Abstract

In this paper, we demonstrated a Fano resonant superlattice metasurface structure composed of bilayer trimeric metallic stripes in each unit cell. It can simultaneously support two types of Fano resonances, which individually possesses electric and magnetic properties at microwave frequencies, respectively. The electric Fano resonance is generated by the anti-phase electric mode interfering with in-phase electric mode, while the magnetic Fano resonance stems from the interference between the magnetic modes in the gap area and the anti-phase electric mode in each layer of the bilayer metasurface. In addition, the double Fano resonances are readily tunable by adjusting a variety of distance degrees of freedom in the composite structure. Our proposed model not only provides a possibility to stimulate and control electric and magnetic Fano resonances simultaneously for microwaves, but also holds great potential for biosensing and switching applications for even higher frequency range such as terahertz or optical region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiple Fano resonances in metallic arrays of asymmetric dual stripes

Yu-Tang Chen, Ruey-Lin Chern, and Hoang-Yan Lin
Appl. Opt. 49(15) 2819-2826 (2010)

Numerical analysis of high-Q multiple Fano resonances

Wanying Li, Qi Lin, Xiang Zhai, and Lingling Wang
J. Opt. Soc. Am. B 35(11) 2699-2704 (2018)

Dual terahertz slow light plateaus in bilayer asymmetric metasurfaces

Zhenyu Zhao, Zhidong Gu, Hui Zhao, and Wangzhou Shi
Opt. Mater. Express 9(4) 1608-1619 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  2. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  3. S. Paul and M. Ray, “Simultaneous Switching at Multiple Wavelengths Using Plasmon Induced Transparency and Fano Resonance,” IEEE Photonics Technol. Lett. 29(9), 739–742 (2017).
    [Crossref]
  4. Z. Chen, X. Song, G. Duan, L. Wang, and L. Yu, “Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems,” IEEE Photonics J. 7(3), 1–10 (2015).
    [Crossref]
  5. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
    [Crossref] [PubMed]
  6. Z.-L. Deng and J.-W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013).
    [Crossref] [PubMed]
  7. Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
    [Crossref]
  8. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref] [PubMed]
  9. Z. Chen and L. Yu, “Multiple Fano Resonances Based on Different Waveguide Modes in a Symmetry Breaking Plasmonic System,” IEEE Photonics J. 6, 1–8 (2014).
    [Crossref]
  10. Y. Miao, Y. Peng, Y. Xiang, M. Li, Y. Lu, and Y. Song, “Dynamic Fano Resonance in Thin Fiber Taper Coupled Cylindrical Microcavity,” IEEE Photonics J. 8(6), 1–6 (2016).
    [Crossref]
  11. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
    [Crossref] [PubMed]
  12. Z.-L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
    [Crossref] [PubMed]
  13. Z.-L. Deng, S. Zhang, and G. P. Wang, “Wide-angled off-axis achromatic metasurfaces for visible light,” Opt. Express 24(20), 23118–23128 (2016).
    [Crossref] [PubMed]
  14. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  15. Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
    [Crossref] [PubMed]
  16. Z.-L. Deng, Y. Cao, X. Li, and G. P. Wang, “Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure,” Photon. Res. 6(5), 443–450 (2018).
    [Crossref]
  17. S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, and X. Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-electronic Adv. 1(2), 1–8 (2018).
    [Crossref]
  18. Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
    [Crossref] [PubMed]
  19. S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
    [Crossref]
  20. J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer,” ACS Nano 9(3), 2968–2980 (2015).
    [Crossref] [PubMed]
  21. H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic Fano spectral response from graphene metasurfaces in the MIR region,” Opt. Mater. Express 8(4), 1058–1068 (2018).
    [Crossref]
  22. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  23. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  24. N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
    [Crossref] [PubMed]
  25. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [Crossref] [PubMed]
  26. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  27. F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
    [Crossref]
  28. L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
    [Crossref]
  29. Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
    [Crossref]
  30. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
    [Crossref] [PubMed]
  31. S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
    [Crossref]
  32. C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
    [Crossref]
  33. S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
    [Crossref]
  34. O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5(1), 209–216 (2013).
    [Crossref] [PubMed]
  35. F. F. Qin, J. J. Xiao, Q. Zhang, and W. G. Liang, “Multiple fano resonances in spatially compact and spectrally efficient spoof surface plasmon resonators with composite textures,” Opt. Lett. 41(1), 60–63 (2016).
    [Crossref] [PubMed]
  36. F. F. Qin, J. J. Xiao, Z. Z. Liu, and Q. Zhang, “Multiple Fano-Like Transmission Mediated by Multimode Interferences in Spoof Surface Plasmon Cavity-Waveguide Coupling System,” IEEE Trans. Microw. Theory Tech. 64(4), 1186–1194 (2016).
    [Crossref]
  37. Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5(1), 18461 (2016).
    [Crossref] [PubMed]
  38. H. Lu, Z. Yue, and J. Zhao, “Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides,” Opt. Commun. 414, 16–21 (2018).
    [Crossref]
  39. P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
    [Crossref] [PubMed]
  40. M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active Photoswitching of Sharp Fano Resonances in THz Metadevices,” Adv. Mater. 29(3), 1603355 (2017).
    [Crossref] [PubMed]
  41. V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, “Modulating sub-THz Radiation with Current in Superconducting Metamaterial,” Phys. Rev. Lett. 109(24), 243904 (2012).
    [Crossref] [PubMed]
  42. D. C. Skigin and R. A. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
    [Crossref] [PubMed]
  43. Z.-L. Deng, T. Fu, Z. Ouyang, and G. P. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108(8), 081109 (2016).
    [Crossref]
  44. Z.-L. Deng, X. Li, T. Fu, and G. P. Wang, “Fano Resonance in a Metasurface Composed of Graphene Ribbon Superlattice,” IEEE Photonics J. 9(5), 1–7 (2017).
    [Crossref]
  45. P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
    [Crossref]

2018 (7)

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Z.-L. Deng, Y. Cao, X. Li, and G. P. Wang, “Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure,” Photon. Res. 6(5), 443–450 (2018).
[Crossref]

S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, and X. Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-electronic Adv. 1(2), 1–8 (2018).
[Crossref]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic Fano spectral response from graphene metasurfaces in the MIR region,” Opt. Mater. Express 8(4), 1058–1068 (2018).
[Crossref]

H. Lu, Z. Yue, and J. Zhao, “Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides,” Opt. Commun. 414, 16–21 (2018).
[Crossref]

2017 (5)

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active Photoswitching of Sharp Fano Resonances in THz Metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Z.-L. Deng, X. Li, T. Fu, and G. P. Wang, “Fano Resonance in a Metasurface Composed of Graphene Ribbon Superlattice,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

S. Paul and M. Ray, “Simultaneous Switching at Multiple Wavelengths Using Plasmon Induced Transparency and Fano Resonance,” IEEE Photonics Technol. Lett. 29(9), 739–742 (2017).
[Crossref]

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

2016 (9)

Y. Miao, Y. Peng, Y. Xiang, M. Li, Y. Lu, and Y. Song, “Dynamic Fano Resonance in Thin Fiber Taper Coupled Cylindrical Microcavity,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Z.-L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
[Crossref] [PubMed]

Z.-L. Deng, S. Zhang, and G. P. Wang, “Wide-angled off-axis achromatic metasurfaces for visible light,” Opt. Express 24(20), 23118–23128 (2016).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

F. F. Qin, J. J. Xiao, Q. Zhang, and W. G. Liang, “Multiple fano resonances in spatially compact and spectrally efficient spoof surface plasmon resonators with composite textures,” Opt. Lett. 41(1), 60–63 (2016).
[Crossref] [PubMed]

F. F. Qin, J. J. Xiao, Z. Z. Liu, and Q. Zhang, “Multiple Fano-Like Transmission Mediated by Multimode Interferences in Spoof Surface Plasmon Cavity-Waveguide Coupling System,” IEEE Trans. Microw. Theory Tech. 64(4), 1186–1194 (2016).
[Crossref]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5(1), 18461 (2016).
[Crossref] [PubMed]

Z.-L. Deng, T. Fu, Z. Ouyang, and G. P. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108(8), 081109 (2016).
[Crossref]

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

2015 (5)

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Z. Chen, X. Song, G. Duan, L. Wang, and L. Yu, “Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

2014 (6)

Z. Chen and L. Yu, “Multiple Fano Resonances Based on Different Waveguide Modes in a Symmetry Breaking Plasmonic System,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
[Crossref]

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

2013 (3)

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5(1), 209–216 (2013).
[Crossref] [PubMed]

Z.-L. Deng and J.-W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013).
[Crossref] [PubMed]

2012 (3)

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, “Modulating sub-THz Radiation with Current in Superconducting Metamaterial,” Phys. Rev. Lett. 109(24), 243904 (2012).
[Crossref] [PubMed]

2011 (3)

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[Crossref]

2010 (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

2008 (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

2005 (1)

D. C. Skigin and R. A. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Albrektsen, O.

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[Crossref]

Al-Naib, I.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active Photoswitching of Sharp Fano Resonances in THz Metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Al-Naib, I. A. I.

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Alù, A.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Anlage, S. M.

V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, “Modulating sub-THz Radiation with Current in Superconducting Metamaterial,” Phys. Rev. Lett. 109(24), 243904 (2012).
[Crossref] [PubMed]

Argyropoulos, C.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Arju, N.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[Crossref]

Campione, S.

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

Campoy-Quiles, M.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5(1), 209–216 (2013).
[Crossref] [PubMed]

Cao, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Cao, Y.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, and X. Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-electronic Adv. 1(2), 1–8 (2018).
[Crossref]

Z.-L. Deng, Y. Cao, X. Li, and G. P. Wang, “Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure,” Photon. Res. 6(5), 443–450 (2018).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Capolino, F.

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

Chen, H.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Chen, W.-J.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5(1), 18461 (2016).
[Crossref] [PubMed]

Chen, X.-D.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5(1), 18461 (2016).
[Crossref] [PubMed]

Chen, Z.

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

Z. Chen, X. Song, G. Duan, L. Wang, and L. Yu, “Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Z. Chen and L. Yu, “Multiple Fano Resonances Based on Different Waveguide Modes in a Symmetry Breaking Plasmonic System,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

Cheng, X.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Chi, Y.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cong, L.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active Photoswitching of Sharp Fano Resonances in THz Metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Cuerda, J.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Cui, T. J.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

D’Aguanno, G.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

de Ceglia, D.

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

de Groot, P. A. J.

V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, “Modulating sub-THz Radiation with Current in Superconducting Metamaterial,” Phys. Rev. Lett. 109(24), 243904 (2012).
[Crossref] [PubMed]

Deng, J.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Deng, Z.-L.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Z.-L. Deng, Y. Cao, X. Li, and G. P. Wang, “Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure,” Photon. Res. 6(5), 443–450 (2018).
[Crossref]

Z.-L. Deng, X. Li, T. Fu, and G. P. Wang, “Fano Resonance in a Metasurface Composed of Graphene Ribbon Superlattice,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Z.-L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
[Crossref] [PubMed]

Z.-L. Deng, T. Fu, Z. Ouyang, and G. P. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108(8), 081109 (2016).
[Crossref]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5(1), 18461 (2016).
[Crossref] [PubMed]

Z.-L. Deng, S. Zhang, and G. P. Wang, “Wide-angled off-axis achromatic metasurfaces for visible light,” Opt. Express 24(20), 23118–23128 (2016).
[Crossref] [PubMed]

Z.-L. Deng and J.-W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013).
[Crossref] [PubMed]

Depine, R. A.

D. C. Skigin and R. A. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[Crossref] [PubMed]

Dong, J.-W.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5(1), 18461 (2016).
[Crossref] [PubMed]

Z.-L. Deng and J.-W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013).
[Crossref] [PubMed]

Duan, G.

Z. Chen, X. Song, G. Duan, L. Wang, and L. Yu, “Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Evlyukhin, A. B.

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[Crossref]

Fedotov, V. A.

V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, “Modulating sub-THz Radiation with Current in Superconducting Metamaterial,” Phys. Rev. Lett. 109(24), 243904 (2012).
[Crossref] [PubMed]

Feng, Z.

S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, and X. Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-electronic Adv. 1(2), 1–8 (2018).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Fu, T.

Z.-L. Deng, X. Li, T. Fu, and G. P. Wang, “Fano Resonance in a Metasurface Composed of Graphene Ribbon Superlattice,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Z.-L. Deng, T. Fu, Z. Ouyang, and G. P. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108(8), 081109 (2016).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gan, X.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

García de Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gu, M.

S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, and X. Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-electronic Adv. 1(2), 1–8 (2018).
[Crossref]

Gu, P.

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

Guclu, C.

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

Halas, N. J.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Huidobro, P. A.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Jia, B.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Khanikaev, A.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Knight, M. W.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Koch, M.

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Li, G.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Li, K.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Li, M.

Y. Miao, Y. Peng, Y. Xiang, M. Li, Y. Lu, and Y. Song, “Dynamic Fano Resonance in Thin Fiber Taper Coupled Cylindrical Microcavity,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Li, X.

S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, and X. Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-electronic Adv. 1(2), 1–8 (2018).
[Crossref]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Z.-L. Deng, Y. Cao, X. Li, and G. P. Wang, “Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure,” Photon. Res. 6(5), 443–450 (2018).
[Crossref]

Z.-L. Deng, X. Li, T. Fu, and G. P. Wang, “Fano Resonance in a Metasurface Composed of Graphene Ribbon Superlattice,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Liang, W. G.

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Lin, Z.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, P.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Liu, X.

Liu, Z. Z.

F. F. Qin, J. J. Xiao, Z. Z. Liu, and Q. Zhang, “Multiple Fano-Like Transmission Mediated by Multimode Interferences in Spoof Surface Plasmon Cavity-Waveguide Coupling System,” IEEE Trans. Microw. Theory Tech. 64(4), 1186–1194 (2016).
[Crossref]

Lu, H.

H. Lu, Z. Yue, and J. Zhao, “Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides,” Opt. Commun. 414, 16–21 (2018).
[Crossref]

H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic Fano spectral response from graphene metasurfaces in the MIR region,” Opt. Mater. Express 8(4), 1058–1068 (2018).
[Crossref]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37(18), 3780–3782 (2012).
[Crossref] [PubMed]

Lu, Y.

Y. Miao, Y. Peng, Y. Xiang, M. Li, Y. Lu, and Y. Song, “Dynamic Fano Resonance in Thin Fiber Taper Coupled Cylindrical Microcavity,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ma, T.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Manjappa, M.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active Photoswitching of Sharp Fano Resonances in THz Metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Mao, D.

Martin-Moreno, L.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Mei, T.

Miao, Y.

Y. Miao, Y. Peng, Y. Xiang, M. Li, Y. Lu, and Y. Song, “Dynamic Fano Resonance in Thin Fiber Taper Coupled Cylindrical Microcavity,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Mielczarek, W. S.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Monticone, F.

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

Moreno, E.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Mork, J.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

Nielsen, M. G.

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[Crossref]

Nordlander, P.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ouyang, X.

S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, and X. Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-electronic Adv. 1(2), 1–8 (2018).
[Crossref]

Ouyang, Z.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5(1), 18461 (2016).
[Crossref] [PubMed]

Z.-L. Deng, T. Fu, Z. Ouyang, and G. P. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108(8), 081109 (2016).
[Crossref]

Pal, U.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5(1), 209–216 (2013).
[Crossref] [PubMed]

Paul, S.

S. Paul and M. Ray, “Simultaneous Switching at Multiple Wavelengths Using Plasmon Induced Transparency and Fano Resonance,” IEEE Photonics Technol. Lett. 29(9), 739–742 (2017).
[Crossref]

Peña-Rodríguez, O.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5(1), 209–216 (2013).
[Crossref] [PubMed]

Pendry, J. B.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Peng, Y.

Y. Miao, Y. Peng, Y. Xiang, M. Li, Y. Lu, and Y. Song, “Dynamic Fano Resonance in Thin Fiber Taper Coupled Cylindrical Microcavity,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Pors, A.

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[Crossref]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Purtseladze, D.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Qin, F. F.

F. F. Qin, J. J. Xiao, Z. Z. Liu, and Q. Zhang, “Multiple Fano-Like Transmission Mediated by Multimode Interferences in Spoof Surface Plasmon Cavity-Waveguide Coupling System,” IEEE Trans. Microw. Theory Tech. 64(4), 1186–1194 (2016).
[Crossref]

F. F. Qin, J. J. Xiao, Q. Zhang, and W. G. Liang, “Multiple fano resonances in spatially compact and spectrally efficient spoof surface plasmon resonators with composite textures,” Opt. Lett. 41(1), 60–63 (2016).
[Crossref] [PubMed]

Ragan, R.

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

Ray, M.

S. Paul and M. Ray, “Simultaneous Switching at Multiple Wavelengths Using Plasmon Induced Transparency and Fano Resonance,” IEEE Photonics Technol. Lett. 29(9), 739–742 (2017).
[Crossref]

Rivera, A.

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5(1), 209–216 (2013).
[Crossref] [PubMed]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Savinov, V.

V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, “Modulating sub-THz Radiation with Current in Superconducting Metamaterial,” Phys. Rev. Lett. 109(24), 243904 (2012).
[Crossref] [PubMed]

Scalora, M.

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

Semenova, E.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

Shen, X.

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Shi, J.

F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
[Crossref]

Shi, T.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Shvets, G.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Singh, R.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active Photoswitching of Sharp Fano Resonances in THz Metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

Skigin, D. C.

D. C. Skigin and R. A. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[Crossref] [PubMed]

Sobhani, H.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Song, X.

Z. Chen, X. Song, G. Duan, L. Wang, and L. Yu, “Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Song, Y.

Y. Miao, Y. Peng, Y. Xiang, M. Li, Y. Lu, and Y. Song, “Dynamic Fano Resonance in Thin Fiber Taper Coupled Cylindrical Microcavity,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Srivastava, Y. K.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active Photoswitching of Sharp Fano Resonances in THz Metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Vincenti, M. A.

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

Wan, M.

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

Wang, C.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Wang, F.

F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
[Crossref]

Wang, G.

Wang, G. P.

Z.-L. Deng, Y. Cao, X. Li, and G. P. Wang, “Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure,” Photon. Res. 6(5), 443–450 (2018).
[Crossref]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Z.-L. Deng, X. Li, T. Fu, and G. P. Wang, “Fano Resonance in a Metasurface Composed of Graphene Ribbon Superlattice,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Z.-L. Deng, T. Fu, Z. Ouyang, and G. P. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108(8), 081109 (2016).
[Crossref]

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5(1), 18461 (2016).
[Crossref] [PubMed]

Z.-L. Deng, S. Zhang, and G. P. Wang, “Wide-angled off-axis achromatic metasurfaces for visible light,” Opt. Express 24(20), 23118–23128 (2016).
[Crossref] [PubMed]

Z.-L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
[Crossref] [PubMed]

Wang, H.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Wang, L.

Z. Chen, X. Song, G. Duan, L. Wang, and L. Yu, “Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Wang, S.

S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, and X. Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-electronic Adv. 1(2), 1–8 (2018).
[Crossref]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Wang, X.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Wang, Y.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z.

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Willatzen, M.

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Wu, W.

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

Xiang, Y.

Y. Miao, Y. Peng, Y. Xiang, M. Li, Y. Lu, and Y. Song, “Dynamic Fano Resonance in Thin Fiber Taper Coupled Cylindrical Microcavity,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Xiao, F.

Xiao, J. J.

F. F. Qin, J. J. Xiao, Q. Zhang, and W. G. Liang, “Multiple fano resonances in spatially compact and spectrally efficient spoof surface plasmon resonators with composite textures,” Opt. Lett. 41(1), 60–63 (2016).
[Crossref] [PubMed]

F. F. Qin, J. J. Xiao, Z. Z. Liu, and Q. Zhang, “Multiple Fano-Like Transmission Mediated by Multimode Interferences in Spoof Surface Plasmon Cavity-Waveguide Coupling System,” IEEE Trans. Microw. Theory Tech. 64(4), 1186–1194 (2016).
[Crossref]

Xu, J.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Xu, N.

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Xue, W.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

Yan, J.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Yang, D.

Yang, G.

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

Ye, X.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Yogesh, N.

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5(1), 18461 (2016).
[Crossref] [PubMed]

Yu, L.

Z. Chen, X. Song, G. Duan, L. Wang, and L. Yu, “Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Z. Chen and L. Yu, “Multiple Fano Resonances Based on Different Waveguide Modes in a Symmetry Breaking Plasmonic System,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

Yue, Z.

H. Lu, Z. Yue, and J. Zhao, “Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides,” Opt. Commun. 414, 16–21 (2018).
[Crossref]

Yvind, K.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

Zeng, C.

Zhang, Q.

F. F. Qin, J. J. Xiao, Q. Zhang, and W. G. Liang, “Multiple fano resonances in spatially compact and spectrally efficient spoof surface plasmon resonators with composite textures,” Opt. Lett. 41(1), 60–63 (2016).
[Crossref] [PubMed]

F. F. Qin, J. J. Xiao, Z. Z. Liu, and Q. Zhang, “Multiple Fano-Like Transmission Mediated by Multimode Interferences in Spoof Surface Plasmon Cavity-Waveguide Coupling System,” IEEE Trans. Microw. Theory Tech. 64(4), 1186–1194 (2016).
[Crossref]

Zhang, S.

Z.-L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
[Crossref] [PubMed]

Z.-L. Deng, S. Zhang, and G. P. Wang, “Wide-angled off-axis achromatic metasurfaces for visible light,” Opt. Express 24(20), 23118–23128 (2016).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhao, J.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic Fano spectral response from graphene metasurfaces in the MIR region,” Opt. Mater. Express 8(4), 1058–1068 (2018).
[Crossref]

H. Lu, Z. Yue, and J. Zhao, “Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides,” Opt. Commun. 414, 16–21 (2018).
[Crossref]

Zhao, R.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

Zheludev, N. I.

V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, “Modulating sub-THz Radiation with Current in Superconducting Metamaterial,” Phys. Rev. Lett. 109(24), 243904 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhuang, X.

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

ACS Nano (1)

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, “Directional Fano Resonance in a Silicon Nanosphere Dimer,” ACS Nano 9(3), 2968–2980 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

Adv. Mater. (1)

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active Photoswitching of Sharp Fano Resonances in THz Metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Appl. Phys. Lett. (4)

C. Argyropoulos, F. Monticone, G. D’Aguanno, and A. Alù, “Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths,” Appl. Phys. Lett. 103(14), 143113 (2013).
[Crossref]

S. Campione, D. de Ceglia, C. Guclu, M. A. Vincenti, M. Scalora, and F. Capolino, “Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles,” Appl. Phys. Lett. 105(19), 191107 (2014).
[Crossref]

Z.-L. Deng, T. Fu, Z. Ouyang, and G. P. Wang, “Trimeric metasurfaces for independent control of bright and dark modes of Fano resonances,” Appl. Phys. Lett. 108(8), 081109 (2016).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

IEEE Photonics J. (4)

Z. Chen, X. Song, G. Duan, L. Wang, and L. Yu, “Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems,” IEEE Photonics J. 7(3), 1–10 (2015).
[Crossref]

Z. Chen and L. Yu, “Multiple Fano Resonances Based on Different Waveguide Modes in a Symmetry Breaking Plasmonic System,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

Y. Miao, Y. Peng, Y. Xiang, M. Li, Y. Lu, and Y. Song, “Dynamic Fano Resonance in Thin Fiber Taper Coupled Cylindrical Microcavity,” IEEE Photonics J. 8(6), 1–6 (2016).
[Crossref]

Z.-L. Deng, X. Li, T. Fu, and G. P. Wang, “Fano Resonance in a Metasurface Composed of Graphene Ribbon Superlattice,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Paul and M. Ray, “Simultaneous Switching at Multiple Wavelengths Using Plasmon Induced Transparency and Fano Resonance,” IEEE Photonics Technol. Lett. 29(9), 739–742 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

F. F. Qin, J. J. Xiao, Z. Z. Liu, and Q. Zhang, “Multiple Fano-Like Transmission Mediated by Multimode Interferences in Spoof Surface Plasmon Cavity-Waveguide Coupling System,” IEEE Trans. Microw. Theory Tech. 64(4), 1186–1194 (2016).
[Crossref]

J. Appl. Phys. (1)

F. Wang, Z. Wang, and J. Shi, “Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface,” J. Appl. Phys. 116(15), 153506 (2014).
[Crossref]

Light Sci. Appl. (1)

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Nano Lett. (2)

Z.-L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, “Diatomic Metasurface for Vectorial Holography,” Nano Lett. 18(5), 2885–2892 (2018).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Nanoscale (3)

O. Peña-Rodríguez, A. Rivera, M. Campoy-Quiles, and U. Pal, “Tunable Fano resonance in symmetric multilayered gold nanoshells,” Nanoscale 5(1), 209–216 (2013).
[Crossref] [PubMed]

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

Z.-L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
[Crossref] [PubMed]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

New J. Phys. (1)

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[Crossref]

Opt. Commun. (1)

H. Lu, Z. Yue, and J. Zhao, “Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides,” Opt. Commun. 414, 16–21 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opto-electronic Adv. (1)

S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, and X. Li, “Diffractive photonic applications mediated by laser reduced graphene oxides,” Opto-electronic Adv. 1(2), 1–8 (2018).
[Crossref]

Photon. Res. (1)

Phys. Rev. Lett. (4)

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, “Modulating sub-THz Radiation with Current in Superconducting Metamaterial,” Phys. Rev. Lett. 109(24), 243904 (2012).
[Crossref] [PubMed]

D. C. Skigin and R. A. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Phys. Rev. X (1)

P. A. Huidobro, X. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic Localized Surface Plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Sci. Rep. (2)

Z.-L. Deng, N. Yogesh, X.-D. Chen, W.-J. Chen, J.-W. Dong, Z. Ouyang, and G. P. Wang, “Full controlling of Fano resonances in metal-slit superlattice,” Sci. Rep. 5(1), 18461 (2016).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the superlattice bilayer metasurface, the unit cell is arranged along axis x and y periodically. The wave vector k is incident along the z direction. (b) Transmission spectrum from λ = 15 mm to λ = 30 mm exhibiting dual-Fano resonances of the superlattice bilayer metasurface with parameters Px = 10 mm, Py = 10 mm, g = 0.2 mm, and St = 0.8 mm.
Fig. 2
Fig. 2 Field profiles of the EFR mode with (a) Ey on the top layer of the metasurface plane, (b) Ex on the section z-x of the stripe’s end, (c) Hx on the section y-z of the left stripe at A; (d) Ey on the top layer of the metasurface plane, (e) Ex on the section z-o-x of the stripe’s end, and (f) Hx on the section y-o-z of the left stripe at B.
Fig. 3
Fig. 3 Field profiles of the MFR mode with (a) Ey on the bottom layer of the metasurface plane, (b) Ey on the section z-x of the stripe’s end, (c) Hx on the section y-z of the left stripe at C; (d) Ey on the bottom layer of the metasurface plane, (e) Ey on the section z-x of the stripe’s end, and (f) Hx on the section y-z of the left stripe at D.
Fig. 4
Fig. 4 Transmission spectra (a) for varying Px from 3 mm to 15 mm when St = 1 mm, Py = 8 mm, g = 0.6 mm, and (b) the fitted Fano line shape at ‘Px = 4.9 mm, 8.8 mm, 9.7 mm and 13.1 mm’ (from up to down).
Fig. 5
Fig. 5 Transmission spectra (a) for varying Py, with fixed parameters Px = 10 mm, g = 0.6 mm, St = 1 mm and (b) horizontal cut of (a) at ‘Py = 7.4 mm, 9.8 mm, 13 mm and 15 mm’ (from up to down), respectively.
Fig. 6
Fig. 6 Transmittance spectra of dual Fano resonances (a) for varying interval distances (g = 0.6 mm~2.6 mm) between adjacent stripes and (b) horizontal cut of (a) at discrete interval distances: g = 0.6 mm, 0.8 mm, 1 mm, 1.2 mm (from up to down)
Fig. 7
Fig. 7 Transmission of dual Fano resonance as (a) a function of incident wavelength and the distance between the double layers and (b) calculated spectra for different distances St: 0.56 mm, 1 mm, 1.5 mm, 1.8 mm (from up to down), respectively. The red and black dot lines show robust peak modes properties.

Metrics