed-alkali bismuth gallate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 71(4), 1547–1550 (2008).
[Crossref] [PubMed]

Qi, Y.

S. Peng, L. Wu, B. Wang, F. Yang, Y. Qi, and Y. Zhou, “Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser,” Opt. Fiber Technol. 22, 95–101 (2015).
[Crossref]

Qian, Q.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Ragin, T.

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

Richards, B.

Sabella, A.

A. Hemming, S. Jackson, A. Sabella, S. Bennetts, and D. Lancaster, “High power, narrow bandwidth and broadly tunable Tm 3+, Ho 3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

Sanghera, J. S.

Scarnera, V.

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater. 33(2), 159–163 (2010).
[Crossref]

Shen, S.

Sitarz, M.

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

Soltys, M.

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

L. Żur, J. Janek, M. Sołtys, T. Goryczka, J. Pisarska, and W. A. Pisarski, “Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M= Ca, Sr, Ba),” J. Non-Cryst. Solids 431, 145–149 (2016).
[Crossref]

Stacey, C.

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater. 33(2), 159–163 (2010).
[Crossref]

Sun, M.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Tang, G.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Tian, Y.

X. Gao, Y. Tian, Q. Liu, S. Yang, X. Jing, J. Zhang, and S. Xu, “Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions,” Infrared Phys. Technol. 91, 200–205 (2018).
[Crossref]

M. Cai, B. Zhou, F. Wang, Y. Tian, J. Zhou, S. Xu, and J. Zhang, “Highly efficient mid-infrared 2 μm emission in Ho 3+/Yb 3+-codoped germanate glass,” Opt. Mater. Express 5(6), 1431–1439 (2015).
[Crossref]

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

R. Xu, Y. Tian, M. Wang, L. Hu, and J. Zhang, “Investigation on broadband near-infrared emission and energy transfer in Er3+–Tm3+ codoped germanate glasses,” Opt. Mater. 33(3), 299–302 (2011).
[Crossref]

G. Bai, Y. Guo, Y. Tian, L. Hu, and J. Zhang, “Light emission at 2 μm from Ho–Tm–Yb doped silicate glasses,” Opt. Mater. 33(8), 1316–1319 (2011).
[Crossref]

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Tsang, Y.

Wang, B.

S. Peng, L. Wu, B. Wang, F. Yang, Y. Qi, and Y. Zhou, “Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser,” Opt. Fiber Technol. 22, 95–101 (2015).
[Crossref]

Wang, F.

Wang, G.

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

Wang, J.

Wang, M.

K. Li, G. Zhang, X. Wang, L. Hu, P. Kuan, D. Chen, and M. Wang, “Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express 20(9), 10115–10121 (2012).
[Crossref] [PubMed]

R. Xu, Y. Tian, M. Wang, L. Hu, and J. Zhang, “Investigation on broadband near-infrared emission and energy transfer in Er3+–Tm3+ codoped germanate glasses,” Opt. Mater. 33(3), 299–302 (2011).
[Crossref]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

Wang, W. C.

Wang, X.

Wei, T.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Wen, X.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Wu, L.

S. Peng, L. Wu, B. Wang, F. Yang, Y. Qi, and Y. Zhou, “Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser,” Opt. Fiber Technol. 22, 95–101 (2015).
[Crossref]

Xu, R.

R. Xu, Y. Tian, M. Wang, L. Hu, and J. Zhang, “Investigation on broadband near-infrared emission and energy transfer in Er3+–Tm3+ codoped germanate glasses,” Opt. Mater. 33(3), 299–302 (2011).
[Crossref]

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Xu, S.

X. Gao, Y. Tian, Q. Liu, S. Yang, X. Jing, J. Zhang, and S. Xu, “Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions,” Infrared Phys. Technol. 91, 200–205 (2018).
[Crossref]

M. Cai, B. Zhou, F. Wang, Y. Tian, J. Zhou, S. Xu, and J. Zhang, “Highly efficient mid-infrared 2 μm emission in Ho 3+/Yb 3+-codoped germanate glass,” Opt. Mater. Express 5(6), 1431–1439 (2015).
[Crossref]

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Xu, S. H.

X. P. Jiang, Z. M. Yang, T. Liu, and S. H. Xu, “Energy transfer between Yb3+ and Er3+ in barium gallogermanate glass,” J. Appl. Phys. 105(10), 103113 (2009).
[Crossref]

Xue, G.

Yang, F.

S. Peng, L. Wu, B. Wang, F. Yang, Y. Qi, and Y. Zhou, “Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser,” Opt. Fiber Technol. 22, 95–101 (2015).
[Crossref]

Yang, Q.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

Yang, S.

X. Gao, Y. Tian, Q. Liu, S. Yang, X. Jing, J. Zhang, and S. Xu, “Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions,” Infrared Phys. Technol. 91, 200–205 (2018).
[Crossref]

Yang, W.

Yang, Y.

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Yang, Z.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
[Crossref] [PubMed]

Yang, Z. M.

X. P. Jiang, Z. M. Yang, T. Liu, and S. H. Xu, “Energy transfer between Yb3+ and Er3+ in barium gallogermanate glass,” J. Appl. Phys. 105(10), 103113 (2009).
[Crossref]

Yi, L.

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

Yin, K.

Yuan, J.

Zhang, B.

Zhang, C. F.

Zhang, G.

Zhang, J.

X. Gao, Y. Tian, Q. Liu, S. Yang, X. Jing, J. Zhang, and S. Xu, “Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions,” Infrared Phys. Technol. 91, 200–205 (2018).
[Crossref]

M. Cai, B. Zhou, F. Wang, Y. Tian, J. Zhou, S. Xu, and J. Zhang, “Highly efficient mid-infrared 2 μm emission in Ho 3+/Yb 3+-codoped germanate glass,” Opt. Mater. Express 5(6), 1431–1439 (2015).
[Crossref]

G. Bai, Y. Guo, Y. Tian, L. Hu, and J. Zhang, “Light emission at 2 μm from Ho–Tm–Yb doped silicate glasses,” Opt. Mater. 33(8), 1316–1319 (2011).
[Crossref]

R. Xu, Y. Tian, M. Wang, L. Hu, and J. Zhang, “Investigation on broadband near-infrared emission and energy transfer in Er3+–Tm3+ codoped germanate glasses,” Opt. Mater. 33(3), 299–302 (2011).
[Crossref]

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

Zhang, L.

X. Fan, P. Kuan, K. Li, L. Zhang, D. Li, and L. Hu, “Spectroscopic properties and quenching mechanism of 2 μm emission in Ho 3+ doped germanate glasses and fibers,” Opt. Mater. Express 5(6), 1356–1365 (2015).
[Crossref]

P.-W. Kuan, K. Li, G. Zhang, X. Wang, L. Zhang, G. Bai, Y. Tsang, and L. Hu, “Compact broadband amplified spontaneous emission in Tm3+-doped tungsten tellurite glass double-cladding single-mode fiber,” Opt. Mater. Express 3(6), 723–728 (2013).
[Crossref]

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Zhang, Q.

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

Zhang, Q. Y.

Zhang, X.

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Zhang, Y. Y.

H. Lin, Y. Y. Zhang, and E. Y. Pun, “Fluorescence investigation of Ho3+ in Yb3+ sensitized mixed-alkali bismuth gallate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 71(4), 1547–1550 (2008).
[Crossref] [PubMed]

Zhou, B.

Zhou, D.

D. Zhou, X. Bai, and H. Zhou, “Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm,” Sci. Rep. 7(1), 44747 (2017).
[Crossref] [PubMed]

Zhou, H.

D. Zhou, X. Bai, and H. Zhou, “Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm,” Sci. Rep. 7(1), 44747 (2017).
[Crossref] [PubMed]

Zhou, J.

Zhou, Y.

S. Peng, L. Wu, B. Wang, F. Yang, Y. Qi, and Y. Zhou, “Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser,” Opt. Fiber Technol. 22, 95–101 (2015).
[Crossref]

Zhu, T.

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

Zmojda, J.

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

J. Pisarska, M. Kowal, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, and W. A. Pisarski, “Influence of BaF2 and activator concentration on broadband near-infrared luminescence of Pr3+ ions in gallo-germanate glasses,” Opt. Express 24(3), 2427–2435 (2016).
[Crossref] [PubMed]

M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, J. Pisarska, and W. A. Pisarski, “Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb 3+,” Opt. Mater. Express 4(5), 1050–1056 (2014).
[Crossref]

J. Zmojda, M. Kochanowicz, and D. Dorosz, “Low-phonon tellurite glass co-doped with Tm3+/Ho3+ ions for optical fiber technology,” Photonics Lett. Pol. 6(2), 56–58 (2014).
[Crossref]

J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 μm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Ac. Tech. 59, 381–387 (2011).

Zur, L.

L. Żur, J. Janek, M. Sołtys, T. Goryczka, J. Pisarska, and W. A. Pisarski, “Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M= Ca, Sr, Ba),” J. Non-Cryst. Solids 431, 145–149 (2016).
[Crossref]

Appl. Phys. B (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

Bull. Pol. Ac. Tech. (1)

J. Żmojda, D. Dorosz, and J. Dorosz, “2.1 μm emission of Tm3+/Ho3+-doped antimony-silicate glasses for active optical fibre,” Bull. Pol. Ac. Tech. 59, 381–387 (2011).

C. R. Phys. (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Electron. Lett. (1)

A. Hemming, S. Jackson, A. Sabella, S. Bennetts, and D. Lancaster, “High power, narrow bandwidth and broadly tunable Tm 3+, Ho 3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2 µm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

Infrared Phys. Technol. (1)

X. Gao, Y. Tian, Q. Liu, S. Yang, X. Jing, J. Zhang, and S. Xu, “Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions,” Infrared Phys. Technol. 91, 200–205 (2018).
[Crossref]

J. Alloys Compd. (2)

M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W. A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, and D. Dorosz, “Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+,” J. Alloys Compd. 727, 1221–1226 (2017).
[Crossref]

G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, and Z. Yang, “Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser,” J. Alloys Compd. 664, 19–24 (2016).
[Crossref]

J. Appl. Phys. (1)

X. P. Jiang, Z. M. Yang, T. Liu, and S. H. Xu, “Energy transfer between Yb3+ and Er3+ in barium gallogermanate glass,” J. Appl. Phys. 105(10), 103113 (2009).
[Crossref]

J. Non-Cryst. Solids (2)

J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+–Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

L. Żur, J. Janek, M. Sołtys, T. Goryczka, J. Pisarska, and W. A. Pisarski, “Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M= Ca, Sr, Ba),” J. Non-Cryst. Solids 431, 145–149 (2016).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Laser Photonics Rev. (1)

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

S. Peng, L. Wu, B. Wang, F. Yang, Y. Qi, and Y. Zhou, “Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser,” Opt. Fiber Technol. 22, 95–101 (2015).
[Crossref]

Opt. Lett. (6)

Opt. Mater. (4)

V. Scarnera, B. Richards, A. Jha, G. Jose, and C. Stacey, “Green up-conversion in Yb3+–Tb3+ and Yb3+–Tm3+–Tb3+ doped fluoro-germanate bulk glass and fibre,” Opt. Mater. 33(2), 159–163 (2010).
[Crossref]

Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, and J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

G. Bai, Y. Guo, Y. Tian, L. Hu, and J. Zhang, “Light emission at 2 μm from Ho–Tm–Yb doped silicate glasses,” Opt. Mater. 33(8), 1316–1319 (2011).
[Crossref]

R. Xu, Y. Tian, M. Wang, L. Hu, and J. Zhang, “Investigation on broadband near-infrared emission and energy transfer in Er3+–Tm3+ codoped germanate glasses,” Opt. Mater. 33(3), 299–302 (2011).
[Crossref]

Opt. Mater. Express (5)

Photonics Lett. Pol. (1)

J. Zmojda, M. Kochanowicz, and D. Dorosz, “Low-phonon tellurite glass co-doped with Tm3+/Ho3+ ions for optical fiber technology,” Photonics Lett. Pol. 6(2), 56–58 (2014).
[Crossref]

Sci. Rep. (3)

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

D. Zhou, X. Bai, and H. Zhou, “Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm,” Sci. Rep. 7(1), 44747 (2017).
[Crossref] [PubMed]

X. Wen, G. Tang, Q. Yang, X. Chen, Q. Qian, Q. Zhang, and Z. Yang, “Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser,” Sci. Rep. 6(1), 20344 (2016).
[Crossref] [PubMed]

Solid State Commun. (1)

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

J. Pisarska, M. Sołtys, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, and W. A. Pisarski, “Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 201, 362–366 (2018).
[Crossref] [PubMed]

H. Lin, Y. Y. Zhang, and E. Y. Pun, “Fluorescence investigation of Ho3+ in Yb3+ sensitized mixed-alkali bismuth gallate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 71(4), 1547–1550 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Luminescence spectra of the germanate glass (a), simplified energy diagram with energy transfer mechanism (b) in germanate co-doped with Tm3+/Ho3+ under 796 nm excitation.
Fig. 2
Fig. 2 Luminescence decay curves from Tm3+: 3F4, Ho3+: 5I7 level (inset) (a), fifetime of 3F4 state of Tm3+ and energy transfer efficiency as a function of Ho3+content (b), (λexc = 796 nm).
Fig. 3
Fig. 3 Measured refractive index profile of the double-clad fiber.
Fig. 4
Fig. 4 ASE spectra of double-clad germanate optical fiber co-doped with 0.7Tm2O3/0.15Ho2O3, photo of fiber (inset).
Fig. 5
Fig. 5 Fabry-Perot setup for laser characterization of double-clad fibers with different fiber lengths.
Fig. 6
Fig. 6 Laser characteristics for different fiber lengths and slope efficiency reaching 4.7% at 2070nm wavelength (inset with laser output spectrum).

Tables (1)

Tables Icon

Table 1 Physical and thermal properties of manufactured germanate glass.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η=1 τ Tm TmHo / τ Tm
I( t )= A 1 exp( t τ 1 )+  A 2 exp( t τ 2 )
τ =  A 1 τ 1 2 + A 2 τ 2 2 A 1 τ 1 + A 2 τ 2
44SiO 2 8Al 2 O 3 15B 2 O 3 16PbO 12Na 2 O 5K 2 O( inner cladding, n = 1.62 )
69SiO 2 4Al 2 O 3 13Na 2 O5CaO 3K 2 O3MgO2BaO 1B 2 O 3 ( outer cladding, n = 1.51 )

Metrics