Abstract

Optical-grade yttrium aluminum garnet (YAG) ceramics co-doped with Yb3+ and Er3+ ions are successfully prepared via using high-temperature solid-state reaction method under vacuum condition. Cubic phase structure and full dense microstructure are determined by means of X-ray diffraction (XRD) and scanning electron microscope (SEM) methods. Both characteristics endow our ceramic with high optical transmittance of ~82% at 600 nm. Moreover, the ceramic luminescent properties are mainly discussed with Yb3+ ions serving as an efficient sensitizer for Er3+ active centers. Both zero-phonon lines (ZPLs) and sidebands of Er3+ ions in the YAG ceramics are first analyzed and the most interesting finding of this work is the anti-Stokes sidebands showing remarkably stronger emission intensity than Stokes ones. This obtained result reveals the predominance of absorbing phonon energy in vibronic luminescence process under the weak crystal field.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Eu3+ doped transparent germanate glass ceramic scintillators containing LaF3 nanocrystals for X-ray detection

JingTao Zhao, LiHui Huang, ShiLong Zhao, and ShiQing Xu
Opt. Mater. Express 9(2) 576-584 (2019)

Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide

Hua Zou, Jun Li, Xusheng Wang, Dengfeng Peng, Yanxia Li, and Xi Yao
Opt. Mater. Express 4(8) 1545-1554 (2014)

Doping concentration induced phase transition in Eu3+-doped β-PbF2 nano-particles

Hui Guo, Hua Yu, Xinxing Zhang, Lifen Chang, Zijian Lan, Yiming Li, and Lijuan Zhao
Opt. Express 21(21) 24742-24752 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  2. J. J. Carvajal, “Oxygen Implantation Allows Fabrication of Optical Channel Waveguides in Nd:YAG Transparent Ceramics,” MRS Bull. 34(02), 75–76 (2009).
    [Crossref]
  3. F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
    [Crossref]
  4. Y. R. Tang, S. M. Zhou, X. Z. Yi, S. Zhang, D. M. Hao, and X. C. Shao, “The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics,” J. Am. Ceram. Soc. 100(6), 2590–2595 (2017).
    [Crossref]
  5. X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
    [Crossref] [PubMed]
  6. F. Tang, H. Ye, Z. Su, Y. Bao, W. Guo, and S. Xu, “Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic,” ACS Appl. Mater. Interfaces 9(50), 43790–43798 (2017).
    [Crossref] [PubMed]
  7. S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
    [Crossref]
  8. W. C. Wang, F. Tang, X. Y. Yuan, C. Y. Ma, W. Guo, and Y. G. Cao, “Fabrication and properties of tape-casting transparent Ho:Y3Al5O12 ceramic,” Chin. Opt. Lett. 13(5), 051404 (2015).
    [Crossref]
  9. J. F. Digonnet, in Rare Earth Doped Fiber Laser and Amplifers, (Dekker, 1993).
  10. R. C. Powell, in Physics of Solid State Laser Materials, (Springer Verlag, 1998).
  11. E. Snitzer and R. Woodcock, “Yb3+–Er3+ GLASS LASER,” Appl. Phys. Lett. 6(3), 45–46 (1965).
    [Crossref]
  12. V. Fromzel, N. Ter-Gabrielyan, and M. Dubinskii, “Efficient resonantly-clad-pumped laser based on a Er:YAG-core planar waveguide,” Opt. Express 26(4), 3932–3937 (2018).
    [Crossref] [PubMed]
  13. S. Bigotta, L. Galecki, A. Katz, J. Böhmler, S. Lemonnier, E. Barraud, A. Leriche, and M. Eichhorn, “Resonantly pumped eye-safe Er3+:YAG SPS-HIP ceramic laser,” Opt. Express 26(3), 3435–3442 (2018).
    [Crossref] [PubMed]
  14. L. Harris, M. Clark, P. Veitch, and D. Ottaway, “Compact cavity-dumped Q-switched Er:YAG laser,” Opt. Lett. 41(18), 4309–4311 (2016).
    [Crossref] [PubMed]
  15. Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
    [Crossref]
  16. X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
    [Crossref]
  17. B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
    [Crossref]
  18. S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, “Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er:YAG,” J. Lumin. 102–103, 694–698 (2003).
    [Crossref]
  19. F. Tang, J. Q. Huang, W. Guo, W. C. Wang, B. J. Fei, and Y. G. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater. 34(5), 757–760 (2012).
    [Crossref]
  20. T. Bottger, C. W. Thiel, R. L. Cone, Y. Sun, and A. Faraon, “Optical spectroscopy and decoherence studies of Yb3+:YAG at 968 nm,” Phys. Rev. B 94(4), 045134 (2016).
    [Crossref]
  21. S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping,” J. Lumin. 93(4), 281–292 (2001).
    [Crossref]
  22. X. Xu, Z. Zhao, J. Xu, and P. Deng, “Distribution of ytterbium in Yb:YAG crystals and lattice parameters of the crystals,” J. Cryst. Growth 255(3-4), 338–341 (2003).
    [Crossref]
  23. G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Finely-tuned NIR-to-visible up-conversion in La2O3:Yb3+,Er3+ microcrystals with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(42), 11010–11017 (2017).
    [Crossref]
  24. M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, “Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 4025–4033 (2017).
    [Crossref]
  25. F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
    [Crossref]
  26. F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
    [Crossref]
  27. Q. Zhang, X. Liu, M. I. B. Utama, G. Xing, T. C. Sum, and Q. Xiong, “Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons,” Adv. Mater. 28(2), 276–283 (2016).
    [Crossref] [PubMed]
  28. M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
    [Crossref] [PubMed]
  29. H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
    [Crossref] [PubMed]

2018 (3)

2017 (7)

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

F. Tang, H. Ye, Z. Su, Y. Bao, W. Guo, and S. Xu, “Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic,” ACS Appl. Mater. Interfaces 9(50), 43790–43798 (2017).
[Crossref] [PubMed]

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

Y. R. Tang, S. M. Zhou, X. Z. Yi, S. Zhang, D. M. Hao, and X. C. Shao, “The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics,” J. Am. Ceram. Soc. 100(6), 2590–2595 (2017).
[Crossref]

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Finely-tuned NIR-to-visible up-conversion in La2O3:Yb3+,Er3+ microcrystals with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(42), 11010–11017 (2017).
[Crossref]

M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, “Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 4025–4033 (2017).
[Crossref]

F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
[Crossref]

2016 (5)

Q. Zhang, X. Liu, M. I. B. Utama, G. Xing, T. C. Sum, and Q. Xiong, “Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons,” Adv. Mater. 28(2), 276–283 (2016).
[Crossref] [PubMed]

M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
[Crossref] [PubMed]

F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

T. Bottger, C. W. Thiel, R. L. Cone, Y. Sun, and A. Faraon, “Optical spectroscopy and decoherence studies of Yb3+:YAG at 968 nm,” Phys. Rev. B 94(4), 045134 (2016).
[Crossref]

L. Harris, M. Clark, P. Veitch, and D. Ottaway, “Compact cavity-dumped Q-switched Er:YAG laser,” Opt. Lett. 41(18), 4309–4311 (2016).
[Crossref] [PubMed]

2015 (2)

B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
[Crossref]

W. C. Wang, F. Tang, X. Y. Yuan, C. Y. Ma, W. Guo, and Y. G. Cao, “Fabrication and properties of tape-casting transparent Ho:Y3Al5O12 ceramic,” Chin. Opt. Lett. 13(5), 051404 (2015).
[Crossref]

2014 (2)

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

2013 (1)

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

2012 (1)

F. Tang, J. Q. Huang, W. Guo, W. C. Wang, B. J. Fei, and Y. G. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater. 34(5), 757–760 (2012).
[Crossref]

2009 (1)

J. J. Carvajal, “Oxygen Implantation Allows Fabrication of Optical Channel Waveguides in Nd:YAG Transparent Ceramics,” MRS Bull. 34(02), 75–76 (2009).
[Crossref]

2008 (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

2003 (2)

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, “Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er:YAG,” J. Lumin. 102–103, 694–698 (2003).
[Crossref]

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Distribution of ytterbium in Yb:YAG crystals and lattice parameters of the crystals,” J. Cryst. Growth 255(3-4), 338–341 (2003).
[Crossref]

2001 (1)

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping,” J. Lumin. 93(4), 281–292 (2001).
[Crossref]

1965 (1)

E. Snitzer and R. Woodcock, “Yb3+–Er3+ GLASS LASER,” Appl. Phys. Lett. 6(3), 45–46 (1965).
[Crossref]

Allix, M.

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Babu, P.

M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
[Crossref] [PubMed]

Bao, Y.

F. Tang, H. Ye, Z. Su, Y. Bao, W. Guo, and S. Xu, “Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic,” ACS Appl. Mater. Interfaces 9(50), 43790–43798 (2017).
[Crossref] [PubMed]

Barbosa-Garcia, O.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, “Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er:YAG,” J. Lumin. 102–103, 694–698 (2003).
[Crossref]

Barraud, E.

Bigotta, S.

Böhmler, J.

Bottger, T.

T. Bottger, C. W. Thiel, R. L. Cone, Y. Sun, and A. Faraon, “Optical spectroscopy and decoherence studies of Yb3+:YAG at 968 nm,” Phys. Rev. B 94(4), 045134 (2016).
[Crossref]

Busko, D.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Finely-tuned NIR-to-visible up-conversion in La2O3:Yb3+,Er3+ microcrystals with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(42), 11010–11017 (2017).
[Crossref]

Cao, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Cao, Y. G.

F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
[Crossref]

F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
[Crossref]

W. C. Wang, F. Tang, X. Y. Yuan, C. Y. Ma, W. Guo, and Y. G. Cao, “Fabrication and properties of tape-casting transparent Ho:Y3Al5O12 ceramic,” Chin. Opt. Lett. 13(5), 051404 (2015).
[Crossref]

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

F. Tang, J. Q. Huang, W. Guo, W. C. Wang, B. J. Fei, and Y. G. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater. 34(5), 757–760 (2012).
[Crossref]

Carvajal, J. J.

J. J. Carvajal, “Oxygen Implantation Allows Fabrication of Optical Channel Waveguides in Nd:YAG Transparent Ceramics,” MRS Bull. 34(02), 75–76 (2009).
[Crossref]

Chen, H.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Chen, W. D.

B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
[Crossref]

Chen, X.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Chen, X. T.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Clark, M.

Cone, R. L.

T. Bottger, C. W. Thiel, R. L. Cone, Y. Sun, and A. Faraon, “Optical spectroscopy and decoherence studies of Yb3+:YAG at 968 nm,” Phys. Rev. B 94(4), 045134 (2016).
[Crossref]

Cui, C.

M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, “Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 4025–4033 (2017).
[Crossref]

Deng, P.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Distribution of ytterbium in Yb:YAG crystals and lattice parameters of the crystals,” J. Cryst. Growth 255(3-4), 338–341 (2003).
[Crossref]

Diaz-Torres, L. A.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, “Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er:YAG,” J. Lumin. 102–103, 694–698 (2003).
[Crossref]

Dubinskii, M.

Eichhorn, M.

Etienne, A.

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

Faraon, A.

T. Bottger, C. W. Thiel, R. L. Cone, Y. Sun, and A. Faraon, “Optical spectroscopy and decoherence studies of Yb3+:YAG at 968 nm,” Phys. Rev. B 94(4), 045134 (2016).
[Crossref]

Fei, B. J.

B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
[Crossref]

F. Tang, J. Q. Huang, W. Guo, W. C. Wang, B. J. Fei, and Y. G. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater. 34(5), 757–760 (2012).
[Crossref]

Feng, S. W.

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

Florea, C.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping,” J. Lumin. 93(4), 281–292 (2001).
[Crossref]

Fromzel, V.

Galecki, L.

Gao, G.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Finely-tuned NIR-to-visible up-conversion in La2O3:Yb3+,Er3+ microcrystals with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(42), 11010–11017 (2017).
[Crossref]

Gao, W. P.

F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
[Crossref]

Genevois, C.

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

Georgescu, S.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping,” J. Lumin. 93(4), 281–292 (2001).
[Crossref]

Gu, M.

M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, “Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 4025–4033 (2017).
[Crossref]

Guo, W.

F. Tang, H. Ye, Z. Su, Y. Bao, W. Guo, and S. Xu, “Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic,” ACS Appl. Mater. Interfaces 9(50), 43790–43798 (2017).
[Crossref] [PubMed]

F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
[Crossref]

B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
[Crossref]

W. C. Wang, F. Tang, X. Y. Yuan, C. Y. Ma, W. Guo, and Y. G. Cao, “Fabrication and properties of tape-casting transparent Ho:Y3Al5O12 ceramic,” Chin. Opt. Lett. 13(5), 051404 (2015).
[Crossref]

F. Tang, J. Q. Huang, W. Guo, W. C. Wang, B. J. Fei, and Y. G. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater. 34(5), 757–760 (2012).
[Crossref]

Hao, D. M.

Y. R. Tang, S. M. Zhou, X. Z. Yi, S. Zhang, D. M. Hao, and X. C. Shao, “The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics,” J. Am. Ceram. Soc. 100(6), 2590–2595 (2017).
[Crossref]

Hapenciuc, C.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping,” J. Lumin. 93(4), 281–292 (2001).
[Crossref]

Haritha, P.

M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
[Crossref] [PubMed]

Harris, L.

Hinjosa, S.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, “Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er:YAG,” J. Lumin. 102–103, 694–698 (2003).
[Crossref]

Howard, I. A.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Finely-tuned NIR-to-visible up-conversion in La2O3:Yb3+,Er3+ microcrystals with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(42), 11010–11017 (2017).
[Crossref]

Hua, T. F.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Huang, H. T.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Huang, J. Q.

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

F. Tang, J. Q. Huang, W. Guo, W. C. Wang, B. J. Fei, and Y. G. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater. 34(5), 757–760 (2012).
[Crossref]

Huang, P.

M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, “Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 4025–4033 (2017).
[Crossref]

Huang, Q. F.

B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
[Crossref]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Jayasankar, C. K.

M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
[Crossref] [PubMed]

Jiang, H. C.

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

Jiang, J.

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

Katz, A.

Kauffmann-Weiss, S.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Finely-tuned NIR-to-visible up-conversion in La2O3:Yb3+,Er3+ microcrystals with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(42), 11010–11017 (2017).
[Crossref]

Kong, J.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Lan, X.

F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Lavín, V.

M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
[Crossref] [PubMed]

Lemonnier, S.

Leriche, A.

Li, J.

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

Li, X.

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

Li, Y. Y.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Lin, C. C.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Lin, H. F.

B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
[Crossref]

Lin, Y.

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

Liu, M.

M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, “Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 4025–4033 (2017).
[Crossref]

Liu, R.-S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Liu, X.

Q. Zhang, X. Liu, M. I. B. Utama, G. Xing, T. C. Sum, and Q. Xiong, “Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons,” Adv. Mater. 28(2), 276–283 (2016).
[Crossref] [PubMed]

Liu, Y.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Liu, Y. F.

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

Liu, Z.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Lozano-Gorrín, A. D.

M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
[Crossref] [PubMed]

Lu, T. C.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Lu, Z. W.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Luo, W.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Luo, Z. H.

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

Lupei, V.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping,” J. Lumin. 93(4), 281–292 (2001).
[Crossref]

Ma, B.

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

Ma, B. Y.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Ma, C. Y.

W. C. Wang, F. Tang, X. Y. Yuan, C. Y. Ma, W. Guo, and Y. G. Cao, “Fabrication and properties of tape-casting transparent Ho:Y3Al5O12 ceramic,” Chin. Opt. Lett. 13(5), 051404 (2015).
[Crossref]

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

Ma, E.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Ma, X.

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

Meneses-Nava, M. A.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, “Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er:YAG,” J. Lumin. 102–103, 694–698 (2003).
[Crossref]

Mosino, J. F.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, “Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er:YAG,” J. Lumin. 102–103, 694–698 (2003).
[Crossref]

Naud, C.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping,” J. Lumin. 93(4), 281–292 (2001).
[Crossref]

Ottaway, D.

Pan, X. Q.

F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
[Crossref]

Peng, Z.

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

Petraru, A.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping,” J. Lumin. 93(4), 281–292 (2001).
[Crossref]

Phillips, D. L.

F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Porte, C.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping,” J. Lumin. 93(4), 281–292 (2001).
[Crossref]

Qi, J. Q.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Qiao, J. W.

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

Qin, H. M.

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

Rathaiah, M.

M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
[Crossref] [PubMed]

Richards, B. S.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Finely-tuned NIR-to-visible up-conversion in La2O3:Yb3+,Er3+ microcrystals with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(42), 11010–11017 (2017).
[Crossref]

Rodríguez-Mendoza, U. R.

M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
[Crossref] [PubMed]

Santoyo, M. A.

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, “Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er:YAG,” J. Lumin. 102–103, 694–698 (2003).
[Crossref]

Shao, X. C.

Y. R. Tang, S. M. Zhou, X. Z. Yi, S. Zhang, D. M. Hao, and X. C. Shao, “The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics,” J. Am. Ceram. Soc. 100(6), 2590–2595 (2017).
[Crossref]

Shen, D. Y.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Shi, M.

B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
[Crossref]

Shi, Q.

M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, “Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 4025–4033 (2017).
[Crossref]

Shu, S.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Snitzer, E.

E. Snitzer and R. Woodcock, “Yb3+–Er3+ GLASS LASER,” Appl. Phys. Lett. 6(3), 45–46 (1965).
[Crossref]

Su, Z.

F. Tang, H. Ye, Z. Su, Y. Bao, W. Guo, and S. Xu, “Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic,” ACS Appl. Mater. Interfaces 9(50), 43790–43798 (2017).
[Crossref] [PubMed]

Su, Z. C.

F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
[Crossref]

F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Sum, T. C.

Q. Zhang, X. Liu, M. I. B. Utama, G. Xing, T. C. Sum, and Q. Xiong, “Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons,” Adv. Mater. 28(2), 276–283 (2016).
[Crossref] [PubMed]

Sun, Y.

T. Bottger, C. W. Thiel, R. L. Cone, Y. Sun, and A. Faraon, “Optical spectroscopy and decoherence studies of Yb3+:YAG at 968 nm,” Phys. Rev. B 94(4), 045134 (2016).
[Crossref]

Tang, D. Y.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Tang, F.

F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
[Crossref]

F. Tang, H. Ye, Z. Su, Y. Bao, W. Guo, and S. Xu, “Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic,” ACS Appl. Mater. Interfaces 9(50), 43790–43798 (2017).
[Crossref] [PubMed]

F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

W. C. Wang, F. Tang, X. Y. Yuan, C. Y. Ma, W. Guo, and Y. G. Cao, “Fabrication and properties of tape-casting transparent Ho:Y3Al5O12 ceramic,” Chin. Opt. Lett. 13(5), 051404 (2015).
[Crossref]

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

F. Tang, J. Q. Huang, W. Guo, W. C. Wang, B. J. Fei, and Y. G. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater. 34(5), 757–760 (2012).
[Crossref]

Tang, Y. R.

Y. R. Tang, S. M. Zhou, X. Z. Yi, S. Zhang, D. M. Hao, and X. C. Shao, “The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics,” J. Am. Ceram. Soc. 100(6), 2590–2595 (2017).
[Crossref]

Ter-Gabrielyan, N.

Thiel, C. W.

T. Bottger, C. W. Thiel, R. L. Cone, Y. Sun, and A. Faraon, “Optical spectroscopy and decoherence studies of Yb3+:YAG at 968 nm,” Phys. Rev. B 94(4), 045134 (2016).
[Crossref]

Tian, Y.

M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, “Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 4025–4033 (2017).
[Crossref]

Turshatov, A.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Finely-tuned NIR-to-visible up-conversion in La2O3:Yb3+,Er3+ microcrystals with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(42), 11010–11017 (2017).
[Crossref]

Utama, M. I. B.

Q. Zhang, X. Liu, M. I. B. Utama, G. Xing, T. C. Sum, and Q. Xiong, “Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons,” Adv. Mater. 28(2), 276–283 (2016).
[Crossref] [PubMed]

Veitch, P.

Venkatramu, V.

M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
[Crossref] [PubMed]

Véron, E.

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

Wan, C.

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

Wang, F. Y.

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

Wang, L.

M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, “Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 4025–4033 (2017).
[Crossref]

Wang, M. Z.

F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Wang, W. C.

W. C. Wang, F. Tang, X. Y. Yuan, C. Y. Ma, W. Guo, and Y. G. Cao, “Fabrication and properties of tape-casting transparent Ho:Y3Al5O12 ceramic,” Chin. Opt. Lett. 13(5), 051404 (2015).
[Crossref]

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

F. Tang, J. Q. Huang, W. Guo, W. C. Wang, B. J. Fei, and Y. G. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater. 34(5), 757–760 (2012).
[Crossref]

Wang, Y.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Wei, N. A.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Woodcock, R.

E. Snitzer and R. Woodcock, “Yb3+–Er3+ GLASS LASER,” Appl. Phys. Lett. 6(3), 45–46 (1965).
[Crossref]

Wu, G. Q.

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

Wu, Y. Q.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Xing, G.

Q. Zhang, X. Liu, M. I. B. Utama, G. Xing, T. C. Sum, and Q. Xiong, “Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons,” Adv. Mater. 28(2), 276–283 (2016).
[Crossref] [PubMed]

Xiong, Q.

Q. Zhang, X. Liu, M. I. B. Utama, G. Xing, T. C. Sum, and Q. Xiong, “Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons,” Adv. Mater. 28(2), 276–283 (2016).
[Crossref] [PubMed]

Xu, J.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Distribution of ytterbium in Yb:YAG crystals and lattice parameters of the crystals,” J. Cryst. Growth 255(3-4), 338–341 (2003).
[Crossref]

Xu, S.

F. Tang, H. Ye, Z. Su, Y. Bao, W. Guo, and S. Xu, “Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic,” ACS Appl. Mater. Interfaces 9(50), 43790–43798 (2017).
[Crossref] [PubMed]

Xu, S. J.

F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
[Crossref]

F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Xu, X.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Distribution of ytterbium in Yb:YAG crystals and lattice parameters of the crystals,” J. Cryst. Growth 255(3-4), 338–341 (2003).
[Crossref]

Ye, H.

F. Tang, H. Ye, Z. Su, Y. Bao, W. Guo, and S. Xu, “Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic,” ACS Appl. Mater. Interfaces 9(50), 43790–43798 (2017).
[Crossref] [PubMed]

Ye, H. G.

F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
[Crossref]

F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

Yi, X. Z.

Y. R. Tang, S. M. Zhou, X. Z. Yi, S. Zhang, D. M. Hao, and X. C. Shao, “The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics,” J. Am. Ceram. Soc. 100(6), 2590–2595 (2017).
[Crossref]

Yuan, X. Y.

W. C. Wang, F. Tang, X. Y. Yuan, C. Y. Ma, W. Guo, and Y. G. Cao, “Fabrication and properties of tape-casting transparent Ho:Y3Al5O12 ceramic,” Chin. Opt. Lett. 13(5), 051404 (2015).
[Crossref]

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

Zhang, G.

B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
[Crossref]

Zhang, J.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Zhang, Q.

Q. Zhang, X. Liu, M. I. B. Utama, G. Xing, T. C. Sum, and Q. Xiong, “Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons,” Adv. Mater. 28(2), 276–283 (2016).
[Crossref] [PubMed]

Zhang, Q. H.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Zhang, S.

Y. R. Tang, S. M. Zhou, X. Z. Yi, S. Zhang, D. M. Hao, and X. C. Shao, “The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics,” J. Am. Ceram. Soc. 100(6), 2590–2595 (2017).
[Crossref]

Zhang, W.

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

Zhao, J. T.

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

Zhao, Z.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Distribution of ytterbium in Yb:YAG crystals and lattice parameters of the crystals,” J. Cryst. Growth 255(3-4), 338–341 (2003).
[Crossref]

Zhou, S. M.

Y. R. Tang, S. M. Zhou, X. Z. Yi, S. Zhang, D. M. Hao, and X. C. Shao, “The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics,” J. Am. Ceram. Soc. 100(6), 2590–2595 (2017).
[Crossref]

Zhu, C.

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

Zhu, H.

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Zhu, Z. X.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

F. Tang, H. Ye, Z. Su, Y. Bao, W. Guo, and S. Xu, “Luminescence Anisotropy and Thermal Effect of Magnetic and Electric Dipole Transitions of Cr3+ Ions in Yb:YAG Transparent Ceramic,” ACS Appl. Mater. Interfaces 9(50), 43790–43798 (2017).
[Crossref] [PubMed]

Adv. Mater. (1)

Q. Zhang, X. Liu, M. I. B. Utama, G. Xing, T. C. Sum, and Q. Xiong, “Phonon-Assisted Anti-Stokes Lasing in ZnTe Nanoribbons,” Adv. Mater. 28(2), 276–283 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

E. Snitzer and R. Woodcock, “Yb3+–Er3+ GLASS LASER,” Appl. Phys. Lett. 6(3), 45–46 (1965).
[Crossref]

Chin. Opt. Lett. (1)

J. Alloys Compd. (2)

F. Tang, W. C. Wang, X. Y. Yuan, C. Zhu, J. Q. Huang, C. Y. Ma, F. Y. Wang, Y. Lin, and Y. G. Cao, “Dependence of optical and thermal properties on concentration and temperature for Yb:YAG laser ceramics,” J. Alloys Compd. 593, 123–127 (2014).
[Crossref]

B. J. Fei, W. D. Chen, W. Guo, M. Shi, H. F. Lin, Q. F. Huang, G. Zhang, and Y. G. Cao, “Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics,” J. Alloys Compd. 636, 171–175 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

Y. R. Tang, S. M. Zhou, X. Z. Yi, S. Zhang, D. M. Hao, and X. C. Shao, “The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics,” J. Am. Ceram. Soc. 100(6), 2590–2595 (2017).
[Crossref]

J. Cryst. Growth (1)

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Distribution of ytterbium in Yb:YAG crystals and lattice parameters of the crystals,” J. Cryst. Growth 255(3-4), 338–341 (2003).
[Crossref]

J. Eur. Ceram. Soc. (1)

S. W. Feng, H. M. Qin, G. Q. Wu, H. C. Jiang, J. T. Zhao, Y. F. Liu, Z. H. Luo, J. W. Qiao, and J. Jiang, “Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,” J. Eur. Ceram. Soc. 37(10), 3403–3409 (2017).
[Crossref]

J. Lumin. (3)

S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, “Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er:YAG,” J. Lumin. 102–103, 694–698 (2003).
[Crossref]

X. T. Chen, Y. Q. Wu, N. A. Wei, J. Q. Qi, Y. Y. Li, Q. H. Zhang, T. F. Hua, W. Zhang, Z. W. Lu, B. Y. Ma, and T. C. Lu, “Fabrication and spectroscopic properties of Yb/Er:YAG and Yb, Er:YAG transparent ceramics by co-precipitation synthesis route,” J. Lumin. 188, 533–540 (2017).
[Crossref]

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping,” J. Lumin. 93(4), 281–292 (2001).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (4)

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Finely-tuned NIR-to-visible up-conversion in La2O3:Yb3+,Er3+ microcrystals with high quantum yield,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(42), 11010–11017 (2017).
[Crossref]

M. Liu, M. Gu, Y. Tian, P. Huang, L. Wang, Q. Shi, and C. Cui, “Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(16), 4025–4033 (2017).
[Crossref]

F. Tang, Z. C. Su, H. G. Ye, M. Z. Wang, X. Lan, D. L. Phillips, Y. G. Cao, and S. J. Xu, “A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 8C and efficient room-temperature photoluminescence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(40), 9561–9568 (2016).
[Crossref]

F. Tang, Z. C. Su, H. G. Ye, S. J. Xu, W. Guo, Y. G. Cao, W. P. Gao, and X. Q. Pan, “Boosting phonon-induced luminescence in red fluoride phosphors via composition-driven structural transformations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(46), 12105–12111 (2017).
[Crossref]

Laser Phys. Lett. (1)

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

MRS Bull. (1)

J. J. Carvajal, “Oxygen Implantation Allows Fabrication of Optical Channel Waveguides in Nd:YAG Transparent Ceramics,” MRS Bull. 34(02), 75–76 (2009).
[Crossref]

Nat. Commun. (2)

X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Véron, Z. Peng, and M. Allix, “Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics,” Nat. Commun. 9(1), 1175 (2018).
[Crossref] [PubMed]

H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R.-S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nat. Commun. 5(1), 4312 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

F. Tang, J. Q. Huang, W. Guo, W. C. Wang, B. J. Fei, and Y. G. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater. 34(5), 757–760 (2012).
[Crossref]

Phys. Chem. Chem. Phys. (1)

M. Rathaiah, P. Haritha, A. D. Lozano-Gorrín, P. Babu, C. K. Jayasankar, U. R. Rodríguez-Mendoza, V. Lavín, and V. Venkatramu, “Stokes and anti-Stokes luminescence in Tm3+)Yb3+-doped Lu3Ga5O12 nano-garnets: a study of multipolar interactions and energy transfer dynamics,” Phys. Chem. Chem. Phys. 18(21), 14720–14729 (2016).
[Crossref] [PubMed]

Phys. Rev. B (1)

T. Bottger, C. W. Thiel, R. L. Cone, Y. Sun, and A. Faraon, “Optical spectroscopy and decoherence studies of Yb3+:YAG at 968 nm,” Phys. Rev. B 94(4), 045134 (2016).
[Crossref]

Other (2)

J. F. Digonnet, in Rare Earth Doped Fiber Laser and Amplifers, (Dekker, 1993).

R. C. Powell, in Physics of Solid State Laser Materials, (Springer Verlag, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Photograph and (b) SEM image of mirror-polished 9.5at.%Yb, 0.5at.%Er co-doped YAG transparent ceramic.
Fig. 2
Fig. 2 (a) Measured optical transmittance spectrum for 9.5at.% Yb, 0.5at.% Er co-doped YAG transparent ceramic. Light red-region shows the absorption peaks of Er3+ ions while blue-region absorption derives from Yb3+ ions. (b) Energy level diagram of Yb3+ and Er3+ions in YAG crystal.
Fig. 3
Fig. 3 Measured and calculated XRD patterns of 9.5at.% Yb, 0.5at.% Er:YAG TC sample.
Fig. 4
Fig. 4 Room temperature measured excited spectrum of 9.5at.% Yb, 0.5at.% Er co-doped YAG transparent ceramic monitored at 1532 nm.
Fig. 5
Fig. 5 Normalized luminescence decay curves of Yb, Er co-doped YAG TC monitored at the wavelength of 1532nm. The green lines represent the fitting results of decay curves with one-exponential function.
Fig. 6
Fig. 6 Room temperature measured emission spectra of 9.5at.% Yb, 0.5at.%Er co-doped YAG ceramics. The inset figure shows the Stokes sideband of the studied TC.

Tables (1)

Tables Icon

Table 1 Unit cell parameters obtained from Rietveld structural refinement of XRD data.

Metrics